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ABSTRACT
Composing queries is evidently a tedious task. This is particularly
true of graph queries as they are typically complex and prone to
errors, compounded by the fact that graph schemas can be missing
or too loose to be helpful for query formulation. Despite the great
success of query formulation aids, in particular, automatic query
completion, graph query autocompletion has received much less
research attention. In this demonstration, we present a novel in-
teractive visual subgraph query autocompletion framework called
AUTOG which alleviates the potentially painstaking task of graph
query formulation. Specifically, given a large collection of small
or medium-sized graphs and a visual query fragment q formulated
by a user, AUTOG returns top-k query suggestions Q′ as output at
interactive time. Users may choose a query from Q′ and iteratively
apply AUTOG to compose their queries. We demonstrate various
features of AUTOG and its superior ability to generate high quality
suggestions to aid visual subgraph query formulation.

1. INTRODUCTION
The prevalence of graph-structured data in modern real-world

applications such as biological and chemical databases (e.g., PUB-
CHEM), and co-purchase networks (e.g., Amazon.com) has led to
a rejuvenation of research on graph data management. Several
database query languages have been proposed for textually query-
ing graph databases (e.g., SPARQL, Cypher). Unfortunately, formu-
lating a graph query using any of these query languages often de-
mands considerable cognitive effort and requires “programming”
skill at least similar to programming in SQL. Yet, in a wide spec-
trum of graph applications users who need to query graph data are
not proficient query writers. For example, chemists are not often
expected to learn the complex syntax of a graph query language in
order to formulate meaningful queries over a chemical compound
database such as PUBCHEM1 or eMolecule2. Hence, it is important
to devise intuitive techniques that can alleviate the burden of query
formulation and thus increase the usability of graph databases.

1
https://pubchem.ncbi.nlm.nih.gov/

2
https://www.emolecules.com/
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A popular approach to making query formulation user-friendly
is to provide a visual query interface (GUI) for interactively con-
structing queries. In recent times, there has been increasing ef-
forts to create such user-friendly GUIs from academia (e.g., [3])
and industries (e.g., PUBCHEM and eMolecule) to ease the bur-
den on query formulation. During the construction (also refer to as
composition) of visual queries, given a partially-composed query,
it is always desirable to suggest top-k possible query fragments that
the user may potentially add to his/her intermediate query in sub-
sequent steps. Such suggestions can enhance user experience on
graph databases and facilitate exploratory search [2], where non-
expert users may learn, discover, and investigate information from
a graph data source through a sequence of queries and answers.

In the literature, such suggestions that assist query formulation
are often referred to as query autocompletion. Techniques for query
autocompletion have been proposed for web search. Search engine
companies use their proprietary algorithms for providing keyword
suggestions during query formulation. A corresponding capability
for graph query engine is in its infancy. In fact, to the best of our
knowledge, except for a recent demo for edge suggestions [4], the
autocompletion of subgraph queries has not been studied before.

There are two key challenges of autocompleting subgraph queries.
Firstly, in web search, the natural logical increments (i.e., tokens)
of queries are keywords. However, the notion of “increments” of
subgraph queries has not yet been defined. Furthermore, subgraph
queries are structures and there are many ways to compose a query.
Secondly, there can be potentially many candidate query sugges-
tions. Consequently, it is paramount to return a small ranked list of
query suggestions at interactive time.

In this demonstration, we present a novel autocompletion frame-
work for subgraph queries called AUTOG. To tackle the first chal-
lenge, we propose a novel notion of logical increments of subgraph
queries. We call them c-prime features, which are (frequent) sub-
graphs that can be constructed from small (frequent) subgraphs in
no more than c ways. When possible increments are many, query
autocompletion can be inefficient. The idea is to optimize query au-
tocompletion time by omitting non-c-prime features because they
may be formed from smaller features/queries anyway. To address
the second challenge, we propose a novel ranked subgraph query
suggestion problem (RSQ). The goal of the RSQ problem is to effi-
ciently determine a candidate query suggestion setQ′. Specifically,
AUTOG deploys a submodular ranking function that is in favor of
query suggestions of high selectivities and structural diversity. A
novel index for c-prime features, called feature DAG (FDAG) [9],
is exploited to optimize RSQ. The key characteristics of FDAG
are as follows: (i) it enumerates possible query compositions of c-
prime feature pairs offline, (ii) it prunes redundant suggestions via
graph automorphism, and (iii) it indexes some auxiliary structures
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Figure 1: Architecture of AUTOG.
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Figure 2: The AUTOG GUI (reorganized for clarity of printouts).

for computing structural similarity of suggestions online. To de-
termine query suggestions efficiently, AUTOG leverages a greedy
algorithm. In addition, it adopts a sampling approach to efficiently
estimate the selectivity of query suggestions. Our demonstration
focuses on these innovative features necessary to realize a query
autocompletion framework for subgraph queries.

2. SYSTEM OVERVIEW
The system architecture of AUTOG is shown in Figure 1. It

employs a client-server architecture and comprises of the follow-
ing modules. The client-side mainly consists of an intuitive GUI
whereas at the server side, the modules are organized into offline
and online ones.
The GUI module at the client side. Figure 2 depicts the screen-
shot of the AUTOG visual interface. A user begins by choosing
a target graph database using the left panel on which subgraph
queries will be formulated visually. This panel also displays the
unique labels of nodes and edges that appear in the dataset. Note
that during the query formulation process, these labels are chosen
for creating the nodes and edges in the query graph. The Visual
Graph Editor panel in the middle is the area used to construct a
query graph. Users may click on the empty space of the editor to
add a new node, and drag from one node close to another to add a
new edge. At any stage of the formulation process, one may retrieve
query suggestions from the server by clicking on the Autocomplete
button. Then, the bottom panel displays the relevant suggestions
in real time. To highlight the incremental parts of the suggestions,
the existing query is colored in light grey. To accept a suggestion,
users may simply click on it. The right panel enables a user to tune
relevant parameters related to the query suggestion process by in-
teracting with the sliders. When the Submit Query button is clicked,
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Figure 3: 0-prime feature f2 and f3 vs 2-prime feature f5.
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the results of the current query graph are retrieved from the server
and displayed on the GUI.
Offline modules at the server side. The offline component consists
of modules that extract c-prime features from a graph database and
build the FDAG index, that indexes these features, their composi-
tions, and data graphs. While all indexes are built offline, we are
able to build the index for PubChem data graphs in few days by
using just a commodity machine. The Feature Extractor module
extends an existing feature mining algorithm (i.e., GSPAN [8]) with
the algorithm to compute the composability of features. The output
of this module is c-prime features of data graphs. The c-prime fea-
tures are further indexed by our proposed index called Feature DAG
index (FDAG). Consider Figure 3 as an example. Suppose F ={f2,
f3, f5} is the set of frequent subgraphs of a graph database D. f2
and f3 are the smallest features in F . They cannot be constructed
from other features and hence are 0-prime features. f5 is a 2-prime
feature because there are only two ways to construct f5 from f2 and
f3, as shown in the right hand side of the figure. The design ratio-
nales of c-prime features are that (i) some features are important to
autocompletion because their absence leads to fewer possible sug-
gestions; and (ii) some other features are less important because
they can be constructed incrementally from small ones in numer-
ous ways and can be suggested by query autocompletion anyway.
We propose c-prime features – the first features being defined with
their composabilities.

Observe that there are numerous possible ways to add query in-
crements (c-prime features) to an intermediate user query. For ex-
ample, consider f2 in Figure 4 as an initial query (with the node IDs
in parentheses). f4 is a c-prime feature that is added to f2 to form a
new query via their common subgraph f1. Figure 4 shows two pos-
sible queries (f6 and f7) that can be composed. Figure 5 shows that
f8 can be added to f2 and there are many compositions that form
the same query f9. In our experiments, we mined 1.2K c-prime
features from PUBCHEM, there are only 4.2M distinct non-empty
subgraph queries that can be composed from the feature pairs.

As we shall see later, the Candidate Generation step in the on-
line module generates candidates by determining possible composi-
tions of features. Hence, FDAG indexes all possible compositions.
Furthermore, Figure 5 highlights that structurally equivalent sug-
gestions may be generated. Recall that incrementing automorphic
f8 to f2 via different node configurations yields the same query.
Similar argument can be applied to the current query and the com-
mon subgraph between the query and the increment. Hence, FDAG
indexes automorphisms of c-prime features so that redundant can-
didates can be pruned.
Autocomplete Query Processor module at the server side. This
module takes the current query graph and AUTOG’s parameters as
input and produces query suggestions as output at interactive time.
First, it decomposes the query into a c-prime feature set with re-
spect to the c-prime features F computed offline. Importantly, it
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Figure 5: Example of redundant query compositions.

determines the embeddings (i.e., the locations) of the features in
the query, which show how they are connected and where query
increments can be added to. Obviously, the decomposition of a
query is not unique. Users may tune the query decomposition ac-
cording to two competing objectives: firstly, the larger the features,
the more structural semantics they preserve; secondly, the larger
the features, the higher the chance the features overlap. However,
overlapping features contain redundant information which affects
the other parts of AUTOG.

It should be noted that queries may contain infrequent edges,
which are not in F , and will not be handled by AUTOG. The anal-
ogy is that in web searches, infrequent keywords are not suggested;
similarly, in AUTOG, infrequent logical units are not suggested.
By definition, infrequent edges lead to small answer sets and con-
sequently users may need less assistance from AUTOG.

The output of the above query decomposition step is a set of
c-prime features of q and their embeddings in q. Next, in the can-
didate generation step, a set of candidate query suggestions are
generated by utilizing these decompositions. A candidate query
suggestion is formed by adding a query increment (which is a c-
prime feature) to one of the c-prime features of q. Recall that query
increments can be added to the current query in multiple ways. In
the worst case, the number of possible suggestions being composed
is exponential to the query and feature sizes.

In practice, some candidate queries may not make sense, as they
may not retrieve any data graphs. We refer to them as empty queries.
This step prunes empty queries. The unpruned queries are then re-
turned as candidate suggestions. We elaborate on this pruning step
further. Consider a graph g = (V , E, `). Denote Σ to be the label
set, where Σ = {`(v) | v ∈ V }. For each node v ∈ V , we determine
a vector of the counts of its neighboring node’s label ~̀v , where

~̀
v [l′] = |{v′|(v, v′) ∈ E, `(v′) = l′}|.

The nodes of the graphs can be represented by such vectors and
hence, as data points in a Σ-dimensional space. Denote S to a
skyline in the Σ-dimensional space of the data point representations
of the nodes of the graphs. Given a query q, q is non-empty if it does
not contain a node whose vector dominates the nodes in S in some
dimensions.

To prune empty queries, each possible query is compared against
the data points of the skyline, which is costly. Thus, we relax the
check for efficiency. For each label l1 in Σ, we determine the max-
imum number of each neighboring label l2, dl1,l2 =

max(|{v2|`(v1) = l1, `(v2) = l2, (v1, v2) ∈ g.E, g ∈ D}|).

The necessary condition for non-empty queries is then expressed
in terms of dl1,l2 . A query q is non-empty only if @vq ∈ q.V , such
that ∀ dlq,l2 , dlq,l2 < |{v2 | `(vq)=lq , `(v2)=l2, (vq ,v2) ∈ q.E }|,
where lq∈Σ.

Consider a small example database D that consists of g1, g2 and
g3, as shown in Figure 6. We illustrate that dC,C = 2, dC,N = 1, dN,C
= 1 and dC,O = 1, etc. q′1 satisfies the necessary condition, and thus
it is a candidate suggestion. In contrast, the C node in the center
of q′2 has dC,N = 2, which violates the relaxed necessary condition.
Thus, q2 is pruned.
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Figure 6: Example of pruning by the relaxed necessary condition.
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Figure 7: Similar suggestions Q′ vs diverse suggestions Q′′.

In the last step, candidate suggestions are ranked by the proces-
sor. To elaborate further, when users formulate their queries, they
may have different needs for suggestions, under different query
formulation scenarios. For example, expert users may use AU-
TOG to speed up their manual query formulation, whereas novice
users may prefer diversified suggestions for exploring a database.
We model the preferences between different criteria with a ranking
function util and a user preference α. Moreover, since users may
only be able to interpret a small subset of the candidate suggestions,
AUTOG returns only top-k suggestions w.r.t. util and α. Here, we
present a submodular util function, where greedy algorithms are its
natural heuristics. It should be remarked that the ranking function
util is for illustration purposes (i.e., other function can be readily
plugged into the AUTOG framework).

More specifically, we illustrate a ranking function for possibly
novice users who prefer query suggestions that (i) return more an-
swer graphs and (ii) are structurally diversified. These two prefer-
ences can be quantified by the following two functions:

• sel(q): the selectivity of q on D.

• dist(qi, qj): the “intra-dis-similarity” between a pair of sug-
gestions, qi and qj . The total pairwise distance of sugges-
tions reflects how diversified a set of suggestions is. For il-
lustration purposes, we adopt the maximum common edge
subgraph (mces) for dist. mces is adopted because adding
edges (as opposed to nodes) to an existing query is an impor-
tant logical step of composing queries.

Figure 7 shows two sets of example suggestions Q′ and Q′′ to
the same query q. All suggestions add two edges to q. Clearly, Q′′

is more diverse because its suggestions differ from each other by
two edges, whereas those in Q′ differ from each other by an edge.

Given a set of suggestions Q′:{q′1, q′2, . . . , q′k} and a user pref-
erence α, the user intent value of Q′ (util) is defined as follows:

util(Q′
) =

α

k

∑
q′∈Q′

sel(q′) +
1 − α

k(k − 1)

∑
q′
i
,q′

j
∈Q′,i 6=j

dist(q′i, q
′
j),

where α ∈ [0, 1].
The two objectives of util can be competing. It can be observed

that in practice, the sel of smaller queries are often larger as more
data graphs contain smaller queries; in contrast, smaller queries
may have smaller structural differences between them and conse-
quently, dist returns smaller values and their diversities are rela-
tively low. Determining the top-k suggestions that have the opti-
mum util value (called the RSQ problem) is an NP-hard problem.
A greedy ranking algorithm is implemented to strike a balance be-
tween suggestion quality and efficiency.
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Table 1: Query sizes vs quality metrics (PUBCHEM)

|q| #AUTOG TPM (%)
8 2.2 45%

12 3.3 44%
16 4.0 42%

Scenario A

TPM = 70%

Scenario B

TPM = 90% subgraph increment

increment
edge

increment
edge

increment
edge

Figure 8: Illustration of edge and subgraph suggestion scenarios.

We have evaluated the qualities of the suggestions of random
queries via user tests and large scale simulations [9]. We report
some results in Table 1, where #AUTOG is the average number of
suggestions accepted in the simulation and TPM is the total profit
metric (TPM) adopted from [7], which quantifies the % of mouse
clicks saved by AUTOG in visual graph query formulation: TPM =
number of clicks saved by AUTOG
number of clicks without AUTOG .

We highlight that i) the suggestions were accepted multiple times
during query formulation, and ii) AUTOG saved roughly 40% of
users’ mouse clicks in query formulation. We also carried out a
user test with 10 volunteers to formulate 60 diverse queries [9].
The questionnaire can be found at http://goo.gl/dFRdwj. The
results showed that TPM is a good indication of quality because
the correlation coefficient of users’ ratings and TPM is 0.96 and
the p-value is 0.002. In addition, we observe that AUTOG returned
suggestions shortly under a large variety of parameter settings.

3. RELATED SYSTEMS & NOVELTY
Mottin et al. [6] recently studied the problem of graph query re-

formulation. The reformulated queries maximally cover the results
of the current query. Their approach assumes that all query results
are relevant. When queries are small, the number of answers can be
huge (e.g., 30K graphs on average for small queries of size 8 over
PUBCHEM). In practice, users may not be interested in all of them.
In contrast, AUTOG ranks suggestions based on users’ preferences
such as selectivities and structural diversities.

More germane to this demonstration is the recent work in [4],
which suggests edge increments to the current query graph. How-
ever, query formulation may then take many steps; and users can
only express limited structural information in each step. In con-
trast, AUTOG suggests subgraph increments. Scenario A of Fig-
ure 8 shows the suggestions of AUTOG when edge increments are
enforced, whereas Scenario B shows that AUTOG can suggest a
larger subgraph to form the same query graph. As can be seen,
AUTOG is more effective and user-friendly.

Exploratory search has known to be useful for enhancing interac-
tions between users and search systems (e.g., [5]). Graph query au-
tocompletion is consistent to exploratory search as it allows users to
construct their queries incrementally and interactively, and explore
the intermediate query results.

4. DEMONSTRATION OVERVIEW
AUTOG was implemented in C++, using VF2 for subgraph test

and the McGregor’s algorithm (with minor adaptation) for deter-
mining mces. We adopted the GSPAN implementation from [8]

Benzene Ethylbenzene Aniline Anisole

Figure 9: Example query graphs.

for frequent subgraph mining. We will use two popular bench-
marked real datasets, namely PUBCHEM (1 million graphs) and
AIDS (10,000 graphs), for demonstration. The default dataset used
in the live demonstration is PUBCHEM. We will use query sets
provided by IGRAPH [1], and follow their default settings. A set
of sample target queries will be presented (some are shown in Fig-
ure 9). Attendees may also formulate their own ad-hoc queries. A
video of AUTOG can be found at http://goo.gl/4KnJeq.

The key objective of the demonstration is to enable the atten-
dees to interactively experience the following features through the
AUTOG GUI (as shown in Figure 2).
Interactive experience of autocompletion during query formu-
lation. Through the GUI (Figure 2), one will be able to select
the relevant data source, visually formulate the subgraph query she
would like to construct (some examples are shown in Figure 9), and
view the suggestions generated by AUTOG during the construction
process. Specifically, she will be able to automatically generate
a subgraph query (especially large ones) with significantly fewer
clicks without constructing each edge manually. She will also be
able to experience the query suggestion time and the quality of top-
k suggestions generated by AUTOG.
Interactive experience of the effect of different parameters. By
varying α, users may tune their preference of selectivity over sug-
gestion diversity. Moreover, AUTOG can be used by both expert
users (for reducing query formulation steps) and novice users (for
returning structurally diverse suggestions). By varying c, users may
set their preference between quick and comprehensive suggestions.
During the demonstration, an attendee will also be able to modify
various parameters associated with the query suggestion generation
process through the right panel of the GUI and interactively experi-
ence their impact on the query suggestions in the bottom panel.
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