
SPARQLByE: Querying RDF data by example

Gonzalo Diaz
University of Oxford

gonzalo.diaz@cs.ox.ac.uk

Marcelo Arenas
PUC Chile

marenas@ing.puc.cl

Michael Benedikt
University of Oxford

michael.benedikt@cs.ox.ac.uk

ABSTRACT
Semantic Web technologies such as RDF and its query language,
SPARQL, offer the possibility of opening up the use of public
datasets to a great variety of ordinary users. But a key obstacle to
the use of open data is the unfamiliarity of users with the structure
of data or with SPARQL. To deal with these issues, we introduce
a system for querying RDF data by example. At its core is a tech-
nique for reverse-engineering SPARQL queries by example. We
demonstrate how reverse engineering along with other techniques,
such as query relaxation, enables our system, SPARQLByE, to
guide users who are unfamiliar with both the dataset and with
SPARQL to the desired query and result set.

1. INTRODUCTION
Semantic Web systems provide programmatic interfaces for en-

dusers to access data with standard formats. An enormous range
of data of broad interest is available over these interfaces, leading
to the possibility of a huge increase in the number of active “data
queriers”. A chief bottleneck for exploiting the availability of this
data is the query interface. The data model views data as collec-
tions of RDF triples, making heavy use of web identifiers (URIs).
This is a fairly low-level representation that is not easy for users
to deal with by navigating or browsing the data one item at a time.
The Web APIs also expose a powerful declarative query language,
SPARQL, which allows users to pose queries that combine and fil-
ter information. Making use of SPARQL still requires familiarity
both with the way data is represented as triples and with the query
language itself.

An alternative paradigm for querying is query-by-example,
where users present examples of what they want, and the system
generalises them [2, 5, 6]. Querying by example is particularly at-
tractive in an open data setting, since it eliminates the need to un-
derstand the structure of data as well as the features of SPARQL
needed to express a query. Even users familiar with SPARQL and
with a given dataset may prefer to explore the data via example and
have the system suggest generalisations.

EXAMPLE 1. Consider DBpedia, a public repository of RDF
triples which represent knowledge extracted from Wikipedia, and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

consider a user who would like to extract a list of all Spanish-
speaking countries. Although DBpedia has a free public SPARQL
endpoint available (see: http://dbpedia.org/sparql),
this interface does not provide much in the way of help for a user
who is not familiar with the syntax and semantics of SPARQL
queries. Moreover, formulating the appropriate SPARQL query
would be challenging even for an experienced SPARQL user, as
intimate knowledge of the DBpedia ontology and specific URIs is
necessary to express the correct required triples.

In contrast, the query-by-example paradigm allows users to spec-
ify their information need using positive and negative examples.

EXAMPLE 2. Continuing with the previous example, consider
now that the user has access to a query-by-example system like
SPARQLByE. In this case, the user might indicate Chile, Bolivia,
Venezuela, and Spain as positive examples, while indicating Brazil
and Angola as negative examples. The system would then be ca-
pable of guessing that the user is interested in the following query,
and presenting both the query and its results to the user:

SELECT * WHERE {
?s <http://www.w3.org/1999/02/22-rdf-syntax
-ns#type> <http://dbpedia.org/ontology/Country> .
?s <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:
Spanish-speaking_countries_and_territories> }

Each URI in the query is of the form <http:// ... >. In
particular, <http://dbpedia.org/ontology/Country>
is the URI for the concept Country, so in the first triple of the
query we are asking to store in the variable ?s all the countries
in DBpedia. Moreover, the second triple asks for all the Spanish-
speaking countries and territories. Finally, these two triples are
combined by means of the period symbol in SPARQL, which essen-
tially represents a join operator — it is referred as the AND opera-
tor in this paper. Thus, this combination is used to extract the list
of all Spanish-speaking countries in DBpedia. Notice that the URIs
and triples used in the query are not trivial to remember, even for
experienced SPARQL users.

We present a system for querying Semantic Web data by exam-
ple. Our system, SPARQLByE (SPARQL By Example), allows
users to obtain information without any knowledge of SPARQL.
At the same time, SPARQL plays a key role in SPARQLByE be-
hind the scenes: a core component of SPARQLByE is a reverse-
engineering algorithm that abstracts user examples into a SPARQL
query, which is evaluated to present answers to the user. The sys-
tem supplements reverse engineering with techniques for guiding
the user to further positive and negative examples.

1533



Related work. Query-by-example dates back to the early days
of relational databases [8], with the initial focus being on a spec-
ification using only positive examples. Reverse engineering of
queries from positive examples has been studied for a number of
query languages [6, 7]. The use of positive and negative exam-
ples within query learning has been explored in the context of
XML queries [3], and later for relational data in the JIM system
of [2]. Like SPARQLByE, JIM does not simply reverse engi-
neer a query, but allows interaction with a user. But the under-
lying reverse-engineering algorithms for SPARQL and relational
data are quite different, due to the presence in SPARQL of a com-
mand OPTIONAL for extracting optional information. The addi-
tional features in SPARQLByE for query-by-example, beyond re-
verse engineering, are tailored to issues specific to the open data
setting, such as the difficulty of mapping entities to URIs. Fur-
thermore, SPARQLByE is designed to connect to a predefined (and
customisable) SPARQL endpoint, thus achieving a modular design,
allowing it to be added onto existing Semantic Web infrastructure.

2. SPARQLByE SYSTEM OVERVIEW
SPARQLByE can be attached to any RDF dataset D. The main

input is a set of annotated mappings, which are specified by the
user. A mapping is analogous to a tuple in a relational setting: it
consists of a set of associations of an attribute or variable name
with a value. An annotated mapping is a mapping labelled as ei-
ther a positive example or a negative example. A SPARQL query
Q, when evaluated on a RDF dataset D, returns a set of mappings
Q(D)— the result set of Q on D. A result set implicitly defines an
annotated mapping set where the mappings in Q(D) are positive
examples and the mappings outside of Q(D) are the negative ex-
amples. A set of annotated mappings Ω is consistent with a query
Q on D if the positive mappings in Ω are in Q(D) and the negative
mappings in Ω are all outside of Q(D). The system proceeds by
discovering a query Q which is consistent with the annotated exam-
ples presented by the user, and to present the full result set Q(D)
(the query itself need not be shown). The user may then refine the
set of annotated mappings in order to improve the result set; this
refinement step will be explained in detail below.

At the core of SPARQLByE is a set of reverse-engineering al-
gorithms, which take a set of annotated mappings and return a
SPARQL query that is consistent with the annotated examples.
SPARQLByE focuses on SPARQL queries which make use of only
the AND and OPTIONAL operators [1,4]. Given a set of mappings,
a basic step in the system is to reverse engineer a query, evaluate it,
and return the result set (or a pointer into a page of it, in case it is
too large) to the user. This is the reverse-engineering step.

Reverse-engineering steps are interleaved with example refine-
ment steps, in which a user responds to the displayed result set by
refining the set of annotated mappings. SPARQLByE provides sev-
eral forms of assistance to a user in the refinement step, including
support for translating text descriptions to URIs (needed in con-
structing positive examples) and for creating pools of candidate
examples, which the user may add to the labelled set of mappings.

Figure 1 (right) shows the architecture of the SPARQLByE sys-
tem. A HTML-JavaScript front-end is backed by the Java server
which is responsible for running the reverse engineering algorithms
in the reverse-engineering module and obtaining candidate map-
pings in the refinement module. An auxiliary entity search module
translates keyword searches to URIs.

The two main modules depend on several lower-level ones. In
particular, the reverse-engineering algorithms require the execution
of auxiliary SPARQL queries, which are delegated to a SPARQL

endpoint; this may be either a local or a public endpoint, allowing
for flexible setup.

Reverse Engineering module. Our reverse-engineering ap-
proach is based on [1]. We look for well-designed SPARQL queries
with AND and OPTIONAL [4] that are consistent with a set of pos-
itive and negative examples, and which satisfy a natural restric-
tion: they are tree-like, which means that the domains of different
mappings (that is, sets of variables) should form a tree-like order.
Roughly speaking, the algorithm proceeds by induction on domains
starting with the the smallest ones. At each inductive step it looks
to put together a set of safe patterns through the AND operator,
that is, patterns which are satisfied by the positive examples, are
not fit by the negative examples, and which are consistent with the
absent variables (that is, NULL values) present in positive exam-
ples. We make use of a “greedy” version of the algorithm that
iteratively adds patterns until it obtains a safe set. This greedy
approach has the desirable property of generating relatively small
reverse-engineered queries. The algorithm needs to query the data
to generate potential patterns, and also to check that a candidate
query does correctly fit the data. This is done via issuing SPARQL
queries to the endpoint.

Although arbitrary tree-like example sets are supported in [1],
the meaning of a “negative partial example” (i.e. a negative exam-
ple with NULLs) is unintuitive for users – it could mean that there
is no binding that matches the example exactly, or no binding that
subsumes the example. Thus in SPARQLByE we allow only “full
negative examples”: those which mention all variables included in
any positive example.

SPARQLByE allows user-driven customization of the reverse-
engineering algorithm to avoid both over-fitting and over-
generalization. For instance, a common scenario is that all the
positive examples are associated with a concept such as “Thing”
(http://www.w3.org/2002/07/owl#Thing) and hence
the resulting reverse-engineered query hardcodes that URI within
it. Users can select a set of “forbidden URIs” (e.g. from the current
result set) and the reverse-engineering algorithm will then avoid
generating a query containing these.

Example Refinement module. SPARQLByE provides several
features to assist users in refining annotated examples.

The right-hand side of the user interface houses the results panel.
Here, the generated query is evaluated and a selection of results
is presented. A user may use this panel to judge whether the an-
swers to the generated query are satisfactory; in particular, an an-
swer from this panel may be marked as a negative example, forcing
SPARQLByE to generate a new, more restrictive, query. Thus, the
results panel also serves as a pool for potential negative examples.

For suggesting new positive examples, the first feature
SPARQLByE provides is for entity and URI searching. Finding
the correct entity identifiers (i.e. URIs) presents one of the main
barriers to the formulation of meaningful SPARQL queries. Entity
URIs are notoriously hard to remember; even the use of standard
URI prefixes do not solve this problem, as several such prefixes ex-
ist and must be chosen correctly. The entity and URI search module
of SPARQLByE provides a simple keyword search for users to find
appropriate URIs.

EXAMPLE 3. Figure 1 (left) shows the result of inputting
tennis into the entity search module (left-most panel of the in-
terface). The result is a list of entities, where, for each, their label
is presented, along with a type. The buttons allow for assigning
the URI as a positive or negative example (note that this will only
apply if the examples have arity 1).

The URI and entity search allows users to find candidate values

1534



Figure 1: SPARQLByE user interface (left) showing the result of adding labelled examples, and SPARQLByE architecture (right).

to use in mappings. A second feature allows the user to find ap-
propriate mappings “in bulk”. Below the answers panel is the extra
results panel. Here SPARQLByE generates relaxed versions of the
current reverse-engineered query, by choosing a triple and remov-
ing it from the query. More precisely, given the generated query Q
(considered as a set of triple patterns), for each triple pattern t in
Q the relaxed query Qt not including t is evaluated. A selection of
the answers of all Qt queries is shown in the extra results panel.

The purpose of the extra results panel is to serve as a pool for
potential positive examples. This is due to the fact that the relaxed
queries may include answers which are not captured by the main
query Q, and which may be of interest to the user. Labelling one
of these as a positive example would force the system to generate a
new–and possibly more relaxed–query.

SPARQL endpoint. SPARQLByE relies on a SPARQL end-
point for its operation. The reverse engineering of SPARQL queries
from positive and negative examples is achieved by generating in-
termediate SPARQL queries which allow the reverse-engineering
module to first produce a candidate query, and then to check said
query. The fact that SPARQLByE can operate on a SPARQL end-
point allows for flexible setup including: 1. using a local RDF back-
end for quicker access and custom indices tailored for the query
loads that the reverse-engineering module will generate, 2. plug-
ging in the SPARQLByE system into an existing SPARQL end-
point, and 3. installing SPARQLByE as a third-party client to a
public SPARQL endpoint.

Entity search. The entity search module of SPARQLByE pro-
vides a simple way to search for URIs. Keyword searches in the en-
tity search box are ultimately used to supply the user with a list of
entities (URIs). This module allows for different techniques to be
used, ranging from simple text search to using third-party semantic
annotator APIs. Currently, the entity search module translates the
keyword search to a SPARQL query which asks for a uri such
that the triple (uri,rdfs:label,X) is in the dataset with label
X containing each keyword as a substring.

Demo Scenario. The demonstration will focus on showcasing
the capabilities of SPARQLByE to ease navigation and querying
of a SPARQL endpoint. In contrast to a standard SPARQL query
interface, SPARQLByE allows for a more interactive experience.

An obvious scenario showcasing SPARQLByE is obtaining a
query capturing a class of entities.

EXAMPLE 4. Continuing with our running example, consider
the case of obtaining a list of Spanish-speaking countries. A pos-

sible first approach for a user is to input the countries Chile,
Bolivia, and Venezuela as positive examples (see Figure 3,
top frame). In this case, the corresponding reverse-engineered
query asks for all Country entities, which is too general. The
right hand panel has the country Angola, which can be added
next as a negative example. The result is shown in the mid-
dle frame of Figure 3. The reverse-engineered query is ask-
ing for countries in South America. The problem is its exclu-
sion of the Spanish-speaking country Spain, which may then
be added as a positive example. The bottom frame of Figure
3 shows the final result set and the corresponding reverse engi-
neered query, asking for Country entities which have the subject
Spanish-speaking countries and territories. No-
tice that although the query is intuitive, it would have been difficult
for a user to arrive at the URIs and triples mentioned in the query
without extensive knowledge of the DBpedia data and types.

In the previous example, the final positive example (Spain) was
crucial to obtaining the desired result set. However, it is not always
clear what positive example to add. This problem is addressed by
the Extra Results panel, which suggests positive examples.

EXAMPLE 5. Consider a user who wishes to obtain a list of
English-language movies. The user begins with the positive ex-
ample +Dances with Wolves, and subsequently adds the neg-
ative example -Thirupathi. The resulting query, shown in
Figure 2, asks for films which have the label “Dances with
Wolves”, which only returns one result. Clearly this is overfitting
the example data. The Extra Results panel, however, has executed
a relaxed query which asks for all films, and thus is able to suggest
the film Newcastle (film). Adding Newcastle as a positive
example gives the desired result set, corresponding to the query;

SELECT * WHERE {
?x <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/
Category:English-language_films> .

?x rdf:type <http://dbpedia.org/ontology/Film> }

Finally, a key feature of SPARQLByE is that it is able to reverse
engineer SPARQL queries which make use of the OPTIONAL op-
erator. In other words, labelled examples may contain unmapped
(null) values. The following example illustrates this scenario.

EXAMPLE 6. Consider a user who wishes to obtain a list
of authors along with their places of death, the latter be-
ing relevant only if they have passed away. If the user

1535



Figure 2: SPARQLByE interface after inputting two movies as
labelled examples. The Extra Results panel suggests further
movies.

uses the positive examples {Lewis, Oxford}, {Tolkien,
Dorset}, and {Rowling, NULL}, and the negative exam-
ples {11th Dalai Lama, Tibet} and {Abbey Lincoln,
Manhattan}, then the reverse-engineered SPARQL is:

SELECT * WHERE {
?x rdf:type <http://dbpedia.org/ontology/Writer> .
?x rdf:type <http://xmlns.com/foaf/0.1/Person> .
?x rdf:type <http://dbpedia.org/ontology/Artist>
OPTIONAL {
?x <http://dbpedia.org/ontology/deathPlace> ?y } }

The previous query thus allows SPARQLByE to present to the
user the desired result set.

3. CONCLUSIONS
We demonstrate here a system for querying RDF data “by ex-

ample”. On the one hand, a user need not write SPARQL queries;
indeed, the user does not even have to understand SPARQL. On the
other hand, the system exploits the power of the SPARQL language
for expressing natural user queries, by inducting a SPARQL query
from user examples “under the hood”.

Arenas was funded by Millennium Nucleus Center for Seman-
tic Web Research under Grant NC120004; Diaz by Becas Chile
of CONICYT Chile; Benedikt’s work was sponsored by the En-
gineering and Physical Sciences Research Council of the United
Kingdom, grant EP/M005852/1.

4. REFERENCES
[1] M. Arenas, G. I. Diaz, and E. Kostylev. Reverse engineering

SPARQL queries. In WWW, 2016.
[2] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive join

query inference with JIM. PVLDB, 7(13):1541–1544, 2014.
[3] S. Cohen and Y. Y. Weiss. Learning tree patterns from

example graphs. In ICDT, 2015.
[4] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and

complexity of SPARQL. ACM TODS, 34(3), 2009.
[5] Q. T. Tran, C. Chan, and S. Parthasarathy. Query by output. In

SIGMOD, 2009.
[6] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. Query reverse

engineering. VLDB J., 23(5):721–746, 2014.
[7] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava.

Reverse engineering complex join queries. In SIGMOD, 2013.
[8] M. M. Zloof. Query-by-example: The invocation and

definition of tables and forms. In VLDB, 1975.

Figure 3: SPARQLByE interface converging towards a query
that retrieves Spanish-speaking countries.

1536


