Exploring Databases via Reverse Engineering Ranking
Queries with PALEO’

Kiril Panev, Sebastian Michel, Evica Milchevski, Koninika Pal
TU Kaiserslautern
Kaiserslautern, Germany

{panev|smichel|milchevski|pal}@cs.uni-kl.de

ABSTRACT

A novel approach to explore databases using ranked lists is
demonstrated. Working with ranked lists, capturing the rel-
ative performance of entities, is a very intuitive and widely
applicable concept. Users can post lists of entities for which
explanatory SQL queries and full result lists are returned.
By refining the input, the results, or the queries, user can in-
teractively explore the database content. The demonstrated
system is centered around our PALEQO framework for reverse
engineering OLAP-style database queries and novel work on
mining interesting categorical attributes.

1. INTRODUCTION

The concept of rankings is ubiquitous; it exists in nearly
all domains. Essentially, rankings allow focusing on a small
subset of an exhaustively full list—usually a few top or bot-
tom entries are of interest. Such small subsets represent the
essence of the available data, worthwhile to look into. In-
stead of browsing through databases via OLAP cubes over
predetermined dimensions to gain insights, we propose the
usage of rankings to explore database contents. We put for-
ward PALEO [6], our approach to reverse engineer OLAP-
style database queries. Given an input result list, PALEO is
able to efficiently determine input-generating SQL queries
and can additionally be relaxed in order to find queries that
generate rankings similar to the input within a certain dis-
tance bound. How is this useful for exploring data?

Consider a user Alice who needs to make up her mind
which smartphone to buy next. Alice is favoring model X,
model Y, and model Z, in this order. She is interested in
finding explanatory queries and in fact populated rankings
that resemble this ranking. PALEO tries to determine such
queries, either explicitly reflecting Alice’s preference or de-
livering queries and resulting rankings that are close to her
ranking. Given the structure of the queries (perhaps trans-
lated to natural language) Alice learns about the categorical

*This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond those covered
by this license, obtain permission by emailing info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

constraints and ranking criteria used. Given the computed
rankings, Alice can further learn about other smartphones
that perform perhaps even better, depending on how much
PALEO is allowed to deviate from the original input ranking.
Assume PALEO returned a ranking of {X, W, Y, Z} with
constraints ‘storage=16GB’ and ‘brand=Samsung’, ranked
by ‘battery lifetime’. What can she learn from that and how
can she proceed? She can remove the constraint on the make
to get additional offers, she also learned that the model W
appears feasible, too. Further, she changes the ranking cri-
teria as ‘battery lifetime’ is mot the most decisive criterion
for her anyways, can distort the ranking slightly to see how
generating queries are going to differ, etc.

Developing a system that allows working with rankings
in such an exploratory fashion brings up several challenges
that need to be addressed. First, subsecond response times
are required to allow interactive data exploration. PALEO
achieves this by precomputed statistics, decision trees, in-
memory processing over a sufficient subset of the data, and
low false positive rate in the candidate-query evaluation.
Second, the system has to allow approximate answers to the
user input, as it is not reasonable to assume that the identi-
cal ranking can be retrieved from the database content. Yet,
the virtually exploding search space when allowing too much
freedom needs to be kept tractable. We address this, by
deeply incorporating distance-measure—based pruning into
the candidate query generation. Third, for a specific input
ranking there might be several explanatory SQL statements
that yield the input when being executed. But not all syntac-
tically close rankings and corresponding queries are equally
interesting. Thus, a way to bring such candidates in an or-
der that reflects a user-perceived notion of interestingness
is required. To achieve this, PALEO employs novel insights
from mining Web tables corpora to derive a classifier that
is able to tell whether or not a non-numerical attribute is
semantically meaningful to act as a constraint to the WHERE
clause of a query.

In the following, we highlight the key components of PA-
LEO, followed by a detailed discussion on the setup of the
planned demonstration. Thereafter, we briefly discuss re-
lated work before we conclude this demonstration proposal.

2. SYSTEM OVERVIEW

PALEO is a system designed for exploring databases by re-
verse engineering OLAP-style top-k queries. As user input,
the system consumes a top-k list L containing either one
column L.e of ranked entities or two columns that are cap-
turing entities and their corresponding scores. Then, given a

1525

Candidate Query: Similar Queries
Verification @@

0@ ©
C0

Find Predicates

=
EE)|

& E i]
Predictive
Model

Find Ranking Criteria Database

Top-k lists

x
%*X%

Classification of
Categorical Attributes

Figure 1: PALEO framework

database D with multiple relations R;, where each relation
R; contains data from a single domain, PALEO efficiently
and effectively determines queries (Q; that, when executed
over the database, compute result lists that are similar to
L. The found queries and corresponding top-k lists are or-
dered according to their similarity to the input ranking and
also with respect to a human notion of interestingness; the
latter will be discussed in more detail below. The similarity
of result rankings to the input is controlled via a user-defined
similarity threshold 6.

To quantify the similarity between the user-provided in-
put list and the resulting top-k lists, we use the Footrule
distance that is one of the predominant measures to com-
pute similarity between ranked lists. Specifically, since top-k
rankings are naturally only capturing a subset of all entities,
we use the adaptation F*+1) as proposed by Fagin et al. [3].

The system consists of the following steps, depicted in
Figure 1:

- finding the predicate P in the WHERE clause of the re-
versed engineered queries Q.

- finding the ranking criterion according to which the
ranked list (or a similar one) could be sorted.

- validation and ranking of the resulting queries and the
corresponding resulting lists.

- classification of the database tables and their columns
into interesting and non-interesting ones.

As the basis of all computation, we retrieve from the rela-
tion R all tuples where the entity is one of the entities in the
input list L into one single relation. We refer to this table as
R’. Furthermore, an inverted index is used as an auxiliary
structure in identifying the domain of the entities in the pro-
vided top-k list, i.e., the base table R that contains the ap-
propriate entities. Our system currently supports the follow-
ing ranking criteria: avg(A), maz(A), sum(A), sum(A+B),
and sum(A * B).

Predicates. As the user submits an input list to the
system, and a similarity threshold 6, the first step of PALEO
is to identify a set of candidate predicates by using the tuples
in R'. We focus on predicates P of the form Py APy ---A Py,
where P; is an atomic equality predicate of the form A; =
v (e.g., (team='Chicago Bulls')). If a query that precisely
generates the input is to be determined, there must exist
one tuple t; for each entity with P(¢;) evaluating to true.
However, in case we want to find all queries corresponding
to a similar list to L, in fact, all distinct attribute:value pairs
in R’ are atomic candidate predicates of size |P| = 1.

A naive approach would simply take all candidate pred-
icates and advance to the next step of finding ranking cri-
teria. However, this would result in a drastically reduced

performance, caused by a radical expansion of the set of
candidate predicates.

PALEO reduces the search space by applying two tech-
niques. First, it processes only the columns in R’ classified
as interesting with our pre-processing step. Only if no result
is returned using these column, PALEO resorts to processing
the non-interesting columns as well.

Second, by using the fact that the user expects as result
only those queries resulting in lists similar to the input,
i.e., those queries with Footrule distance d(Qr,L) < 6, we
devised formulas that allow us to considerably reduce the
number of candidate predicates, for reasonably small values
of 0. First, we compute how many entities a list [; must have
in common with [so that F(l;,L) <6 :p=[05x%(14+2k—
V14 40)]. We also define how many of the top 7 entities
in L must be also ranked in l;, so that F(l;,L) < 6: 7 =
k— min{g, k}. We can in fact guarantee that any predicate
in R’ that is not satisfied by at least u entities in L and all
of the first 7 entities, would result in a list that is within
distance larger than 6. For details on this the reader can
refer to [7].

Ranking Criteria. Using the set of identified can-
didate predicates, in the subsequent step, PALEO identifies
suitable ranking criteria according to which the entities in
the top-k lists are ordered. Identifying the candidate ranking
criteria is efficiently done by leveraging the table R’ which is
held in-memory. PALEO combines all of the candidate pred-
icates from Step 1 and the ranking criteria supported by
the system into queries, and executes them on R’ to find
a candidate query matching the input list. If the scores of
the ranked entities are given by the input, statistical meth-
ods and decision trees are used to efficiently identify the
most promising column for a ranking criteria, in order to
avoid executing all queries over R’. In the more general case
when rankings without numerical scores are given as input,
all combinations of numerical attributes and aggregate func-
tions could potentially qualify as candidates. The candidate
quires are further validated over R.

Validation of Candidate Queries. The result-
ing top-k lists that compared with the input list L are within
a Footrule distance of 0 are created as candidate queries Q.
and need to be further executed on the base table R. This
is because there are in general entities outside R’ that will
qualify for the ranking and might distort it. The order of
execution is done by ranking the candidate queries first in
ascending order of d(Qr, L), i.e., the Footrule distance be-
tween the resulting list Q1 and the input list L and second,
in descending order of the number of categorical attributes
Acar in the predicate of Q.. Thus, for candidate queries with
equal d(Qr, L), the ones with more categorical attributes
in their predicate will be executed first, since they will be
providing more interesting information to the users in their
database exploration. The validation is done iteratively and
in each step information is gathered to potentially eliminate
forthcoming queries without executing them.

Classification of Columns. As mentioned earlier,
not all queries reveal the same amount of information based
on their structure, although they all might resemble the in-
put ranking. To accommodate for this, we have developed a

1526

classification model that is able to predict whether or not a
column used as a constraint in the WHERE clause of a query is
interesting with respect to human perception. PALEO then
assigns scores to table columns according to their interest-
ingness predicted by the classification model; higher scores
are assigned to columns that are very likely to be part of
a predicate in an interesting top-k query. Note that this
preprocessing step is independent from the input list and
the similarity threshold 6, it operates solely on statistical
measures like information entropy computed over the values
inside a database column.

For learning this classification model, a supervised learn-
ing approach, v-SVM, is used on a training dataset that is
built based on Wikipedia tables. We consider a categorical
attribute for an entity as interesting iff we find at least one
Wikitable that is created by imposing a constraint over that
categorical attribute. Statistical measures like Entropy, Un-
likeability, Peculiarity, and Maximum Coverage are employed
to characterize the uncertainty in information, diversity and
competitiveness of the training data. Three new statistical
measures are also used as features that capture the diversity
of data with respect to information content, uniform distri-
bution, and variability. The feature vectors of the training
dataset are extracted and used to learn the classification
model. The accuracy of the classification model is described
in [5]. Our combined scoring model reflects the tradeoff be-
tween result similarity in terms of the Footrule distance to
the input ranking, and query-centric objectives like interest-
ingness of column constraints etc.

3. DESCRIPTION OF DEMONSTRATION

To demonstrate our system and all its capabilities to the
users we will use three datasets. The first dataset contains
basketball statistics from the Database Basketball portal [1].
It contains per-season statistics of players and their teams,
capturing the NBA and the ABA leagues from 1946 to 2009.
In total, there are 3924 players and 95 teams. The database
reports on various numerical attributes such as turnovers,
rebounds, total points per game, assists, field goals, etc. Fur-
thermore, we will also use a subset of the IMDB dataset [4],
which contains info on movies, actors, genres, movie length,
ratings, etc. The third dataset is the DBLP [2] database con-
taining information about authors and publications focused
in the field of computer science.

We have specifically chosen datasets that allow creating
a large variety of top-k rankings, with different categori-
cal constraints and ranking functions. This demonstration
should further be not only informative but also fun for the
users, specifically we expect the DBLP scenario to draw a
lot of attention from the VLDB audience as most visitors
will find themselves in the DBLP dataset.

Moreover, the domains of the datasets are diverse enough
to make the demonstration interesting for people with differ-
ent interests. We plan to engage the users using the following
demonstration scenarios.

Head-to-head Comparison of Entities. In
this demonstration scenario, users are asked to perform a
comparison of specific entities of their choice. PALEO shows
users how entities compare with each other based on dif-
ferent scoring functions and categories. In a head-to-head
entity comparison, the performance of entities is agnostic
to all other entities in the domain except the ones provided

1527

as input. Thus, the users will also be able to compare en-
tities that normally do not belong in the same league, i.e.,
one is ranked significantly higher than another and therefore
are not together in any top-k scenario. PALEO still provides
an option of exploring these entities and shows how they
compare against each other by ignoring the other entities
that could (potentially) appear between them in the rank-
ing. For instance, consider a scenario where the user wants to
see how Mark Price compares with the best guards in NBA,
even though this player is never really compared to the top
guards that ever played in the NBA. This is because he can-
not be compared to the elite, when considering the points
scores, the assists made, or the rebounds, etc. However, the
first query in Figure 2 will still be identified as a valid query,
even though if considering all entities in the dataset, Mark
Price is not in the top 100 players by points per game in
a single season with 19.6 PPG. Furthermore, other inter-
esting rankings can be found where Price is ranked even
above Michael Jordan, e.g., for the free throw percentage
or three point field goal percentage. In this way, the users
can see the virtues of these non-elite players, i.e., the per-
formance aspects where they can compete with the elite. In
this scenario, PALEO only needs to utilize the table R’ since
it already contains all tuples for the entities in the input list.
In this way, valid queries are identified very efficiently. The
user can also ask to see the entities that are ranked between
or above the input entities for a specific query. For instance,
she wants to see how far away is Mark Price from the top
100 player ranked by points per game. Our system will do
that, by additionally executing the query over the database.
Then, the entire top-k list will be shown to the user.

Exploring Similar Lists. In this demonstration
scenario we will show, given a ranked list of entities and
a similarity threshold 6, a set of queries together with their
top-k result lists and corresponding statistics. Figure 2 shows
a screenshot demonstrating this scenario. The user can spec-
ify the top-k list by entering entities through an input field
and then possibly rearranging them. We will prepare sev-
eral interesting starting examples to assist users in getting
started. Users can enter either only the entities or the en-
tities and their scores. PALEO provides assistance when en-
tering both fields; alternatively SQL queries can be used
to retrieve a ranking that can be altered by users to get
reverse-engineered. Users need to enter a similarity thresh-
old, i.e., the maximum Footrule distance the input list can
have to the lists produced by the identified queries. The
system starts by pressing the “Find Queries” button. As
output the system shows the user the Footrule distance of
each query:list pair, the query execution time, and marks
the interesting attributes in its predicate according to the
classification of categorical attributes. The pairs with lower
Footrule distance will be displayed more prominently by de-
fault, with the number of interesting categories as a second
criteria. However, users can additionally change the ordering
of the results: by the number of interesting categories in a
query’s predicate, or the query execution time. By inspecting
interesting categories, users can see which categories were
used in the WHERE clause of the query. For instance, in the
example in Figure 2, the upper query uses only a constraint
on the field position while the query below puts constraints
to position as well as the league. Additional statistics of
the entire process can be shown by pressing the “Under the

Head-to-Head Explore Categories Write SQL

Input your top-k list:
Jerry W

Jerry West

1. Michael Jordan

4. Kobe Bryant

Manually assembled

/ input ranking

2. Allen Iverson 3. George Gervin

Display of rankings with
ability to re-order entries
to see changes in reverse

Similarity threshold: 0.2

Query Top-k list

Under the Hood

1l

Execution " .
e & Interesting categories &

Footrule
distance

engineered query
SELECT P!
FROM nba

max(ppg)

WHERE position = 'G'
group by player
order by max(ppg) desc LIMIT 5

Edit Execute

1. Michael Jordan
2. Kobe Bryant
3. George Gervin
4. Allen Iverson

5. Jerry West

0.13 499 ms position

SELECT player, max(fgm)
FROM nba

Display of SQL queries,
with ability to edit queries
and execute them to see
changes in rankings

fgm) desc LIMIT 5

Execute

1. Michael Jordan
2. George Gervin
3. Kobe Bryant

4. Jerry West

5. Allen Iverson

0.2 512ms

position, league

Figure 2: Screenshot of scenario for finding similar lists

Hood” button. The user can see the number of query exe-
cutions needed until the first valid query is identified, the
runtime of each of PALEO steps, the number of candidate
predicates that were created and pruned, and the number
of created candidate queries.

Classification of Database Columns. Under-
standing and exploring information in an arbitrary domain
of knowledge is challenging as the complete domain usually
contains a large number of entities (e.g., the NBA database
contains 3924 players). A simple solution to comprehend
such large data is to organize entities by ordering them us-
ing specific categories. The classification model integrated in
PALEO provides guidelines to users in order to find interest-
ing categories for a refined view on a subset of the entities
in the example domains. Our model is able to tell whether
or not categories are good categories to organize entities in.
For example, our model suggests that, in the NBA dataset,
a refined view on the subset of players based on the position
they play(ed) is more interesting then a refined subset of
players based on the university they went to or their birth
date. Users can also have a quick overview of all tables in the
database where the table columns are highlighted when the
predictive model classifies them as interesting. By clicking
on specific values of interesting categories, the users can dive
into the data by adding the corresponding constraint. For
more insights on table columns, PALEO displays statistical
characteristics on how the categorical values are distributed
over the entities, how their distribution differs from the uni-
form distribution, the dominating categorical values, etc.

4. RELATED WORK

Reverse engineering queries has been gaining popularity
as a research topic recently. Given a database D and a
query output Q(D), Tran et al. [9] try to find an instance-
equivalent query Q’. They focus on identifying the selection
predicates in select-project-join queries and for generating
the selection conditions use a decision tree classifier that
is constructed in a top-down manner in a greedy fashion.
Zhang et al. [10] compute a generating join query that pro-
duces a table Q(D) from the tables in D. The generating join
query does not have selection conditions and they mostly
focus on identifying the joins using graph structures follow-
ing foreign/primary-key links. Psallidas et al. [8] propose

1528

a candidate-enumeration and evaluation framework for dis-
covering project-join queries. Their system handles only text
columns and they establish a query relevance score based
evaluation of candidate queries. To the best our knowledge,
there has not been work that focuses on reverse engineering
top-k ranking queries containing aggregation functions.

S. CONCLUSION

We proposed the demonstration of PALEO, a framework
for reverse engineering OLAP-style database queries. With
three topically diverse datasets and three different demon-
stration scenarios, we emphasize on highlighting not only
the key facets behind the PALEO framework but also aim at
making the case for harnessing list-oriented querying and ex-
ploration as one easily accessible way to extract the essence
of databases.

6. REFERENCES

[1] Database Basketball portal.
http://www.databasebasketball.com/
DBLP computer science bibliography.
http://dblp.uni-trier.de/
R. Fagin, R. Kumar, and D. Sivakumar. Comparing top
k lists. SIAM J. Discrete Math., 17(1), 2003.
Internet Movie Database.
http//www.imdb.com/interfaces/
K. Pal and S. Michel. A data mining approach to
choosing categorical attributes for ranked list. EDBT,
Poster Track, 2016.
K. Panev and S. Michel. Reverse engineering top-k
database queries with PALEO. EDBT, 2016.
K. Panev, E. Milchevski, and S. Michel. Computing
similar entity rankings via reverse engineering of top-k
database queries. KEYS Workshop, 2016.
F. Psallidas, B. Ding, K. Chakrabarti, and
S. Chaudhuri. S4: top-k spreadsheet-style search for
query discovery. SIGMOD, 2015.
Q. T. Tran, C. Chan, and S. Parthasarathy. Query by
output. SIGMOD, 2009.
[10] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. SIGMOD, 2013.

2]
3]
(4]

(5]

(6]

[7]

(8]

(9]

