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ABSTRACT
With the increasing popularity of mobile devices and location based
services, massive amount of geo-textual data (e.g., geo-tagged tweets)
is being generated everyday. Compared with traditional spatial
data, the textual dimension of geo-textual data greatly enriches the
data. Meanwhile, the spatial dimension of geo-textual data also
adds a semantically rich new aspect to textual data. The large vol-
ume, together with its rich semantics, calls for the need for data ex-
ploration. First, it has many applications to retrieve a region for ex-
ploration that satisfies user-specified conditions (e.g., the size and
shape of the region) while maximizing some other conditions (e.g.,
the relevance to the query keywords of the objects in the region).
Second, it is useful to mine and explore the topics of the geo-textual
data within a (specified or retrieved) region and perhaps a timespan.
This demonstration proposal presents the main ideas of our system,
the RegIon Search and Exploration System (RISE), for efficiently
supporting region search and exploration, and our demonstration
plan.

1. INTRODUCTION
Due to the prominence of mobile devices and increasing popular-

ity of location-based services (e.g., Foursquare (www.foursquare.
com), Yelp (www.yelp.com)), massive amount of data that con-
tains both textual and geographical information is being generated
at an unprecedented scale, such as geo-tagged tweets, and points
of interest (POIs) associated with category information and textual
descriptions. We refer to such data as geo-textual data.

Geo-textual data from various sources is often characterized by
big volume. For example, around 10 million geo-tagged tweets
are generated every day in Twitter1 and 7 million check-ins were
submitted on October 3rd, 20152. The availability of such large-
scale geo-textual data calls for the need for region search and region
exploration.

1https://www.mapbox.com/blog/twitter-map-every-tweet/
2http://blog.foursquare.com/post/130625318273/7-million-check-
ins
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1.1 Region Search
There are many applications to retrieve a region for exploration

that satisfies user-specified conditions while maximizing some other
conditions. We use an example to explain the problem.

Example 1: George is planning a trip to Singapore and he is very
interested in Singapore culture. Rather than visiting a region in
Singapore with a specific attraction, he wishes to visit a region that
has the most diverse collection of services and attractions related to
“Singapore” (e.g., Singapore food, Singapore art show, Singapore
history museum, and Singapore music bar). This will enable him
to experience many different attractions and services in one place
without the need to travel to different regions to experience them
all together. How can George select the “most diversified region”
in Singapore? 2

We refer to the problem in Example 1 as the Best Region Search
(BRS) query. Specifically, consider a set of POIs and a set of geo-
tagged tweets. Given a set of keywords, a query rectangle of size
a× b, BRS aims to find a rectangular region of size a× b such that
the diversity of the region is maximized.

In the BRS problem, we can find infinite number of different rect-
angular regions of the given size in the space and it is prohibitively
expensive to consider all of them. Furthermore, a user may search
for the best region in an exploratory manner. That is, she may initi-
ate a search with a specific query rectangle as input, view the corre-
sponding results, iteratively refine the query rectangle (by increas-
ing or decreasing a or b), and execute the refined search until she
is satisfied with the search results. Such an exploratory framework
demands techniques that can efficiently process the BRS queries
over large volumes of geo-textual objects(e.g., POIs).

1.2 Region Exploration
Given a specified or retrieved region, users may want to mine

different properties, e.g., topics [10] or frequent words [7], of the
geo-textual data, within the region and perhaps a timespan to help
them explore the region.

Example 2: George wants to visit Clarke Quay area in Singapore,
where there are restaurants, bars, dance clubs, and shopping malls.
He wants to know what are the hot topics (e.g., dining or movie) in
this area during a specified period. 2

We refer to the problem in Example 2 as Topic Exploration within
a Region and a Timespan (TE) query. Given a region, an integer k,
and a time period [tb, te], TE aims to mine topics within the spec-
ified region and timespan. The list of topics is complementary to
the result of BRS query. It helps users better understand the region
they found.

In TE problem, it is challenging to mine topics efficiently. A
straightforward method works as follows: Given a user specified
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region and timespan, we train a topic model on the geo-textual data
falling in the region and the timespan using the existing techniques,
such as Latent Dirichlet Allocation (LDA) [2]. However, mining
topics from geo-tagged data is very time-consuming. A user may
also mine topics within the region in an exploratory manner. That
is, she may mine the topics within the region in a specific time pe-
riod, view the topics, and iteratively refine the query (by changing
the time period or the region) and execute the TE query until she
is satisfied with the mined topics. Thus such an exploratory frame-
work also demands techniques that can efficiently process the TE
queries over large volumes of geo-textual objects.

1.3 Contributions
We develop the RegIon Search and Exploration System (RISE)3,

which can be used to handle BRS queries and TE queries.
To process the BRS queries, we first develop an exact algorithm.

In the exact algorithm, we propose several novel concepts, based
on which effective pruning techniques are proposed to reduce the
search space. The exact algorithm is still slow on large dataset, and
to further improve on efficiency, we develop a constant-bounded
approximate algorithm. Specifically, we select a set of spatial points
from the space which together preserve some properties of the geo-
textual objects instead of considering all the objects. Then the exact
algorithm is invoked on the selected spatial points. The approxi-
mate algorithm is very efficient. It can find an answer in less than 1
second on a real-life dataset from Meetup containing 589,715 geo-
textual objects.

To efficiently mine the topics within a user specified region or the
region returned by a BRS query, we develop a novel and efficient
sampling algorithm with a bounded error to combine two LDA
topic models learnt from two document sets, both falling in the
specified region and time period. We also develop a new approach
to partitioning the collection of the geo-tweets into an Octree for
indexing the tweets. The proposed sampling algorithm is at least
an order of magnitude faster than the online-LDA [1], the state-of-
the-art algorithm that samples topics for incrementally maintaining
LDA models.

2. RELATED WORK AND NOVELTY
Work Related to Region Search The existing systems [4] support
querying for a region satisfying user-specified conditions. How-
ever, they are built on a modern array DBMS, which is not opti-
mized for spatial objects. In addition, their system does not support
submodular aggregate functions.
Work Related to Region Exploration The existing work on ana-
lyzing and exploring multi-dimensional text database is closest to
our problem [5, 6, 8, 9]. However, some of them [5, 6, 9] do not
consider the semantic meaning (i.e., topics) of each term in docu-
ments, and some of them [8] require the topic model to be generated
from all documents in the datasets. Our system is different in that,
it mines topics from the documents falling in a given region and
timespan. Because topics within a region could be more specific
than topics learnt from the whole set, our system discovers topics
specific to the given region. To the best of our knowledge, no ex-
isting work studies the problem of mining region-specific topics in
an exploratory manner.

3. BRS QUERY AND TE QUERY
We first introduce the geo-textual object and our Best Region

Search query.
3The system is available at http://spatialkeyword.sce.
ntu.edu.sg/rise

DEFINITION 1. Geo-Textual Object A geo-textual object is a
pair o = 〈φ, ρ〉, where o.φ is a set of keywords, and o.ρ is a loca-
tion point with latitude and longitude.

In this demonstration, we consider two types of geo-textual ob-
ject: POIs and geo-tagged tweets. Apart from the set of keywords φ
and the location point ρ, POIs and geo-tagged tweets are enriched
with a set of category attributes and a creation time, respectively.
Specifically, each POI is a triple p = 〈φ, ρ,A〉, where A is a set
of category attributes, e.g., “restaurant”, and each geo-tagged tweet
is a triple tweet = 〈φ, ρ, tc〉, where tc is the time when the tweet
was created.

We next define the best region search query.

DEFINITION 2. Best Region Search (BRS) Query Consider
a set of spatial objects O and a submodular monotone aggregate
function f : 2|O| → R. Given a BRS query q = 〈a× b, T 〉, where
a × b is the size of the rectangular region that users want to find,
and T is a set of keywords that the users are interested in, we aim
to find a rectangular region r of size a× b in the space, such that

r = argmax
r
f(Or,T ),

where Or,T is the set of spatial objects which are inside the region
r and contain keywords in T .

We can use the number of total check-ins in the region, referred
to as popularity, as the aggregate function to select the most pop-
ular region. We can also use the number of different category at-
tributes of the POIs in the region, referred to as diversity, as the
aggregate function to select the most diversified region (as shown
in Example 1). Both of them are important properties that should
be considered. Thus, we combine both popularity and diversity
and define a new aggregate function, named PD score, as follows.

DEFINITION 3. PD Score Consider a set of POIs Oi. Let AOi

be the set of category attributes associated with the POIs in Oi.
Let C(o) be the number of check-ins associated with a POI o. For
an attribute a, we define its popularity P (a) = maxo∈Oi(a) C(o),
where Oi(a) is the set of POIs in Oi that have attribute a. The PD
score of a set of objects Oi is defined as:

S(Oi) =
∑

a∈AOi

P (a).

The PD score is a submodular monotone function. In this demon-
stration, we use region score as the aggregate function. Other sub-
modular monotone aggregate functions like popularity and diver-
sity can also be easily adopted into our system. We omit the de-
tailed definition and properties of BRS problem which could be
found elsewhere [3].

DEFINITION 4. Topic Exploration within a Region and a Times-
pan (TE) Query Let R be a rectangular region, and [tb, te] be a
time period. TE query is to mine k topics from geo-tagged tweets
whose locations fall in R and creation time falls in [tb, te], based
on a given topic model.

4. RISE PROTOTYPE

4.1 Framework of RISE
Figure 1 shows the system architecture of RISE. The Query Pro-

cessor module handles the BRS queries, while the Topic Miner
module handles the TE queries. RISE adopts the browser-server
model. A user can submit his query through the web browser. Then
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Figure 1: RISE Architecture

the query is sent to the Query Processor module. The Query Pro-
cessor module accesses the Indexing module and finds a rectangu-
lar region according to users’ requirements. The Query Processor
module then passes the region to the Topic Miner. By accessing the
Indexing module, the Topic Miner module extracts the topics in the
region. Then the region together with the popular topics is returned
to users. In addition, users can submit different time intervals and
regions to the Topic Miner module to extract popular topics.

4.2 The Indexing Module
The Indexing module comprises two components: POI Indexing

and Geo-Tweets Indexing.
In POI Indexing, we use a Quadtree to index all POIs accord-

ing to their location in the space in order to efficiently access POIs.
Each node of the Quadtree is enriched with a reference to an in-
verted file for the objects contained in the sub-tree rooted at the
node. An inverted file consists of the following two components:
(1) A vocabulary for all distinct terms, and (2) a set of posting lists,
each of which relates to a term t. Each posting list is a sequence
of objects containing term t. In addition, for each node v in the
Quadtree, we maintain a point, denoted by v.p. Specifically, if v
is an internal node, let v.p be the center point of the correspond-
ing region. If v is a leaf node, let v.p be the spatial object in the
corresponding region.

In Geo-Tweets Indexing, we use an Octree to index the tweets
because instant messages such as tweets are often sensitive to time.
Octree is an extension of Quadtree in a three-dimensional space.
To support efficient and effective online topic mining, we build an
Octree with pre-trained topic models by considering both accuracy
and space constraints. Specifically, we greedily partition an Octree
cell into 8 subcells until the number of expected pre-trained models
exceeds a space threshold. We determine the partition position by
considering two objectives for better accuracy: 1) minimizing the
word overlaps among the subcells; and 2) balancing the number of
documents among the subcells. During the partition, we pre-train
topic models for some cells of different levels in the Octree. This
guarantees that the online training can use the pre-trained informa-
tion to obtain an approximate topic model with a bounded error.

4.3 The Query Processor Module
Queries are sent from the browser to the server by the HTTP post

operation. Then the processor finds a rectangular region of a given
size according to users’ requirements. Finally, the results are sent
back to users and displayed on the map using Google Maps API.

The goal of RISE is to find the best region of a given size. Two
algorithms are involved in our RISE prototype:

• SliceBRS algorithm: This algorithm finds the exact answer
to the BRS problem.

• CoverBRS algorithm: Since in most cases, slight impreci-
sion to the solution is acceptable, this algorithm finds an ap-
proximate answer to the BRS with performance guarantees.

SliceBRS algorithm In this algorithm, we propose several new
concepts, including “maximal regions” and “maximal slabs”. Based
on these concepts, we cut the space into slices and prune unneces-
sary slices and maximal slabs to reduce the search space. It takes
O(n × ns) time to find an exact answer to the query, where n is
the number of POIs that contains the query keywords, and ns is the
number of maximal slabs that we actually processed.
CoverBRS algorithm The key idea behind the approximate algo-
rithm is as follows: Consider a set O of POIs, each of which con-
tains the terms specified by users. Instead of taking all POIs in O
into account, we only select a small set of spatial points from the
space. The selected points together preserve some properties of
O, such that the rectangular region found on the selected points is
an approximation of the result on O with a constant performance
guarantee. This idea has two potential benefits: (1) The size of
the selected points is smaller; (2) The selected points are sparser
than those in O. Thus, the exact algorithm runs much faster on the
selected POIs. These benefits enable us to answer the BRS query
more efficiently.

The CoverBRS algorithm comprises three steps: (1) select a set
of spatial points that can preserve some properties, (2) generate a
new instance of the BRS problem according to user’s query and
selected points, and (3) invoke the exact algorithm to solve the new
instance.

Specifically, in the first step, given the Quadtree maintained by
the Indexing module, we first compute the level l of the Quadtree
that we should access. Then we collect all centers of regions in all
internal nodes at level l and the POIs in all leaf nodes at any level
not lower than l. Note that we only consider POIs which contain
all query keywords and all other POIs are ignored in this step. For
each selected spatial point p, we use p to represent a set of POIs
{o1, ..., oj}.

In the second step, we need to define the category attributes for
each selected point based on which POIs can be represented by
this point. We also revise the size of the query rectangle to get a
new instance of BRS query. The exact results of the new instance
is an approximate answer to the original BRS query bounded by a
constant 4.

The complexity of CoverBRS is O(n + nt × nt
s), where n is

the number of POIs that containing all query keywords, nt is the
number of selected spatial points and nt

s is the number of maximal
slabs that we actually processed. The CoverBRS algorithm can find
a 1/4-approximate answer to the BRS query.

4.4 The Topic Miner Module
This module supports mining topics from a user specified region.

The user can also constrain the topic mining tasks by specifying a
time interval. The topic mining method returns the top-k (e.g., 100)
topics estimated from the documents that lie in the user specified
region and time interval. Since training a topic model for each topic
mining query has efficiency issue in exploratory topic mining tasks,
we design a combining method [10] that leverages pre-trained topic
models in the Octree index (Section 4.2), to significantly reduce
the training time. The combining algorithm for two cells in the on-
line topic learning phase uses one pre-trained topic model as prior
knowledge to resample the topics for the other one. The sampling
process follows the idea that the pre-trained models have already
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Figure 2: Searching best region
captured the correlation between words in the form of topics and
assigned each word token a topic label. We make use of this in-
formation to group the word tokens by topic and sample topics for
each word token group instead of sampling individual word tokens.
While the complexity of training a LDA model on two document
sets is O((|W1| + |W2|)KI), our sampling algorithm reduces the
complexity to O(K(K + |M2| + |V2|)I), where W1 and W2 are
sets of word tokens in the two document sets, M2 is the smaller
document set, and V2 is its vocabulary. The size of M2 and V2 are
much smaller than W1 and W2. As a result, our algorithm is at
least an order of magnitude faster than the one that samples topics
for individual word tokens. We prove that the approximation error
of our sampling algorithm is proportional to the number of word
tokens that appear in both cells [10], and thus we optimize the par-
tition in Section 4.2 by considering the overlap of word tokens of
the resulting subcells.

The details of the indexing structure, algorithms for searching
best region and algorithms for mining the top-k popular topics in
the region can be found elsewhere [3, 10].

4.5 Browser Module
The browser module provides interfaces to users for submitting

queries and viewing the returned results. This component provides
interactions with the map through the Google Maps API.

When generating a query, users enter the width and height of the
rectangular region that they want to find, and a set of keywords that
describes their interests. The query is then sent to the server for
processing.

After the query is processed by the server, a region of the given
size is returned and displayed on the map. Users can click the re-
gion and specify a time period to get a topic summary of the region,
which describes what people in the region were talking about in the
specified time period.

5. DEMONSTRATION
Datasets We use two real-life datasets for POIs with textual de-
scription: Yelp and Meetup. For Meetup, we collect 589,715 venues
in total. Each venue is associated with 14.7 keywords on average.
For Yelp, we collect 48,753 venues in total. Each venue is asso-
ciated with 48 keywords on average. We use one real-life dataset,
Twitter, for answering the TE query. We collect 4 million geo-
tagged tweets posted in Singapore from 144k users.
Region Search In this scenario, user can search for the best region.
First of all, users should specify the height and width of a query
rectangle, and possibly a set of keywords to submit a region search
query. Note that by specifying a set of keywords, the user can in-
clude the categories that they are interested in into the diversity
factor. Then the Query Processor module will run either the exact

Figure 3: Mining popular topics
or the approximate algorithm to search for the region and return it
to the user. Finally, the region will be displayed on the map using a
red rectangle. The POIs containing the query keywords will be dis-
played at the right panel of the browser (see Figure 2). Users can
revise the region search query and issue a new query to compare
the results.
Region Exploration In this scenario, users can explore hot topics
in the region. Firstly, the user can use the retrieved region from
region search, or he can draw a new rectangle on the map as a query
region. Secondly, the user can specify the time period by moving
the slider bar. Then he can select how many topics he would like
to see. Our system will extract the topics within the region and
time period. For each topic, a word cloud will be generated to
represent its semantic meaning. The word clouds are displayed
at the right panel of the browser. Figure 3 shows three example
topics, i.e., sightseeing, shopping, and art, mined from the query
region and time interval. For each topic, we can also display a set
of representative tweets for the topic. Users can also specify two
regions and compare the topics of the two regions.
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