
AD-WIRE: Add-on for Web Item Reviewing System

Rajeshkumar Kannapalli†, Azade Nazi†, Mahashweta Das‡∗, Gautam Das†
†University of Texas at Arlington; ‡Hewlett Packard Labs

†{rajeshkumar.kannapalli@mavs, azade.nazi@mavs, gdas@cse}.uta.edu, ‡mahashweta.das@hpe.com

ABSTRACT
Over the past few decades as purchasing options moved on-
line, the widespread use and popularity of online review sites
has simultaneously increased. In spite of the fact that a huge
extent of buying choices today are driven by numeric scores
(e.g., rating a product), detailed reviews play an important
role for activities like purchasing an expensive DSLR cam-
era. Since writing a detailed review for an item is usually
time-consuming, the number of reviews available in the Web
is far from many. In this paper, we build a system AD-
WIRE that given a user and an item, our system identifies
the top-k meaningful tags to help her review the item easily.
AD-WIRE allows a user to compose her review by quickly
selecting from among the set of returned tags or writes her
own review. AD-WIRE also visualizes the dependency of the
tags to different aspects of an item so a user can make an
informed decision quickly. The system can be used for differ-
ent type of the products. The current demonstration is built
to explore review writing process for the mobile phones.

1. INTRODUCTION
Users post their experience about different products and

services in online websites like Yelp, TripAdvisor, Amazon,
etc., in form of numeric scores or star rating, and reviews.
Out of the wide variety of user feedback options, numeric
scores are used in majority of areas (e.g., 5 star ratings for
restaurant, average rating of a mobile phone, etc.). But
these ratings fall short in providing information such as
those related to experience, (e.g., keyboard feel of the lap-
top, build quality of mobile phone, etc.) which can be pro-
vided by detailed reviews. The importance of detailed re-
views is further enhanced in user’s decision making if the
product is expensive (e.g., buying high end mobile phone,
expensive DSLR camera). According to Local Consumer
Review Survey 2015, 92% of consumers regularly or occa-
sionally read online reviews. Also, according to the same

∗
Work done as graduate student at University of Texas, Arlington

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

survey, 80% will trust reviews as much as personal recom-
mendations. Thus, a significant proportion of consumers
rely upon reviews as authentic voice of users in order to
make purchasing decisions. This has motivated business of
various kinds to possess an in-house arsenal of precious user
feedback for marketing and development purposes. How-
ever, as mentioned by Pew Internet in 2012, only 32% users
have ever contributed by providing a review. The number
of useful reviews available is far from many because users
tend to ignore providing a review as it is time-consuming
and unrewarding.

In [1] we introduced the general TagAdvisor problem and
we proposed practical solution to increase detailed online re-
views knowing that users may tend to avoid composing re-
views. A good review should not only meet necessary requi-
sites like conciseness, comprehensiveness, objectiveness,etc.
but should also offer adequate incentive in the form of simple
usability, easy applicability, etc. In this demonstration, we
build a system AD-WIRE that given a user and an item, our
system identifies the top-k meaningful phrases/tags to help
her review the item easily. Doing so, user is now provided
with option of composing her review by quickly selecting
from among the set of tags returned by AD-WIRE. Hence,
user is levitated from the cumbersome task of composing a
good review because the user is provided with phrases she
can immediately connect with the product to write a review.
Our statement is supported by the use case study in [2], that
83% of the users would submit online reviews more often if
they are provided a system such as AD-WIRE for reviewing
items. As one of our first step, AD-WIRE system employs
state-of-art text mining techniques to extract meaningful
phrases or tags with sentiment attached to it from user feed-
back in the form of text. For example, a review statement
“The phone has a great user interface which overshadows it’s
poor camera.” has a positive tag (great user interface)
and a negative tag (poor camera). In order to enable a user
to satisfactorily review an item AD-WIRE considers three
essential properties —relevance (i.e., how well the result set
of tags describes an item to a user), coverage (i.e., how well
the result set of tags covers the diverse aspects of an item),
and polarity (i.e., how well sentiment is attached to the re-
sult set of tags). (Refer [2] for more details)

A user can express her broad opinion about the different
aspects of an item which, in turn, can either be positive or
negative. Again, a user can express both positive and nega-
tive opinion for the same attribute (or, set of attributes) of
the item. Let us consider the same review “The phone has
a great user interface which overshadows it’s poor camera”.

1593

Table 1: Example: mobile phone review data < I, T >
Items (I) Tags (T)

Item OS
Type

Sec-
ondary
Cam-
era

Screen
Reso-
lution

Auto
fo-
cus

Screen
PPI

HDR Positive
Tags

Negative
Tags

(i) (a1) (a2) (a3) (a4) (a5) (a6) (T+) (T−)

i1 Black-
berry

2mp 518400 True 294 True great
user
interface,
good
battery
life

poor
camera,
unrespo-
nsive

i2 Android 2mp 629500 True 572 True great self-
ies

battery
drain

Table 2: Set of rules for the item i1 in Table 1
Attributes Tags p

OS Type=Blackberry great user
interface

0.5

Auto focus=True, Secondary
Camera=2mp, HDR=true

great selfies 0.3

Screen Resolution=518400 good battery
life

0.1

HDR=true battery drain 0.1
Secondary Camera=2mp,
Screen Resolution=518400,
Screen PPI=294

poor camera 0.3

OS Type=Blackberry unresponsive 0.4

User
Interface

(UI)

Frontend

Probabilistic
Classifier

Rule
Generator

Data
Store

IC-TA Solver DC-TA Solver

Optimization Component

AD-WIRE
Backend

Web
Server

Figure 1: AD-WIRE Architecture.

In this example, different item attributes such as User Expe-

rience and Camera along with their respective sentiments are
independently mentioned. Hence individual attributes are
either provided with positive sentiments or negative senti-
ments independently. Now consider another review exam-
ple, “The phone has a poor camera, but manages to provide
great selfies”. In this example, positive and negative senti-
ment are mentioned against a single item attribute Camera.
Here different parts of the review statement express oppo-
site sentiments for a similar attribute. In [1] we proposed
two coverage functions and thereby defining two concrete
problem instances, namely Independent Coverage TagAdvi-
sor (IC-TA) and Dependent Coverage TagAdvisor (DC-TA)
problems, that enable a wide range of real-world scenarios.
In IC-TA, the coverage of an item attributes is independent
of its sentiment, and dependent on the sentiment in the DC-
TA. AD-WIRE demonstrates the result of both IC-TA and
DC-TA problems and visualizes the dependency of the tags
to different aspects of an item so a user can make an in-
formed decision quickly.

We next explain AD-WIRE architecture and we provide
examples to demonstrate how our system work.

2. AD-WIRE ARCHITECTURE
Figure 1 shows an end to end architecture of the AD-

WIRE. We next describe the role of each module.

User Interface and Web Server: The key task of the
Web Server is to provide the user access to the User Inter-
face (UI). Thus, user can interact and provide various inputs
to the AD-WIRE system such as, selecting an item from a

list of products, rate the item, articulate review, and sub-
mit review. On providing inputs, the user is able to retrieve
output in a fraction of a time. The UI visualizes the de-
pendency of the suggested tags to the item attribute and
it informs the user with aspect of the item covered by her
selected tags. We discuss the detail of the UI in Section 3.2.

Data Store: Table 1 shows an example of the mobile data
in the data store. We model data D in an online review
site as < I, T >, which represents a set of items and tag
vocabulary respectively. Each tagging action by a user is
represented as < i, T > where i ∈ I, and T ∈ T . Every
item i ∈ I is associated with a well-defined schema IA =
{a1, a2, ..., am} and each item i is a tuple {a.v1, a.v2, ..., a.vm}
with IA as schema, where a.vy is the value of item attribute
ay. Since each tag is a user feedback for an item, it describes
the item positively or negatively. Therefore, we partition T
into T+ and T−.

Rule Generator: This module is responsible to find the
complex dependencies that exist between item attributes
and tags. Table 2 shows extracted rules for the item i1
in Table 1. For example, the first row of the Table 2 indi-
cates that if a mobile phone has BlackBerry OS, then with
probability of 0.5 it is responsible for the receiving the tag
great user interface. Note that, our work is not influ-
enced by or biased towards any brand. This module uses
the rule based classifier [3] to find the rules in our dataset.
Rule Generator provides the dependencies between the tags
and item attributes. It then sends the rules to Optimization
Component.

Probabilistic Classifier: This module is responsible to
find the relevance score of a tag to an item. Given item
i and tag vocabulary T , the relevance of a tag tx ∈ T ∗ de-
notes how well tx describes i. Mathematically, it is measured
as the probability of obtaining tx given i, i.e., rel(tx, i) =
Pr(tx|i) which can be computed using existing probabilistic
classifiers. This module uses the rule based classifier [3] to
find the relevance score.

Optimization Component: This module is responsible
for solving the AD-WIRE optimization problem which is
centered around three properties - relevance, coverage, and
polarity. In [1, 2] we formalize the various ways of reviewing
an item by proposing two coverage functions and thereby
defining two concrete problem instances, namely Indepen-
dent Coverage TagAdvisor (IC-TA) and Dependent Cov-
erage TagAdvisor (DC-TA) problems, that enable a wide
range of real-world scenarios. While we refer readers to [1,

1594

2] for technical details of the problems, here we provide a
brief summary of each problem in order to present a more
comprehensive picture of the system implementation.

IC-TA Solver: In this module, coverage is defined as the
total number of item attribute values covered by the tags
in T ∗, independent of their sentiment. Specifically, an at-
tribute value a.vy for an attribute ay of an item i is covered
by T ∗ if there exists a tag tx covering a.vy, independent
of its sentiment. Given a set of tags T ∗, Independent-
Coverage of T ∗ is defined as:

covIC(T ∗) = |
⋃

tx∈T∗

cov(tx, i)| (1)

In Table 1, for item i1 if we consider T ∗ = {great selfies,
poor camera} IC-TA will cover 5 item attribute values, i.e.,
Secondary Camera = 2mp, Screen Resolution = 518400, HDR
= True, Auto focus = True and Screen PPI = 294.

IC-TA Solver inputs an item and a list of rules pertaining
to the item. This module aims to maximize the coverage of
T ∗ given in Equation 1 under constraints provided by user
in terms of user rating and the relevance parameter. The
IC-TA optimization problem is solved using A-IC-TA [1].
Intuitively, the algorithm iteratively picks relevant unpicked
tags from T that cover the maximum number of uncovered
item attribute values such that the ratio of the number of
the positive tags to the number of the negative tags satisfies
the user rating.

DC-TA Solver: In this module, coverage of a.vy depends
on the sentiment of its associated tags. Given a set of tags
T ∗, Dependent-Coverage of T ∗ is formally defined as:

covDC(T ∗) = |(
⋃

t+x ∈T∗

cov(t+x , i))
⋂

(
⋃

t−w∈T∗

cov(t−w , i))|

+ |
⋃

t+x ∈T∗

cov(t+x , i) \
⋃

t−w∈T∗

cov(t−w , i)|

+ |
⋃

t−w∈T∗

cov(t−w , i) \
⋃

t+x ∈T∗

cov(t+x , i)|

(2)

An attribute value a.vy for an attribute ay of an item i is
covered if one of the following holds:

• a.vy is covered by both positive and negative tags, and
atleast one of its positive and atleast one of its negative
tags belong to T ∗. Formally, ∃t+x ∈ T ∗,∃t−w ∈ T−

∗
such

that a.vy ∈ cov(t+x , i) ∩ a.vy ∈ cov(t−w , i)

• a.vy is covered only by positive tags and not negative tags,
and atleast one of its positive tags belongs to T ∗. For-
mally, ∃t+x ∈ T ∗, ∀t−w ∈ T ∗ such that a.vy ∈ cov(t+x , i) ∩
a.vy /∈ cov(t−w , i)

• a.vy is covered only by negative tags and not positive tags,
and atleast one of its negative tags belongs to T ∗. For-
mally, ∀t+x ∈ T+∗

, ∃t−w ∈ T−
∗

such that a.vy /∈ cov(t+x , i)∩
a.vy ∈ cov(t−w , i)

For the example in Table 1, for item i1 let us consider T ∗ =
{great selfies, poor camera} . DC-TA will cover 3 item
attribute values i.e., Secondary Camera = 2mp, Auto focus =
True and Screen PPI = 294. Note that even though Screen
Resolution = 518400 is associated with the poor camera, it is
not covered because there exist a positive tag good battery

life which depends on this item attribute value but it is
not in T ∗, similarly Auto focus = True is also not covered.

Given an item and a set of rules pertaining to the item.
This module solves the DC-TA Problem by maximizing the
coverage of T ∗ given in Equation 2 under constraints pro-
vided by user in terms of user rating and the relevance pa-
rameter. The DC-TA optimization problem is solved using
A-DC-TA [2]. At each step DC-TA Solver computes the
coverage score of adding two tags to T ∗ using the Equa-
tion 2. It then picks tags that have maximum relevance
score such that the ratio of the number of the positive tags
to the number of the negative tags satisfies the user rating.

3. SYSTEM DEMONSTRATION
In this section, we first describe details of our system im-

plementation. Next, we illustrate the user interface and how
audience can interact with our system.

3.1 System Implementation:
AD-WIRE has been implemented on a Intel Quad Core

2.5 Ghz machine running Ubuntu with 16GB RAM. It uses
BottlePy 0.12 to provide web access to the system. The
front end is developed in HTML, JavaScript, Jquery to en-
able seamless web browsing. The back end of the system is
built in Python 2.7.9. AD-WIRE uses MongoDb, for fast
and easy access to data. The data is crawled from differ-
ent websites. The mobile specifications are obtained from
GSMAreana.com and the reviews are collected from ama-
zon.com. Total of near 3000 mobile phone specifications
were collected with 160k raw reviews. We process the re-
views to identify a set of positive and negative tags using
the keyword extraction toolkit AlchemyAPI1. We employ
RIPPER implemented in [4] to extract the set of rules that
shows the dependency between item attributes and tags.

3.2 User Interface
Input Interface: This interface, as shown in Figure 2, con-
sists of fields required to be filled by the user. As our cur-
rent demonstration is customized for mobile phone products,
AD-WIRE displays a list of phones available for review. Af-
ter selecting an item, user provides following parameters. k
Parameter is a non-negative integer value which defines the
number of top-k tags to be displayed. A Relevance Param-
eter which implies, how well the result set of tags describes
the item. Finally, Product Rating which quantifies user sat-
isfaction towards the product. These parameters are sub-
mitted as a form to fetch the tags. For example, here the
user selects ”Blackberry Classic” as the mobile product and
requests 2 tags with 0.5 relevance and product rating. This
implies, the result set must contain one positive tag and one
negative tag with relevance of atleast 0.5 or higher. Based
upon these inputs, AD-WIRE provides relevant tags for user
to articulate and review mobile phones easily.

Product Information: When user submits the form in
Input Interface, AD-WIRE displays product details along
with the user’s product ratings. It also shows top − k re-
sult of a tags by only considering the relevance and polarity
(shown in Figure 3). Based on user inputs, one positive tag
great user interface and one negative tag unresponsive

are displayed. These tags have the highest relevance in their
sentiment groups (Table 2). One can notice that both of

1www.alchemyapi.com

1595

Figure 2: AD-WIRE UI:

Input Interface.

Figure 3: AD-WIRE UI:

Product Information.

Figure 4: AD-WIRE UI:

IC-TA Review.

Figure 5: AD-WIRE UI:

DC-TA Review.

these tags are associated with a single attribute value OS
Type = Blackberry. Thus even with maximum relevance,
result set fails to provide user with a broad feature space
to articulate a detailed review. AD-WIRE considers three
properties mentioned in [2] to address this problem.

IC-TA Review: User is provided with two result set of
tags and can select either IC-TA Tags or DC-TA Tags based
upon his style of review writing. The IC-TA tags as shown in
Figure 4, are obtained by IC-TA Solver of the Optimization
Component explained in Section 2. These tags collectively
provide a relevance score higher than the threshold provided
by user, i.e., Relevance Parameter. On selection of any tag
from the list, the tag get displayed in the text review area.
The attributes associated with each selected IC-TA tags are
displayed in IC-TA Coverage Indicator. It allows user to
understand different item attributes related to her review.
In our example, IC-TA tags consists of a positive tag great

selfies and negative tag poor camera. User selects both
tags to articulate and write a detailed review easily. On
selection, corresponding attributes Auto focus = True, Sec-
ondary Camera = 2mp, HDR=True,Screen PPI = 294 and
Screen Resolution = 518400 get displayed in the IC-TA Cov-
erage Indicator in accordance to Equation 1.

DC-TA Review: User can select DC-TA tab to utilize
DC-TA tags. These tags are obtained by DC-TA Solver of
the Optimization Component explained in Section 2. The
GUI of DC-TA as shown in Figure 5, is similar to IC-TA.
On selection of any tag from the list, the tag get displayed
in the text review area. The attributes associated with each
selected DC-TA tags are displayed in DC-TA Coverage In-
dicator. In our example, DC-TA tags consists of one posi-
tive tag great selfies and one negative tag poor camera.,
which get displayed in the text review area. User selects
both the tags to articulate and write a detailed review eas-
ily. On selection, Secondary Camera = 2mp, HDR=True and
Screen PPI = 294 get displayed in DC-TA Coverage Indica-
tor in accordance to Equation 2.

D3 Visualization: AD-WIRE displays bipartite graph vi-
sualization, to explain the complicated and important de-
pendency between tags and item attributes values. Figure 6
shows the bipartite graph for the rules in Table 2. Tags are
found to the left side of the graph and item attribute values
to the right. On hover of any node, the visualization high-

Figure 6: AD-WIRE UI: D3 Visualization.

lights the hovered node, its edges and corresponding nodes.
User can have a quick glance at the total feature space and
it‘s corresponding tags, thus enabling user to better under-
stand the product under review.

4. ACKNOWLEDGMENT
The work of Azade Nazi and Gautam Das was partially

supported by National Science Foundation under grant 1344152,
Army Research Office under grant W911NF-15-1-0020 and
a grant from Microsoft Research. Any findings expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsors listed above.

5. REFERENCES
[1] A. Nazi, M. Das, and G. Das, “The TagAdvisor:

Luring the lurkers to review web items,” in Proceedings
of the ACM SIGMOD, 2015, pp. 531–543.

[2] A. Nazi, M. Das, and G. Das, “Web item reviewing
made easy by leveraging available user feedback,” arXiv
preprint arXiv:1602.06454, 2016.

[3] B. Liu, W. Hsu, and Y. Ma, “Integrating classification
and association rule mining,” in KDD, 1998, pp. 80–86.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten, “The weka data
mining software: An update,” SIGKDD Explor. Newsl.,
vol. 11, no. 1, pp. 10–18, 2009.

1596

