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ABSTRACT

We present LocationSpark, a spatial data processing system
built on top of Apache Spark, a widely used distributed data
processing system. LocationSpark offers a rich set of spa-
tial query operators, e.g., range search, kNN, spatio-textual
operation, spatial-join, and KNN-join. To achieve high per-
formance, LocationSpark employs various spatial indexes for
in-memory data, and guarantees that immutable spatial in-
dexes have low overhead with fault tolerance. In addition,
we build two new layers over Spark, namely a query sched-
uler and a query executor. The query scheduler is respon-
sible for mitigating skew in spatial queries, while the query
executor selects the best plan based on the indexes and the
nature of the spatial queries. Furthermore, to avoid un-
necessary network communication overhead when process-
ing overlapped spatial data, We embed an efficient spatial
Bloom filter into LocationSpark’s indexes. Finally, Loca-
tionSpark tracks frequently accessed spatial data, and dy-
namically flushes less frequently accessed data into disk. We
evaluate our system on real workloads and demonstrate that
it achieves an order of magnitude performance gain over a
baseline framework.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Spatial data management

1. INTRODUCTION

Spatial computing [15] is becoming significantly impor-
tant with the proliferation of mobile devices. The growing
scale and importance of location data have driven the de-
velopment of numerous specialized spatial data processing
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systems, e.g., SpatialHadoop [9], Hadoop-GIS [5] and MD-
Hbase [14]. By taking advantage of the power and cost-
effectiveness of MapReduce (8], these systems typically out-
perform spatial extensions on top of relational database sys-
tems by orders of magnitude [5].

These MapReduce-based systems enable users to run spa-
tial queries using predefined high level spatial operators
without having to worry about fault tolerance and compu-
tation distribution. However, these systems do not leverage
the power of distributed memory, and are unable to reuse
intermediate data [17, |10]. Nonetheless, data reuse is very
common in spatial data processing. For example, spatial
datasets, e.g., OpenStreetMap (>60G) and Point of Inter-
est (POI, for short, >100G) [9], are usually large. It is
unnecessary to read these datasets continuously from disk
(e.g., using HDFS) for each query. Meanwhile, intermediate
query results have to be written back to HDFS, and this
directly impedes further data analysis.

To tackle the above challenges, we introduce Location-
Spark, an efficient spatial data processing system built on
top of Apache Spark [17]. Spark is a distributed computa-
tion framework that allows users to work on distributed in-
memory data without worrying about data distribution and
fault-tolerance. LocationSpark is built as a library on top of
Spark (see Figure . It provides spatial query APIs on top
of the standard dataflow operators. LocationSpark requires
no modifications to Spark, revealing a general method to
combine spatial data processing within distributed dataflow
frameworks.
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Figure 1: LocationSpark’s layered architecture on top of
Spark.
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Straightforward execution of spatial computations using
Spark operators (i.e., transformations and actions) is inef-
ficient for the following reasons: (1) the lack of spatial in-
dexing, (2) the inability to handle spatial data skew, (3) the
lack of spatial query optimization, and (4) the performance
of unnecessary network communication due to spatial data
overlap. To achieve performance speedup in LocationSpark,
we introduce a range of optimizations. First, we build sev-
eral types of global and local spatial indexes, e.g., Grid,
R-tree, Quadtree, and IR-tree, to support efficient spatial
queries over in-memory data. LocationSpark adopts im-
mutable local spatial indexes, and achieves low overhead
with fault-tolerance. Second, spatial data and queries are
usually skewed. Hence, some data partitions receive more
queries than others. Thus, LocationSpark has a query sched-
uler (including automatic skew analyzer and handler) to mit-
igate query skew. LocationSpark’s query executor is respon-
sible for choosing proper spatial algorithms based on the
available spatial indexes and the registered queries. Skew is
handled by distributing the load over the slave nodes. Fur-
thermore, in order to reduce the communication cost when
reading data that spans multiple partitions, LocationSpark
uses a simple but efficient bloom filter (termed sFilter). sFil-
ter can detect whether a spatial object is inside the spatial
range or not. Finally, by exploring the access frequencies
of spatial data, LocationSpark dynamically saves less fre-
quently accessed data into HDFS, and this can reduce mem-
ory overhead and improve system performance. We evaluate
LocationSpark using a real-world spatial dataset and com-
pare it against a direct implementation, e.g., GeoSpark [11].
Our initial results show that LocationSpark can outperform
GeoSpark by one order of magnitude.

2. RELATED WORK

Spatial data management has extensively been studied for
decades. Sowell et al. survey iterative spatial-joins in mem-
ory [16]. Recently, there has been considerable interest in
supporting spatial data management over Hadoop MapRe-
duce [8]. Afrati and Ullman [4] have proposed a framework
that computes a multi-join query in a single computation
round. Liu et al. [13] study how to partition spatial data
using Voronoi diagrams to speedup k-nearest-neighbor joins
over MapReduce. Hadoop-GIS [5] supports spatial queries
in Hadoop by using a uniform grid index. SpatialHadoop [9]
builds global and local spatial indexes, and modifies the
HDFS record reader to read data more efficiently. MD-
Hbase [14] extends HBase to support spatial data updates
and queries. Hadoop MapReduce is good at data process-
ing for high throughput and fault-tolerance. Yet, Hadoop
MapReduce has to write intermediate data into HDFS, and
hence impedes the performance of applications that require
pipelines of multiple MapReduce jobs.

Taking advantage of the very large memory pools available
in modern machines, Spark [17] and Spark-related systems
(e.g., Graphx [10], Spark-SQL [7] and DStream [18]) are de-
veloped to overcome the drawbacks of MapReduce in specific
application domains. In order to process big spatial data
more efficiently, it is natural to develop a novel and efficient
spatial data management system based on Spark. Therefore,
several prototypes support spatial operations over Spark,
e.g., GeoSpark |11, SpatialSpark [3], Magellan [2|, and
GeoTrellis [1]. However, some important factors that im-
pede system performance, mainly, query skew, and exces-

1566

sive and unoptimized network and I/O communication over-
heads are not addressed in these systems. Our demo system,
LocationSpark, addresses these issues, and offers enhance-
ments over the above systems.

3. OVERVIEW OF LOCATIONSPARK
3.1 Data Model and Data Types

LocationSpark stores spatial data as key-value pairs. A
spatial tuple, say t;, contains a spatial geometric key and
a related value, namely k; and v;, respectively. The spatial
data type of key k; can be a two-dimensional point, e.g.,
latitude-longitude, a line-segment, a poly-line, a rectangle,
or a polygon. The value type v; can be specified by the user,
e.g., a text type if the data tuple is a tweet.

3.2 Spatial Queries

LocationSpark supports spatial querying, spatial data up-
dates, and spatial analytics. LocationSpark provides a rich
set of spatial queries including spatial range, spatial kNN,
spatial-join, and kNN-join. Moreover, it supports data up-
dates and spatio-textual operations. Due to the importance
of spatial data analysis, LocationSpark provides spatial data
analysis functions including spatial data clustering, spatial
data skyline computation and spatio-textual topic summa-
rization. More complex spatial analysis functions can be
added to the LocationSpark’s framework.

3.3 Demonstration Overview

The demonstration consists of three different components,
namely, basic spatial queries, join operators, and spatial
analysis. For basic spatial queries, we showcase how to read
large spatial data, and how users interact with the system
by issuing basic spatial queries in a map-based or termi-
nal interface. For spatial-join and KNN-join, users may join
datasets from various sources that are either streamed or
that are static. Finally, we show how to handle spatial an-
alytics queries.

4. MAIN FEATURES OF LOCATIONSPARK

Figure [T] illustrates the architecture of LocationSpark. It
adopts a layered design and implementation. We briefly
explain key technical ideas within each layer.

4.1 Query Scheduler

Skew is a major issue that influences the runtime perfor-
mance of parallel computations. Recently, SkewTune [12]
has been proposed to deal with skew in the MapReduce
platform, and AQWA [6] has been developed to address the
spatial query skew in MapReduce platform. In this demon-
stration, we focus on two types of skew. The first type is
unbalanced data partitioning for which we develop spatial
indexes (Section to partition spatial data in a balanced
way. The second type is query skew, where some queries are
unevenly distributed in space, and certain data partitions
are overwhelmed by a small number of queries. Query skew
is very common in spatial data processing, and is found to
deteriorate the runtime performance of spatial queries.

In LocationSpark, we build a new layer, termed the query
scheduler, to mitigate and deal with query skew. Location-
Spark identifies potential hotspot data partitions by dynam-
ically collecting statistical information from each partition



(i.e., number of queries and data points). Next, we develop
a cost model to evaluate the overhead of repartitioning the
hotspot partitions. Then, the scheduler can choose a set
of partitions to be further reallocated to workers with an
affordable cost. Therefore, execution on hotspot partitions
and non-hotspot partitions can start to run at the same
time, then query processing time is optimized by overlap-
ping the processing of multiple jobs.

4.2 Query Executor

After spatial queries and related data partitions are sched-
uled into slave nodes, query executors execute specific query
evaluation plans in slave nodes. For a spatial join, one data
partition is usually associated with more than one spatial
range query. It is unfeasible to execute a spatial range
query over indexes separately for each query. Often, it makes
sense to build an index over the queries (e.g., a set of range
queries), and traverse the query index and the data index si-
multaneously. However, building query and data indexes is
always computationally expensive, and requires high mem-
ory usage. LocationSpark evaluates the runtime and mem-
ory usage trade-offs for the various alternatives. Then, it
chooses and executed the better execution plan on each slave
node.

4.3 Spatial Indexing

LocationSpark builds two layers of spatial indexes (global
and local) as given in Figure (b). The global index par-
titions data among the various nodes. To build a global
index, LocationSpark samples the underlying data to learn
the data distribution in space. Then, LocationSpark builds
the global index to ensure that each data partition has the
same amount of data. LocationSpark provides a grid and a
region quadtree as the global index. In addition, each data
partition has a local index. The type of the local index can
be specified by users to match the needs of various applica-
tion scenarios, e.g., a grid local index, an R-tree, a variant of
the quadtree, or an IR-tree. Notice that in order to support
data update, each version of spatial index can be persistent
to disk for fault-tolerance. Thus, these spatial indexes are
immutable and are implemented based on the path copy
approach. By following the layered design of LocationSpark
in Figure [I} it is convenient to add other types of spatial
indexes in the future.

Spatial Bloom Filter. The Bloom filter is widely used
for testing whether a data tuple is contained in a set or not.
For spatial data processing, say processing a spatial range
query, we need to retrieve that data partitions that overlap
the query range. In Figure a), the range query centered
at Q overlaps four partitions. Typically, one can evaluate
this query in one of two approaches can be used. The first
approach is to replicate all points within Distance r from the
boundary of each data partition into the neighboring parti-
tions, where r is a parameter reflecting the radius of a query
rectangle. Therefore, data tuples along the boundary (i.e.,
PTy, PT>, PT5, PT, in Figure a)) are duplicated to their
neighboring partitions. The second approach is to broad-
cast query point Q into each overlapping partition. Next,
a postprocessing step is followed to merge the query results
returned from each partition. Both approaches mandate un-
necessary network communication. In this demonstration,
we propose a new data structure, termed spatial bloom fil-
ter (sFilter, for short). sFilter can answer whether a spatial
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Figure 2: Spatial Bloom filter in LocationSpark. (a) Range
query Q overlapping four partitions, (b) sFilter along with
the global index.

point is contained inside a spatial range or not. sFilter is
embedded into the global spatial index of LocationSpark as
illustrated in Figure b). This can save unnecessary net-
work communication.

4.4 Memory Management for Spatial Data

Memory is a precious resource for distributed in-memory
data management systems. To save memory, Spark allows
users to choose different storage levels. For example, the
storage level MEMORY_AND_DISK can persist data into
disk when data cannot fit into memory. Then, the system
can read persistent data from disk when needed. But this
policy does not consider query access patterns, and is not
efficient for spatial data. For example, consider the POI
dataset for the USA with more than 100GB. Certain par-
titions, e.g., Chicago or San Francisco, are queried more
frequently than the other partitions. To detect and deal
with this situation, access frequencies and corresponding
time stamps are recorded in the spatial index. Then, Loca-
tionSpark detects the frequently accessed data by aggregat-
ing access frequencies. Finally, LocationSpark dynamically
caches frequently accessed data into memory, and stores the
less frequently used data into disk.

S. DEMONSTRATION AND EVALUATION

We demonstrate LocationSpark on real-world spatial data
analytics scenarios, illustrating its applicability, ease of use,
and performance.

5.1 Demonstration Scenarios

LocationSpark is demonstrated on two real spatial datasets.
The first dataset is Twitter tweets that are gathered over
a period of nearly 20 months (from January 2013 to July
2014). The size of the tweets dataset is 1.5 Billion tweets to-
taling around 250 GB. The second dataset is OpenStreetMap
that represents the map features of the whole world, where
each spatial object is identified by its coordinates (longitude,
latitude) and an object ID. The OpenStreetMap dataset
contains 1.7 Billion points and takes 62.3 GB of disk space.

Below, we illustrate how Scala commands work for the ba-
sic spatial queries based on LocationSpark. The attendees
load the spatial data and then build a spatial RDD. Next,
the attendees can execute various spatial queries e.g., range
queries, kNN queries, or spatial join over the loaded data. In
addition, user-defined functions (UDF's) are used to filter tu-
ples during spatial query processing. Finally, attendees can
run spatial data analysis queries (e.g., density-based cluster-
ing or spatio-textual topic detection) based on the provided
APIs.



LocationSpark is open-source, and can be downloaded
from https://github.com/merlintang/SpatialSpark. More ex-
amples can be found in the codebase.

1 val datardd=spark.textFile(datafile) // Load
spatial data

val spatialRDD = SpatialRDD(datardd).cache()
// Generate SpatialRDD

val box = Box(23.10094f,-86.8612f, 32.41f,
-85.222f)

.  spatialRDD.rangeFilter(box, udf) // Spatial

range query with udf

5 val k=100

¢ val Q=Point(21.10334f,-86.3332f)

7 spatialRDD.knnFilter(Q,k,udf)// kNN Query

s val rectangles=spark.textFile(sjoinqueryfiles)

o spatialRDD.sjoin(rectangles) // Spatial-join

10 val knnqueries=spark.textFile(knnqueryfiles)

11 spatialRDD.knnjoin(knnqueries, k) // kNN-join

N

Code 1: Basic Spatial Queries in LocationSpark.

Twitter(Seconds) | OpenStreetMap(Seconds)
k=100 | k=200 k=100 | k=200
PGBJ 3422 3549 5588 5668
LocationSpark | 284 345 420 574

Table 1: Performance of kKNN-join in LocationSpark and
PGBJ.

5.2 Performance

This part of the demo will center around LocationSpark’s
performance. Attendees can observe the system perfor-
mance and resource utilization on a range of input datasets
and cluster scenarios. Experiments are conducted on a clus-
teIE| that consists of 6 Dell compute nodes with two 8-core
Intel E5-2650v2 CPUs, 32 GB of memory, and 48TB of local
storage per node for a total cluster capacity of 288TB. The
Spark version is 1.5.0 with Yarn cluster resource manage-
ment.

We compare the performance of LocationSpark with other
spatial systems, mainly using techniques from GeoSpark [11]
over Spark, and SpatialSpark [3]. Attendees of VLDB can
see the details of system performance comparison from var-
ious aspects including query response time, memory usage,
and data shuffling cost. In Table [I} we report performance
results for kNN-join on the Twitter and OpenStreetMap
datasets. LocationSpark is compared with a state-of-art
kNN-join approach. LocationSpark performs up to an order-
of-magnitude better than PGBJ. The speedup in Location-
Spark is attributed to the various optimizations in Section@
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