
Schema Independent and Scalable
Relational Learning By Castor

Jose Picado Parisa Ataei Arash Termehchy Alan Fern
School of EECS, Oregon State University, Corvallis, OR 97331

{picadolj,ataeip,termehca,afern}@oregonstate.edu

ABSTRACT
Learning novel relations from relational databases is an important
problem with many applications in database systems and machine
learning. Relational learning algorithms leverage the properties of
the database schema to find the definition of the target relation in
terms of the existing relations in the database. However, the same
data set may be represented under different schemas for various
reasons, such as efficiency and data quality. Unfortunately, current
relational learning algorithms tend to vary quite substantially over
the choice of schema, which complicates their off-the-shelf appli-
cation. We demonstrate Castor, a relational learning system that
efficiently learns the same definitions over common schema vari-
ations. The results of Castor are more accurate than well-known
learning systems over large data.

1. INTRODUCTION
Over the last decade, users’ information needs over relational

databases have expanded from answering precise queries to using
machine learning in order to discover interesting and novel rela-
tions and concepts [5]. For instance, Table 1 shows fragments of
the original schema for the UW-CSE1 database. UW-CSE is a com-
mon relational learning benchmark that contains information about
students, professors, courses, and publications. Given some exam-
ples of known student-advisor pairs, we may want to learn a new
relation advisedBy(stud , prof ), which indicates that student stud
is advised by professor prof , according to available relations in
the database. Machine learning algorithms often require to hand-
engineer a set of features that capture the essential information re-
quired to predict the advisedBy relation, where each feature is the
result of a query to the database. We would then compute these
features for each example in the training data, store the resulting
feature vectors, and run a learning algorithm to learn the relation.

Three challenges arise with the described approach. First, hand-
engineering features is not an easy task. It is a slow and tedious
process and requires significant expertise. It also restricts the algo-
rithm from identifying patterns that are not reflected in the features

1http://alchemy.cs.washington.edu/data/uw-cse

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

or combinations of features. Second, by condensing information
into a vector of features, we may lose the relational structure, which
translates into the loss of information. Third, the result of the algo-
rithm may be hard to interpret by users.

As opposed to “feature-based approaches”, relational machine
learning (also called relational learning or inductive logic program-
ming) attempts to learn concepts directly from a relational database,
without requiring the intermediate step of feature engineering [5,
4]. Given a database and training instances of a new target re-
lation, relational learning algorithms attempt to induce (approxi-
mate) relational definitions of the target in terms of existing rela-
tions. Learned definitions are usually first-order formulas, often
restricted to Datalog programs, which are easier to understand by
users than the output of typical non-relational learning algorithms.

Because the space of possible definitions is enormous, relational
learning algorithms must employ heuristics to search for accurate
definitions. Unfortunately, such heuristics typically depend on the
precise choice of schema for the underlying database, which means
that the learning output is schema dependent. As an example, Ta-
ble 1 shows parts of two schemas for the UW-CSE database. The
original schema was designed by relational learning experts and
is generally discouraged in the database community as it delivers
poor usability and performance in query processing without pro-
viding any advantages in terms of data quality [1]. A database
designer may use a schema closer to the alternative schema in Ta-
ble 1, which is in 4th normal form. This would result in a more
understandable schema and shorter query execution times, without
introducing any redundancy. Note that restructuring the UW-CSE
database from the original to alternative schema does not modify
the content of the database; it only changes its organization. Let us
use the classic relational learning algorithm FOIL [4] to induce a
definition of advisedBy(stud , prof ) for both schemas of the UW-
CSE database in Table 1. FOIL learns the following definition over
the original schema on Table 1:

advisedBy(A,B)←yearsInProgram(A, 7), publication(D,A),

publication(D,B).

which covers 5 positive examples and 0 negative examples. On the
other hand, FOIL learns the following definition over the alternative
schema:

advisedBy(A,B)←student(A, post generals, 5),

professor(B, faculty), publication(C,B),

taughtBy(D,B,E).

which covers 12 positive examples and 10 negative examples. In-
tuitively, the definition learned over the original schema better ex-
presses the relationship between an advisor and advisee.

1589



Original Schema Alternative Schema
student(stud) student(stud,phase,years)
inPhase(stud,phase) professor(prof,position)
yearsInProgram(stud,years) publication(title,person)
professor(prof) taughtBy(crs,prof,term)
hasPosition(prof,position)
publication(title,person)
taughtBy(crs,prof,term)

Table 1: Fragments of some schemas for UW-CSE data set. Pri-
mary key attributes are underlined.

Generally, there is no canonical schema for a particular set of
content in practice. Therefore, people often represent the same in-
formation using different schemas [1]. For example, it is gener-
ally easier to enforce integrity constraints over highly normalized
schemas [1]. On the other hand, because more normalized schemas
usually contain many relations, they are hard to understand and
maintain. It also takes a relatively long time to answer queries over
database instances with such schemas [1]. Thus, a database de-
signer may sacrifice data quality and choose a more denormalized
schema to achieve better usability and/or performance. She may
also hit a middle ground by choosing a style of design for some
relations and another style for other relations in the schema. More-
over, the priorities of these objectives change over time.

Currently, users have to often restructure their databases to ef-
fectively use relational learning algorithms, i.e., deliver definitions
for the target concepts that a domain expert would judge as correct.
To make matters worse, these algorithms do not normally offer any
clear description of their desired schema and users have to rely on
their own expertise and/or do trial and error to find such schemas.
Nevertheless, we ideally want our database analytics algorithms to
be used by ordinary users, not just experts who know the internals
of these algorithms. Further, the structure of large-scale databases
constantly evolves and we want to move away from the need for
constant expert attention to keep learning effective. One approach
to solving this problem is to run a learning algorithm over all possi-
ble schemas and select the schema with the most accurate answers.
However, computing all possible schemas of a database is generally
undecidable. Even if one limits the search space to a particular fam-
ily of schemas, the number of possible schemas is very large [1].

To make the learning algorithms more usable, we should move
beyond the relational learning algorithms that are effective only
over certain schemas for the data. We demonstrate Castor, a rela-
tional learning system that learns the same definition for the same
training and input data regardless of the choices of schema. To
achieve schema independence, it extends the traditional relational
learning methods by using data dependencies, e.g. inclusion de-
pendencies [1], in the database. Furthermore, as opposed to typical
relational learning systems, it is implemented on top of an RDBMS,
VoltDB (voltdb.com), which allows it to access data dependencies
and scale for large databases. In particular,
• We show frequent types of schematic heterogeneity that are ob-

served in real-world databases and show that current relational
learning algorithms learn different definitions for the same data
over these choices of schema.
• We demonstrate that Castor efficiently learns equivalent defi-

nitions for the same input data over a wide range of choices
for the schema. We show that the results of Castor are more
accurate or as accurate as other well-known learning systems.

2. FRAMEWORK
Relational Learning: An atom is a formula in the form of

R(u1, . . . , un), where R is a relation symbol. A literal is an atom,
or the negation of an atom. A Horn clause (clause for short) is a

finite set of literals that contains exactly one positive literal. Horn
clauses are also called conjunctive queries. A Datalog definition,
i.e., union of conjunctive queries, is a set of Horn clauses with the
same positive literal. Relational learning algorithms learn Datalog
definitions from input relational databases and training data. The
learned definitions are called the hypothesis, which is usually re-
stricted to non-recursive Datalog definitions without negation for
efficiency reasons. Relational learning can be viewed as a search
problem for a hypothesis that deduces the training data.

Decomposition/ Composition: Decomposition projects a rela-
tion to multiple relations. For example, the transformation from
the alternative to original schema in Table 1 decomposes relation
student to relations student , inPhase , and yearsInProgram . De-
composition is used in several frequently applied schema normal-
izations, e.g., 3rd normal form. A decomposition preserves the
content of a relation if the original and decomposed relations sat-
isfy certain dependencies, e.g., functional or multivalued depen-
dencies [1]. For example, in Table 1 attribute stud functionally de-
termines phase and years in both original and alternative schemas.
These dependencies guarantee that no data item or tuple will be
lost during the decomposition and that the original and decomposed
databases contain the exact same information. Further, there should
be inclusion dependencies, i.e., referential integrity constraints, be-
tween the common attributes in the decomposed relations. For in-
stance, in the original schema of Table 1, there are inclusion de-
pendencies between the attributes stud in relations inPhase and
yeasInProgram and attribute stud in relation student . Composi-
tion joins multiple relations into a single relation. It is the inverse
of decomposition. For example, the transformation from origi-
nal to alternative schema in Table 1 composes relations student ,
inPhase , and yearsInProgram into relation student . Schema
denormalization is an example of composition. During the life-
time of a schema, one may decompose some relations and com-
pose some other relations in the schema. We define a decomposi-
tion/ composition as a finite set of applications of composition or
decomposition to a schema.

Schema Independence: A learning algorithm is schema inde-
pendent if it learns semantically equivalent definitions over content-
preserving transformations of the input database. For instance, for
FOIL to be schema independent, it should learn the following defi-
nition over the alternative schema of Table 1 for the adviseBy rela-
tion as explained in Section 1.

advisedBy(A,B)←student(A,C, 7), publication(D,A),

publication(D,B).

This definition is semantically equivalent to the one learned by
FOIL over the original schema, which is given in Section 1. Schema
independence can be defined on various types of content-preserving
schema transformations. In this demonstration, we focus on schema
independence over decomposition/ composition. The reasons for
selecting decomposition/ composition are twofold. First, they are
used in most normalizations and de-normalizations, which are ar-
guably one of the most frequent schema modifications [1]. We also
observe several cases of them in relational learning benchmarks,
one of which is shown in Table 1.

3. CASTOR ALGORITHM
As many relational learning algorithms, Castor follows a cover-

ing approach. Algorithm 1 depicts Castor’s learning algorithm. It
constructs one clause at a time. If the clause satisfies the minimum
criterion, Castor adds the clause to the learned definition and dis-
cards the positive examples covered by the clause. It stops when
all positive examples are covered by the learned definition. Castor

1590



Algorithm 1: Castor’s cover-set algorithm.

Input : Database instance I , positive examples E+, negative
examples E−, sample size K, beam width N

Output: A set of Horn definitions H
H = {};
U = E+;
while U is not empty do

C = LearnClause(I, U,E−,K,N);
if C satisfies minimum criterion then

C′ = Reduce(C);
H = H ∪ C′;
U = U − {c ∈ U |H ∧ I |= c};

return H ;

accepts a clause only if its precision and F1-score, i.e., harmonic
average of precision and recall, are greater than those of a random
classifier. Other algorithms check only for the precision of learned
clauses [2]. These algorithms usually overfit to the training data, as
they learn clauses that contain too many constants. This happens
more often for schemas whose relations have relatively many at-
tributes, e.g., the alternative schema in Table 1. For instance, if an
algorithm checks only for precision, it learns the following clause
over the alternative schema in Table 1:

advisedBy(A,B)←student(A, post generals, 5),

publication(C,A), publication(C,B).

On the other hand, Castor, which checks for both precision and
F1-score, learns more general clauses, such as

advisedBy(A,B)←student(A,D,E),

publication(C,A), publication(C,B).

An algorithm that only checks for precision may not overfit over
schemas whose relations have relatively small number of attributes,
e.g., the original schema in Table 1. For instance, it may learn the
following clause over the original schema in Table 1.

advisedBy(A,B)←student(A),

publication(C,A), publication(C,B).

This means that such algorithm may return different answers over
the original and alternative schemas and is not schema indepen-
dent. However, because Castor checks for both precision and F1-
score, it does not suffer from this problem and learns accurate and
general clauses over both schemas. Castor follows the bottom-up
method for relational learning [2]. First, it constructs the most spe-
cific clause that covers a given positive example, relative to the
database instance, called bottom clause. Then, it generalizes the
bottom clause to cover as most positive and as fewest negative ex-
amples as possible.

3.1 Bottom Clause Construction
To compute the bottom clause associated with example e and

relative to database I , Castor assigns fresh variables to constants in
e and maintains this mapping in a hash table. It creates the head
of the bottom clause by replacing the constants in e with their as-
signed variables. The algorithm selects all tuples in the database
that contain at least one constant in the hash table. For each tuple,
it creates a new literal with the same relation name as the tuple and
adds the literal to the body of the bottom clause. If the literal (tu-
ple) has a new constant, the algorithm assigns a fresh variable to
the constant and adds the new mapping to the hash table. In each
following iteration, the algorithm selects tuples in the database that
contain the newly added constants to the hash table and adds their
corresponding literals to the clause. This procedure generates very

long clauses over a large database after a small number of itera-
tions, which takes a very long time to construct and then generalize.
A common method is to restrict the maximum number of literals,
called clauseLength , in the body of the bottom clause [2].

For example, assume that we would like to learn relation
hardWorking(x ), which indicates that a student is hardworking,
over the UW-CSE database. Let clauseLength be 2. The bottom
clause construction algorithm starts with a positive example , e.g.,
hardWorking(Mary), assigns a fresh variable v1 to Mary , and
adds the literal hardWorking(v1 ) to the head of the bottom clause.
It then finds all tuples that contain constant Mary . Assume that
Mary appears only in the student and inPhase relations in the
original schema and only in the student relation in the alternative
schema introduced in Table 1. Hence, the bottom clause construc-
tion adds the corresponding literals to the bottom clause and stops
when there are two literals in the bottom clause. Over the original
schema, the bottom clause algorithm delivers the clause
hardWorking(v1 )← student(v1 ), inPhase(v1 , v2 ). On the other
hand, over the alternative schema it generates the clause
hardWorking(v1 )← student(v1 , v2 , v3 ).
These two clauses are not semantically equivalent. Hence, the bot-
tom clause construction algorithm may deliver different results for
the same example and equivalent instances of schemas representing
the same information. More importantly, it may miss some impor-
tant tuples over some schemas, e.g., yearsInProgram(Mary , 2 )
over the original schema. To overcome this problem, Castor uses
inclusion dependencies to construct bottom clauses. More pre-
cisely, after selecting a tuple, Castor applies inclusion dependencies
to find other tuples related to the selected tuple and adds them to the
bottom clause. For example, after it selects tuple student(Mary)
over the database with original schema in our example, it also se-
lects tuples inPhase(Mary ,PostPrelims) and year(Mary , 2 ) as
they satisfy inPhase[stud ] ⊆ student [stud ] and
yearsInProgram[stud ] ⊆ student [stud ], respectively.

3.2 Generalization
Castor first creates the bottom clause for a given positive ex-

ample e. It then generalizes this bottom clause iteratively. Given
clause C, Castor randomly picks a subset E+ of positive exam-
ples to generalize C. For each example e′ in E+, Castor generates
a candidate clause C′, which is more general than C and covers
e′. It uses the armg operator [2], which drops literals in the body
of C that do not cover e′. Castor then selects the highest scoring
candidate clauses and iterates until the clauses cannot be improved.
The armg operator may generate non-equivalent clauses from se-
mantically equivalent clauses over a database and its composition/
decomposition. For example, given the bottom clauses over the
original and alternative schemas in the example in Section 3.1, the
literal student(v1) may satisfy example e′, but inPhase(v1, v2)
may not. Hence, the algorithm keeps student(v1) and removes
inPhase(v1, v2) from the bottom clause generated of the database
over the original schema. Because both databases in the example
have the same content, literal student(v1, v2, v3) will not satisfy
e′ and will be removed by the algorithm from the bottom clause
over the alternative schema. To solve this issue, immediately after
removing a literal L1 with relation symbol R, Castor also removes
literal L2 with relation symbol S such that R[X] ⊆ S[Y ] is an in-
clusion dependency in the schema and L1 and L2 share the same
variables and/or constants in attributes X and Y . For example, Cas-
tor removes literal student(v1) after removing inPhase(v1, v2) in
the example due to the inclusion dependency inPhase[stud ] ⊆
student [stud ] over the database with original schema. Clauses
are further generalized by removing literals that are non-essential,

1591



shown as Reduce() function in Algorithm 1. A literal is non-
essential if, after removed from a clause, the number of negative
examples covered by the clause does not increase [2]. Castor uses
inclusion dependencies to generate equivalent clauses in this step.

4. CASTOR ARCHITECTURE
Castor performs several optimizations to improve the efficiency

of the learning algorithm. First, Castor removes redundant liter-
als in bottom clauses. A literal L in clause C is redundant if C is
equivalent to C′ = C − {L}. Castor checks clause equivalence by
using theta-transformation, which is an approximation of the clause
equivalence problem that retains the property of correctness. Sec-
ond, Castor optimizes the generalization process by reducing the
number of coverage tests. If clause C covers example e, then clause
C′′, which is more general than C, also covers e. If Castor knows
that C covers e, it does not check if C′′ covers e. Third, the bottom
clause construction algorithm is implemented inside a stored pro-
cedure. We implement Castor on top of the in-memory RDBMS
VoltDB. Because stored procedures in VoltDB are pre-compiled,
bottom clause construction is very efficient. Figure 1 sketches the
high-level architecture of Castor. The first time that Castor is run
on a schema, it creates the stored procedure that implements the
bottom clause construction algorithm for the given schema. Castor
reuses the stored procedure when the algorithm is run again, with
either new training data or updated database instance.

Table 2 shows the results of running Castor and two other re-
lational learning algorithms over a subset of the HIV database2.
We learn the relation hiv active(compound), which indicates that
compound has an anti-HIV activity. We use two schemas, which
are a composition/ decomposition of each other. The database con-
tains 14M tuples over schema 1 and 7.8M tuples over schema 2.
We use the implementation of FOIL and Progol based on the popu-
lar relational learning library Aleph3. We cannot compare our sys-
tem with QuickFOIL [5], as it is not available for download. We
also evaluated ProGolem [2], however it did not terminate after 10
hours. All experiments were run on a 2.6GHz Intel Xeon E5-2640
processor, running CentOS Linux 7.2 with 50GB of main memory.

Figure 1: High-level architecture of Castor.

Algorithm Metric Schema 1 Schema 2

FOIL
Precision 0.68 0.66

Recall 0.85 0.94
Time (min) 9.4 3

Progol
Precision 0.71 0.64

Recall 0.88 0.94
Time (min) 36.8 16.3

Castor
Precision 0.83 0.83

Recall 0.94 0.94
Time (min) 56 20.7

Table 2: Results of different learning algorithms over HIV data.

5. DEMONSTRATION
In our demonstration, we first show examples of different styles

of schema design using benchmark databases, such as UW-CSE,
2https://wiki.nci.nih.gov/display/NCIDTPdata/
3www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

and real-world databases, such as HIV and IMDb. Users may se-
lect a database and training data, run Castor and observe the graph-
ical view and Datalog of the learned definition, as well as the ac-
curacy of the learned definition as shown in Figure 2. For each
database, users will also see a visual representation of the database
schema. Users can view a list of prepared composition/ decompo-
sition transformations for a database, select their desired transfor-
mation, and observe the results of Castor on the original database
and its composition/ decomposition. Users can also visually ex-
plore, decompose/ compose the schema of the database, run Castor,
and observe the results of Castor on the original and transformed
database. In addition to Castor, our prototype has also the imple-
mentations of well-known relational learning algorithms: FOIL,
Progol, and ProGolem [4, 2]. Users can select one of these al-
gorithms, a database and training data, see the learned definitions
of Castor and the selected algorithm over the chosen database, and
compare the accuracy and efficiency of the selected algorithms with
Castor’s. Further, they can select a composition/ decomposition for
the chosen database and compare the robustness of the chosen al-
gorithm with Castor as shown in Figure 3.

Figure 2: View of Castor output.

Figure 3: Comparison of Castor to other algorithms.

6. ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation un-

der grant IIS-1423238 and sponsored by a subcontract with Raytheon
BBN Technologies Corp. under a prime contract with the Air Force
Research Laboratory (AFRL).

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases: The Logical Level. Addison-Wesley, 1994.
[2] S. Muggleton, J. C. A. Santos, and A. Tamaddoni-Nezhad.

ProGolem: A System Based on Relative Minimal
Generalisation. In ILP, volume 5989, 2009.

[3] J. Picado, A. Termehchy, and A. Fern. Schema independent
relational learning. http://arxiv.org/abs/1508.03846, 2015.

[4] J. R. Quinlan. Learning Logical Definitions From Relations.
Machine Learning, 5, 1990.

[5] Q. Zeng, J. M. Patel, and D. Page. Quickfoil: Scalable
inductive logic programming. PVLDB, 2014.

1592


