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ABSTRACT
This tutorial provides an overview of recent developments in main-
memory database systems. With growing memory sizes and mem-
ory prices dropping by a factor of 10 every 5 years, data hav-
ing a “primary home” in memory is now a reality. Main-memory
databases eschew many of the traditional architectural tenets of
relational database systems that optimized for disk-resident data.
Innovative approaches to fundamental issues such as concurrency
control and query processing are required to unleash the full per-
formance potential of main-memory databases. The tutorial is fo-
cused around design issues and architectural choices that must be
made when building a high performance database system optimized
for main-memory: data storage and indexing, concurrency control,
durability and recovery techniques, query processing and compi-
lation, support for high availability, and ability to support hybrid
transactional and analytics workloads. This will be illustrated by
example solutions drawn from four state-of-the-art systems: H-
Store/VoltDB, Hekaton, HyPeR, and SAP HANA. The tutorial will
also cover current and future research trends.

1. OVERVIEW
Over the past several years, prominent research systems such

as H-Store [4] and HyPer [5] reinvigorated research into main-
memory and multi-core data processing. Most major database
vendors now have an in-memory database solution, such as SAP
HANA [15] and Microsoft SQL Server Hekaton [2]. In addition, a
number of startups such as VoltDB [16] and MemSQL have carved
out a niche in the database vendor landscape. This first genera-
tion of research and production systems offer a very interesting
spectrum of design and implementation choices that achieve high
performance on memory-bound data. This tutorial provides an
overview of the current state-of the art in main-memory systems.

The organization of the tutorial is as follows. We begin with
an overview of the history and trends in main-memory database
systems. The bulk of the tutorial covers a number of issues and ar-
chitectural choices that need to be made when building a memory-
optimized database, focusing on the novel published work in each
area. We describe these topics below.
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1.1 History and Trends
This portion of the tutorial provides a brief summary of earlier

research (pre-2005) on main-memory databases and the trends that
led to the current renaissance of main-memory database systems.
We cover early research systems such as MM-DBMS from the
University of Wisconsin [8] through to the early production sys-
tems such as P*Time [1] that are the predecessors to todays main-
memory engines.

1.2 Issues and Architectural Trends
This section will briefly introduce the key issues and architec-

tural choices that must be resolved when building a main-memory
database system. Each issue will then be covered in much more
detail as outlined in the subsections below.

1.2.1 In-Memory Data Storage
This issue deals with how database records are represented in

memory. Main-memory databases are not constrained by on-disk
formats and are free to store data in the format most amenable to
achieve performance and system design goals. One representative
trend in this space is to avoid clustering records according a pri-
mary index, as often done in disk-based relational systems. For
example, Hekaton chooses to store individual records in memory
in row-oriented format, where one or more indexes point to the in-
memory record. As another example, HANA stores data in both
row and columnar format to support both OLTP and OLAP style
workloads.

1.2.2 Indexing and Data Structure Design
Modern main-memory systems have brought about a renewed

interest in high-performance indexing methods. While cache effi-
ciency (a long-standing research issue) remains important [9], multi-
core scalability and NUMA-awareness have become equally im-
portant. Today, main-memory databases run on CPUs with a stag-
gering amount of parallelism, with each generation of processor
increasing the core count even more. Attention to parallelism is es-
pecially important for OLTP systems, since indexing is the hot path
for updates and retrieval.

In fact, multi-core scalability extends beyond indexing to all crit-
ical data structures in the system (e.g., transaction table, durabil-
ity logging, etc.). As we will see, main-memory systems address
multi-core scalability in several ways. Some partition the system
(assigning a thread per partition) [4], while others use highly con-
current “latch-free” data structures [10].

1.2.3 Concurrency Control
Main-memory databases running on modern hardware must sup-

port a high level of real concurrency while maintaining transac-
tional consistency. Many systems aim to achieve order-of-magnitude
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throughput and latency improvements over disk-based architectures.
This is accomplished by using new concurrency control approaches.
Most modern systems no longer rely on “pessimistic” two-phase
locking that blocks threads on conflict. Instead, a number of new
approaches have been proposed to unlock the high thread-level par-
allelism available in todays CPUs. Ideally, these techniques will
never block readers, and not starve long read transactions, while
still supporting all of the ANSI isolation levels. Modern main-
memory systems vary greatly in their concurrency control tech-
niques. Approaches range from partitioning and running transac-
tions serially within a partition [4], to creating new multi-version
concurrency control techniques [7, 14].

1.2.4 Durability and Recovery
Volatile RAM is the primary home for data in main-memory sys-

tems. However, the database must still provide durability and re-
covery guarantees in the face of a system shutdowns or crashes
(the D in ACID). The use of ARIES-style logging and recovery is
rarely used in modern main-memory systems due to performance
overheads. They instead use new durability methods that optimize
performance on the transactions critical path [2, 11].

1.2.5 Query Processing and Compilation
Since main-memory systems no longer suffer from long I/O bot-

tlenecks on the main processing path, traditional query process-
ing techniques such as interpretation and the iterator model be-
come large overheads. Ideally, query processing in main-memory
systems avoid these overheads altogether. Since data is memory-
resident, query processing must avoid as much indirection as pos-
sible. Several modern main-memory systems achieve performance
by compiling queries and stored procedures directly into machine
code [3, 13].

1.2.6 Supporting Real-time Analytics
Modern business intelligence pipelines aim to perform OLAP-

style queries on a real-time view of operational (OLTP-style) data.
With main-memory databases becoming the de facto operational
data stores for processing OLTP workloads, it is important that they
fit into the real-time analytics pipeline. In general, modern main-
memory systems support real-time analytics in two forms. Systems
such as HyPeR and HANA support both OLTP and OLAP-style
workloads in a single engine. Other systems like Hekaton imple-
ment a high-performance pipeline to an analytics engine (e.g., a
column-store engine) [6].

1.2.7 High Availability
Many main-memory systems are used in high performance mis-

sion critical situations. This calls for support for high availability
and failover to hot standbys. Most of the systems we cover sup-
port high availability in some form. For instance, H-Store/VoltDB
naturally replicates its data to K different servers to achieve k-
safety [16]. Hekaton relies on SQL Servers AlwaysOn high avail-
ability solution to ship its redo log to secondary failover servers [2].

1.2.8 Clustering and Distribution
A major architectural choice is whether the system will run in a

distributed manner or not. Systems like H-Store/VoltDB are built
from the ground up to run on a cluster of shared-nothing machines,
and handle more load by scaling out. Meanwhile, systems like Hy-
PeR, Hekaton, and HANA are built to run on single machines, and
scale up to larger multi-socket machines with large main memories

(currently Terabyte in size), with HyPer recently providing scale-
out on the OLAP side [12]. There is no right answer for this ar-
chitectural choice, but this choice affects many of the approaches
to achieving high performance, from query processing to concur-
rency control.

1.3 Active Research and Future Directions
The tutorial concludes with an overview of current and future

research directions. Topics in this portion will cover cold data
management (what to do with infrequently accessed data), use of
non-volatile RAM, hardware transactional memory, and hardware
acceleration.
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