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ABSTRACT
As data sets grow and conventional processor performance scal-
ing slows, data analytics move towards heterogeneous architectures
that incorporate hardware accelerators (notably GPUs) to continue
scaling performance. However, existing GPU-based databases fail
to deal with big data applications efficiently: their execution model
suffers from scalability limitations on GPUs whose memory ca-
pacity is limited; existing systems fail to consider the discrepancy
between fast GPUs and slow storage, which can counteract the
benefit of GPU accelerators.

In this paper, we propose HippogriffDB, an efficient, scalable
GPU-accelerated OLAP system. It tackles the bandwidth discrep-
ancy using compression and an optimized data transfer path. Hippo-
griffDB stores tables in a compressed format and uses the GPU
for decompression, trading GPU cycles for the improved I/O band-
width. To improve the data transfer efficiency, HippogriffDB in-
troduces a peer-to-peer, multi-threaded data transfer mechanism,
directly transferring data from the SSD to the GPU. HippogriffDB
adopts a query-over-block execution model that provides scalabili-
ty using a stream-based approach. The model improves kernel effi-
ciency with the operator fusion and double buffering mechanism.

We have implemented HippogriffDB using an NVMe SSD, which
talks directly to a commercial GPU. Results on two popular bench-
marks demonstrate its scalability and efficiency. HippogriffDB out-
performs existing GPU-based databases (YDB) and in-memory data
analytics (MonetDB) by 1-2 orders of magnitude.

1. INTRODUCTION
As power scaling trends prevent CPUs from providing scalable

performance [11, 13, 16], database designers are looking to alter-
nate computing devices for large scale data analytics, as opposed
to conventional CPU-centric approaches. Among them, Graphics
Processing Units (GPUs) attract the most discussion for its massive
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parallelism, commercial availability, and full-blown programma-
bility. Previous work [10,20,39,41] proved the feasibility of accel-
erating databases using GPUs. Experiments show that GPUs can
accelerate analytical queries by up to 27× [15, 17, 41].

However, existing GPU-accelerated database systems suffer from
size limitations: they require the working set to fit in GPU’s de-
vice memory. With this limitation, existing GPUs cannot handle
terabyte-scale databases that are becoming common [8, 21].

Scaling up GPU-accelerated database systems to accommodate
data sets larger than GPU memory capacity is challenging:

1. The low bandwidth of data transfer in heterogenous sys-
tems counteracts the benefit GPU accelerators provide.
While the main memory has always been fast (up to 8 GB/sec
when transferring to a K20 GPU) and new storage devices
like solid state drives (SSDs) are improving performance (up
to 2.4 GB/sec [1]), the bandwidth demand of GPU database
operators is still higher than the interconnect bandwidth and
the storage bandwidth. As shown in Table 1, typical database
operators and queries can run 29− 82× faster than the SSD
read bandwidth. Without careful design, the slow storage
would under-utilize high-performance GPU accelerators.

2. Moving data between storage devices and multiple com-
puting devices adds overhead. The data transfer mechanis-
m in existing systems can be both slow and costly. It single-
threadedly moves data from the data source to the GPU via
CPU and the main memory, failing to utilize the internal
parallelism inside modern SSDs. This also adds indirections
and consumes precious CPU and memory resources, which
the system could use for other tasks. Recent work [39] shows
that this detour can take over 80% of the execution time
in typical analytical workloads and can cause the transfer
bandwidth to be less than 40% of the theoretical peak.

3. Current execution models of GPU-databases do not suit
the architecture of GPUs and cause scalability and per-
formance issues. The query execution models in existing
GPU databases [20,40] are neither efficient nor scalable. They
require that the working set fit in the small GPU device mem-
ory (usually less than 20 GB [2]). Besides, the intermediate
results that the current models produce put pressure on the
already scarce GPU memory.

To address the above challenges, we propose HippogriffDB, an
efficient, scalable heterogeneous data analytics engine. The pri-
mary issue HippogriffDB tackles is the low performance caused
by the bandwidth mismatch between fast computation and slow
I/O. HippogriffDB fixes it with compression and optimized data
transfer mechanisms. The stream-based execution model it adopts
makes HippogriffDB the first GPU-based database system that sup-
ports big data cube queries. HippogriffDB uses an operator fusion
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Operation Throughput Description
SSBM-Q1.1 61.8 GB/s Q1.1 in the Star Schema Benchmark [28]. The

query includes three selections, one join and one
aggregation.

SSBM-Q4.1 31.2 GB/s Q4.1 in the Star Schema Benchmark. The
query includes three selections, four join and one
aggregation.

Table Join 21.8 GB/s A 100 MB table joins a 1 GB table using hash
join. Both tables contain two columns and the two
columns are 4-byte integers.

SSD Read
in YDB [39]

0.75 GB/s Sequentially read data from an NVMe SSD with 32
MB as the I/O size. We adopt a similar way used
in [39].

Table 1: The throughput of running essential database opera-
tions/queries on a GPU and transferring data to the GPU. There’s a
big bandwidth mismatch between GPU processing and data transfer.

mechanism to aggressively eliminate the intermediate results since
the penalty of cache misses is costly on the GPU.

HippogriffDB stores the data in a compressed format and decom-
presses them on the GPU, trading GPU computation cycles for the
improved bandwidth. It utilizes the massive computation power
of the GPU to decompress data, turning the bandwidth gap into
the improved bandwidth. HippogriffDB tailors the compression
methods to fit better into the GPU architecture. It supports com-
bination of multiple compression methods to boost the effective
bandwidth for data transfers. HippogriffDB employs a decision
model to select the appropriate compression combination that bal-
ances the GPU kernel throughput and the I/O bandwidth. We prove
the optimal compression selection to be an NP-hard problem and
propose a 2-approximation greedy algorithm for it. For storage
with massive capacity, HippogriffDB adopts adaptive compression:
it maintains multiple compressed versions and then chooses the
best compression scheme dynamically so that different queries can
benefit from different compression schemes.

Furthermore, HippogriffDB tackles the low data transfer band-
width by using a multi-threaded, peer-to-peer communication mech-
anism (Hippogriff) between the data source (e.g., SSD and NIC)
and the GPU. The goal is to solve two problems in the I/O mecha-
nism of the existing GPU-based analytical engines [39]: (1) data
transfer relies on CPU/memory to forward the input (2) single-
threading under-utilizes the multiple data transfer hardware compo-
nents inside the SSD. To address these two problems, Hippogriff-
DB reengineers the software stack so that the database can directly
transfer data from the SSD to the GPU. Furthermore, Hippogriff
introduces multi-threaded data fetching to take advantage of the
massive parallelism inside modern SSDs.

HippogriffDB achieves high scalability, high kernel efficiency
and low memory footprint by adopting a new execution strategy,
called query-over-block. It contains two parts. First, Hippogriff-
DB streams input in small blocks, leading to high scalability and
low memory footprint. HippogriffDB adopts double buffering to
support asynchronous data transfer. Second, the query-over-block
model reduces the intermediate results using an operator fusion
mechanism: it fuses multiple operators into one, turning the inter-
mediate results passing into the local variables passing inside each
GPU thread.

We implemented HippogriffDB on a heterogeneous computer
system with an NVIDIA K20 and a high-speed NVMe SSD. As
an initial look of HippogriffDB design, we focus on star schema
queries. We compare it with a state-of-the-art CPU-based ana-
lytical database (MonetDB [9]) and a state-of-the-art GPU-based
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Figure 1: System architecture of HippogriffDB.

analytical database (YDB [41]), using two popular benchmarks (the
Star Schema Benchmark [28] and the Berkeley Big Data Bench-
mark [31]). HippogriffDB outperforms MonetDB by up to 147×
and YDB by up to 10×. Results also show that HippogriffDB can
scale up to support terabyte-scale databases and our optimizations
can help achieve up to 8× performance improvement overall.

HippogriffDB makes the following contributions:

1. HippogriffDB improves the performance of GPU-based data
analytics by fixing the bandwidth mismatch between the fast
GPU and slow I/O, using adaptive compression.

2. HippogriffDB improves the data transfer bandwidth and re-
source utilization by implementing a peer-to-peer datapath
that eliminates redundant data movements in heterogeneous
computing systems.

3. We identify the problem of optimal compression selection
to be an NP-hard problem and provide a 2-approximation
greedy algorithm for it.

4. HippogriffDB uses the operator fusion mechanism to avoid
intermediate results and to improve kernel efficiency.

5. HippogriffDB uses query-over-block, a streaming execution
model, to provide native support for big data analytics.

6. HippogriffDB outperforms state-of-the-art data analytics sys-
tems by 1-2 orders of magnitude, and experiment results demon-
strate HippogriffDB’s scalability.

The paper provides an overview of HippogriffDB in Section 2.
We discuss compression and the optimized data transfer in Sec-
tion 3 and 4 . Section 5 discusses the execution model in Hippo-
griffDB. Section 6 and 7 evaluate the system. We compare Hippo-
griffDB with related work in Section 8 and Section 9 concludes.

2. SYSTEM OVERVIEW
HippogriffDB uses data compression and optimized data move-

ment, combined with a stream-based query execution model, to de-
liver an efficient, scalable system. This section provides an overview
of the system design, the data compression mechanism, the op-
timized transfer mechanism, and the query-over-block model to
support scalable big data analytics.

2.1 System architecture
HippogriffDB targets large databases and stores database tables

in the main memory or the SSD in the current implementation. It
contains three major components.

Data Transfer Manager. The data transfer manager moves the
requested data from the main memory/SSD to the GPU kernel.
It uses a multi-threaded, peer-to-peer communication mechanism
between the GPU and the SSD to further improve the data transfer
bandwidth.

I/O Buffer Manager. HippogriffDB maintains a circular input
buffer in the GPU memory. It works with the Data Transfer Manager
to overlap data transfer and query processing: an I/O thread and the
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Figure 2: (a) The conventional GPGPU platform and (b) the process of moving data between the GPU and the SSD on this platform
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Figure 4: Schema of Query 1 generated by YDB. It creates large inter-
mediate results (grey boxes). It also requires all relevant columns in GPU
memory, limiting the scalability of the system.

execution plan YDB [45] generates in Figure 4. The existing mod-
el that YDB uses , “operator at a time and bulk execution” [10],
evaluates each operation (e.g. selection of quantity < 25) to
completion over its entire input (e.g. lo quantity) and send-
s the whole intermediate results to the upcoming operator (e.g.
lineorder 1 part).

The query-over-block model generates three operators for Query
1, as shown in the dashed, rectangular box in Figure 4. Two of them
are the new selection operators whose functionalities include tradi-
tional selection (e.g. quantity < 25), projection. The other one
is the new join operator which covers the functionalities of the join
in the original plan (e.g. lineorder 1 part) and the aggregation
operation (e.g. γp.brand1,sum(lo.revenue)).

Comparison of the existing model and query-over-block. YDB’s
query plan is neither scalable nor efficient for two reasons. First,
this plan evaluates each operation to completion over its entire input
and sends the results of the previous operator (i.e. filter vector)
to the next operator [10]. In this way, the plan generates large in-
termediate results, that cost precious memory resources and adds
latency, since accessing global memory on GPU is slow. Second, it
requires that all relevant database columns must fit into GPU mem-
ory [45], which limits the system scalability.

The query-over-block model addresses the limitations by fusing
multiple operations into one and providing stream-based operators.
Combining multiple operators allows the system to avoid materi-
alization of intermediate results and pass the data more efficiently
using fast local memory. The query-over-block model can process
input blocks in a streaming approach. In this way, this model sup-
ports data sets larger than the GPU memory capacity and hence
improves system scalability.

Compared with the existing query processing model used on
GPU, this model has several advantages:

1. It enables query processing on partial input, as opposed to
the whole table, which has great significance on increase the
scalability of query processing.

2. It eliminates redundant and unnecessary intermediate results
and mollify the memory pressure on GPU.

3. DATA COMPRESSION
HippogriffDB alleviates the bandwidth mismatch by using data

compression and trading GPU cycles for improved bandwidth. The
massive parallelism inside GPU can produce result in a throughput
that is one order of magnitude higher than the data transfer band-
width memory or SSD can deliver, creating an imbalance among
different components inside a GPU-based analytics system. Hippo-
griffDB closes the gap using compression: it compresses database
tables and uses the GPU to decompress them, effectively convert-
ing GPU compute capabilities into improved transfer bandwidth.
In this way, HippogriffDB improves the I/O bandwidth efficiency
and increases the system throughput.

In this section, we first introduce the compression methods that
HippogriffDB adopts and then analyze the compression ratio of
them. After that, we discuss how to efficiently combine different
compression methods to generate a compression plan.

3.1 GPU-based compression methods
HippogriffDB supports several compression methods to maxi-

mize the effective bandwidth between the GPU and the storage de-
vice. In this subsection, we introduce those compression methods
and analyze the compression ratio they can achieve.

HippogriffDB carefully chooses compression methods based on
two criteria: (1) the decompression algorithm fits with the GPU’s
vectorization nature. (2) compression is compatible with the exe-
cution model. We also make a few changes to the existing com-
pression methods so that GPU can effectively decompress them.

The compression methods that HippogriffDB uses are:
• RLE (run-length encoding): Run-length encoding represents
runs of data (consecutive numbers of the same value) as a s-
ingle data value and count [39]. HippogriffDB decompresses
by assigning each run a thread to reconstruct the column.
• DICT: DICT (dictionary encoding) replaces the data with its

corresponding representation contained in a mapping table.
HippogriffDB decompresses data by searching the mapping
or calculating the translation function.

4

(b)

Figure 2: (a) The conventional heterogenous platform, (b) the process of moving data between the GPU and the SSD in existing systems, and (c)
direct data access in HippogriffDB.

GPU kernel act as the producer and consumer respectively to copy
data from storage to the GPU. HippogriffDB also maintains a result
buffer in GPU’s memory, if the result can fit in the GPU memory.

GPU Kernel Manager. The GPU kernel manager evaluates
queries on the received data. HippogriffDB supports queries that
contain selection, join, aggregation, and sort operators.

Figure 1 shows how HippogriffDB processes a query. The Data
Transfer Manager prepares the relevant columns for a given query
by retrieving data from either the main memory or the SSD. It then
works with the I/O Buffer Manager to send relevant columns from
the main memory/SSD to the input buffer in the GPU memory.
The GPU Kernel Manager then evaluates the query. When query
evaluation finishes, the GPU Kernel Manager will send the result
back to the output buffer.

There is a huge bandwidth mismatch between the GPU kernel
and I/O. Without careful design, the slow I/O transfer will counter-
act the speedup that hardware accelerators provide. HippogriffDB
alleviates the mismatch by storing data in a compressed form and
using GPU cycles for decompression. To further improve physical
I/O bandwidth, HippogriffDB removes the redundant data transfers
by implementing a peer-to-peer communication from storage to the
GPU. We provide an overview for them in Section 2.2.

We also notice the inefficiency and the scalability limitation of
current query execution models. HippogriffDB fixes it by introduc-
ing a new query model in GPU processing. We provide an overview
of it in Section 2.3.

2.2 Optimizing data movement
The primary obstacle for building an efficient, GPU-based, big

data analytics system is that, in modern systems, GPUs can process
data 6-12× faster than a typical storage system can provide it.
HippogriffDB addresses this imbalance by exchanging a plentiful
resource (GPU compute cycles) for a scarce resource (effective data
transfer bandwidth). It achieves this using two techniques:

1. It adopts a multi-threaded, peer-to-peer communication mech-
anism (Hippogriff) over the PCIe interconnect to move data
directly from the storage system (i.e., an SSD) to the GPU
without shuttling data through main memory.

2. It stores tables in compressed form and uses the GPU to
decompress them, effectively converting GPU compute ca-
pabilities into effective data transfer bandwidth.

2.2.1 Hippogriff
HippogriffDB employs Hippogriff, a PCIe data transfer sched-

uler that enhances bandwidth by using multi-threaded and peer-to-
peer data transfer mechanisms. This is important since in GPU-
based database systems, the bandwidth of moving data between the

storage device and the GPU is the main performance bottleneck.
As shown in Table 1, typical database operators and queries can
run 29− 82× faster than the SSD read bandwidth.

Existing high-performance heterogenous systems use NVMe-based
SSDs to store data, but the NVMe standard is inherently inefficient
for moving data between the SSD and the GPU. Figure 2(b) illus-
trates the problem: the system first moves data from the SSD to
main memory (step 1-4), and then copies them to the GPU (step 5-
6). Prior work [38] indicates that some applications spend more
than 80% of their time copying data from main memory to the
GPU. In addition to wasting bandwidth, this approach also wastes
memory capacity and CPU performance, both of which could be
put to more productive uses.

Furthermore, the Linux NVMe driver does not fully utilize the
parallelism that SSDs offer, since it is single threaded. This has
large negative impacts on performance: Our experiments in Sec-
tion 7.1 show that a SSD-based version of YDB [38] can only
achieve 30% of the peak performance if we store data in SSD-
s. Hippogriff addresses these problems. Hippogriff provides
multi-threaded, peer-to-peer data movement between SSDs and G-
PUs. As Figure 2(c) shows, Hippogriff only needs to obtain the
file information and permission from the CPU program in Step (1).
After the system allocates space in the GPU’s memory (Step (2)),
Hippogriff issues NVMe commands with GPU memory addresses
as the sources or destinations in Step (3) and allows the data to flow
directly between the SSD and the GPU without using main mem-
ory (Step (4)). Hippogriff further exploits parallelism by creating
multiple threads to utilize idle NVMe queues from all processors
in the system.

Hippogriff implements these features by fully leveraging the peer-
to-peer features that PCIe provides and combining them with in-
telligent scheduling of IO transfers. PCIe supports direct transfer
of data between PCIe devices, as long as both devices support
it – all that is required is that 1) the destination device expose a
portion of its on-board memory in the PCIe address space and 2)
the source device driver directs the source device to transfer data
to that address via direct memory access (DMA). GPUs and net-
work interface cards support these transfers via the GPUDirect [3]
mechanism. Hippogriff extends this capability to SSDs.

Hippogriff can also leverage the conventional data transfer mech-
anism in which data flows from one device, to main memory, and
then out to another device. While this path is less efficient, it
can improve performance if the resources required for peer-to-peer
transfer are occupied or unavailable. Depending on the set of pend-
ing transfers, Hippogriff dynamically chooses which data move-
ment channel or channels to use.
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(b) Schema

SELECT SUM(lo.revenue), p.brand1

FROM lineorder lo, part p

WHERE lo.partkey = p.partkey

AND lo.quantity < 25

AND p.category = 'MFGR#12'

GROUP BY p.brand1

(a) Query 1

Figure 3: Query 1 and its corresponding schema.

2.2.2 Column-based, compressed tables
To surpass the physical bandwidth limit that the interconnect

and the devices set, HippogriffDB stores database tables using a
column-based, compressed format and trades GPU decompression
cycles for improved effective bandwidth.

HippogriffDB follows the modern column store designs by using
implicit virtual-ids [6], as opposed to explicit record-ids, to avoid
bloating the size of data storage. Column-based format provides
more opportunity for compression, which further improves the I/O
bandwidth [6, 9].

HippogriffDB stores tables in a compressed format and uses GPU
idle cycles for decompression to further improve the effective I/O
bandwidth. HippogriffDB allows both light-weighted compression
and heavy-weighted compression methods.

There is a tradeoff between the compression aggressiveness and
the GPU efficiency. Aggressive compressions can help reach better
compression ratio but also bring more cost to the GPU decompres-
sion and slow down the GPU accelerators [6]. HippogriffDB adopts
a cost-benefit model to evaluate the trade-off and to choose appro-
priate strategies. We identify the optimal compression selection
problem to be an NP-hard problem and propose a 2-approximation
greedy algorithm.

HippogriffDB observes the limitation of maintaining only one
compression plan and hence adopts an adaptive compression strat-
egy, when possible. One compression plan may benefit certain
kinds of queries but works poorly on others. HippogriffDB fixes
this issue by keeping multiple compression schemas and choosing
the optimal one dynamically.

2.3 Query-Over-Block overview
The query-over-block execution model enables the system to ef-

ficiently scale beyond the GPU memory capacity. It contains two
aspects: first, it processes inputs as streams and uses double buffer-
ing to support asynchronous execution (block-oriented execution);
second, it packs multiple operators into one and sends intermediate
results via thread-local variables (operator fusion mechanism).

Example to demonstrate existing models and query-over-block.
Query 1 (Figure 3(a)) compares the revenue for some products that
certain manufacturer makes and whose quantity is less than 25,
grouped by the product brands (Figure 3(b) shows the database
schema). We show the query execution plan YDB [41] generates
in Figure 4. The model that YDB uses , “operator at a time and
bulk execution” [9], evaluates each operation (e.g. selection of
quantity < 25) to completion over its entire input (e.g. lo quantity)
and sends the whole intermediate results to the upcoming opera-
tor (e.g. lineorder 1 part).

The query-over-block model generates three operators for Query
1, as shown in the dashed, rectangular box in Figure 4. Two of
them are the new selection operators whose functionalities include
traditional selection (e.g. quantity < 25), projection. The other
one is the new join operator which covers the functionalities of
the join in the original plan (e.g. lineorder 1 part) and the
aggregation operation (e.g. γp.brand1,sum(lo.revenue)).
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Figure 4: Schema of Query 1 generated by YDB. It creates large
intermediate results (grey boxes). It also requires all relevant columns in
GPU memory, limiting the scalability of the system.

Comparison of the existing model and query-over-block. YDB’s
query plan is neither scalable nor efficient for two reasons. First,
this plan generates large intermediate results (i.e. filter vector),
which cost precious memory resources and reduce the query pro-
cessing efficiency, since accessing global memory on the GPU is
slow. Second, it requires that all relevant database columns fit into
the GPU memory [41], which limits the system scalability.

The query-over-block model addresses the limitations by fusing
multiple operations into one and streaming the input. Combining
multiple operators allows the system to avoid materialization of in-
termediate results and pass the data more efficiently using fast local
variable. The query-over-block model can process input blocks in
a streaming approach. In this way, this model supports data sets
larger than the GPU memory capacity.
3. DATA COMPRESSION

The massive parallelism inside the GPU makes the GPU compu-
tation throughput much higher than the data transfer bandwidth that
main memory or SSDs can deliver (up to 12× for the main memory
and 30× for the SSD), creating an imbalance among different com-
ponents inside GPU-based analytics systems. HippogriffDB nar-
rows the gap using compression: it compresses database tables and
uses the GPU to decompress them, effectively converting GPU’s
compute capabilities into the improved transfer bandwidth. In this
way, HippogriffDB improves the the system throughput.

We first introduce a compression strategy that minimizes the
overall space cost. Then we show this kind of aggressive compres-
sion strategy may not be GPU-friendly and provide an improved
compression strategy that better suits the GPU environment.

3.1 Minimizing space cost (MSC)
HippogriffDB employs run length encoding (RLE) [35], dic-

tionary encoding (DICT), huffman encoding (Huffman), and delta
encoding (DELTA) to compress tables. When compressed data is
sent to GPU, we decompress the data by using the conventional
method introduced in [14]. Notice that HippogriffDB can evaluate
the columns encoded by RLE directly without the decompression
cost as is mentioned in [34].

HippogriffDB compresses tables in a heuristic strategy: it first
sorts the table using two sort keys (one primary and one secondary
sort key). Notice, how to choose primary and secondary sort key
columns will be discussed later. It applies RLE on the primary
sort key column and DELTA on the secondary sort key column.
For other columns, it applies DICT if possible. The reason behind
this heuristic strategy is discussed as follows. To work with the
streaming-based execution model, we only allow one column to be
sorted, and for it, we apply RLE as it leads to very high compression
ratio. As we are not able to introduce another primary sort key, we
decide to choose a secondary sort key. For the column chosen as
the secondary sort key, we take advantage of the orderliness and use
the delta between two consecutive elements to encode the column.
For other columns, we evaluate the domain size and the distribution
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(a) Original fact table
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1950
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(b) Compressed fact table

RLE

Delta Dictionary

Figure 5: Example of a compression plan. RLE applies to the primary
sort key column (SUPPLEYKEY) and DELTA applies to secondary sort key
column (PARTKEY). The ORDERDATE column uses DICT due to its limited
number of distinct values.

of the column and then choose adequate compression methods for
them.

For example, Figure 5 shows how HippogriffDB compresses fact
table by using the method discussed above. SUPPLYKEY and PARTKEY
work as the primary and secondary sort key respectively. Hippo-
griffDB encodes them using RLE and DELTA respectively. Hippo-
griffDB evaluates the domain size and distribution and uses DICT
to encode ORDERDATE.

To achieve the minimal space cost, HippogriffDB enumerates all
primary-secondary sort key combinations over the columns to find
out the plan that comes with the minimal space cost, as shown in
the MSC (Minimize Space Cost) algorithm (Figure 6). Hippogriff-
DB explores all possible primary-secondary sort key combinations
(Lines 6 - 7), encodes them using RLE and DELTA and calculates
the compression ratio of them (Lines 8 - 9). It then calculates the
overall compression ratio (Line 10) and updates the current plan if
its compression ratio is better than all previous plans (Line 11 - 15).

3.2 GPU-friendly compression plans
The MSC algorithm in Section 3.1 generates a compression plan

that comes with the minimal space cost, however, the plan generat-
ed may not be GPU-friendly and may result in suboptimal system
throughput. Below, we first illustrate the potential problems of the
MSC algorithm and then discuss an algorithm to generate compres-
sion plans that optimize for the entire system throughput.

Using aggressive compressions to achieve minimal space cost
may result in two problems. First, the decompression task may
overburden the GPU, creating a new form of imbalance and im-
pairing the system throughput. Second, intensive decompression
operations on the GPU would degrade the performance of Hippo-
griff, deviating from our original goal of improving data transfer
bandwidth.

To avoid the problems discussed above and make compression
plans GPU-friendly, we require the decompression process do not
overburden the GPU. We formulate a cost-benefit analysis below.
The cost in this case is the GPU decompression cycles and the
benefit is reducing the amount of data transfer.

Let TG denote the GPU kernel time to run the queries and rx
denote the compression ratio of the compression method used on
column x (assume we have n columns). The corresponding col-
umn size is Cx and Dx denotes the decompression bandwidth of
it. Suppose the data transfer rate is BIO . The time to transfer the

compressed data is:(
n∑

i=1

Ci ∗ ri)/BIO and the time to decompress

them and run the query is: TG +
n∑

i=1

(Ci ∗ ri)/Di. To prevent

the GPU from running slower than I/O, we require that: (
n∑

i=1

Ci ∗

Algorithm: MSC and GFC Algorithms
Input: A fact table with n columns, C={C1, ..., Cn}
Output: A compression strategyM = {M1, ...,Mn}, where

Mi is the compression method for Ci.
1 M← ∅ ;
2

//M stores the optimal plan

3
MB ← ∅ ;

4

//MB stores the temporary balance plan

5

min ratio← 1 ;
i← 1 to n do

7

di←dict cmp ratio (Ci) ;

8

//compute dictionary encoding ratio
for i← 1 to n do

10

//Ci as the primary sort key
j ← i+ 1 to n do

12

//Cj as the secondary sort key

13

ri ← rle cmp ratio(Ci) ;

14

//compute RLE encoding ratio

15

rj ← delta cmp ratio(Ci, Cj) ;

16

//compute DELTA ratio

17

current ratio← compute ratio(ri, rj , d1, ..., dn);

18

min ratio > current ratio then

20

min ratio← current ratio;

21

M[i]← RLE;M[j]← DELTA;
foreach k ∈ {1, 2...n} \ {i, j} do

22

M[k]← DICT;

24

M[i]← RLE;M[j]← DELTA;
k ∈ {1, 2...n} \ {i, j} do

25

//encode other columns with DICTM[k]← DICT;
//assign the compression ratio

26

rk ← dk;

MB ← balance cmp((C,M),∇ = {rk});
current ratio← compute ratio(MB);
//compute the compression ratio of compression planMB

ifmin ratio > current ratio then
min ratio← current ratio;
M←MB ;

return M ;

Function balance cmp((C,M),∇ );

28

//Let Di be the decompression bandwidth of Ci

29

//Let BIO be the data transfer rate

30

//Let TG be the GPU kernel processing time

31

sort((C,M), (sizeof(Ci) ∗ ri)/Di);

32

//sort the columns in non-decreasing order of (Ci ∗ ri)/Di

33

MB ← ∅ ;
for i← 1 to n do

new io←
i∑

j=1

Ci ∗ ri/BIO +
n∑

j=i+1

Ci/BIO ;

new gpu← TG +
i∑

i=1

Ci/Di ;

ifnew io < new gpu then
break ;

MB [i]←M[i];

returnMB ;

if

foreach

for

for

6

9

19

23

11

27

34

Figure 6: MSC and GFC algorithms. Codes in the solid box are
MSC only, while those in the dotted box are GFC only.

ri)/BIO >= TG +
n∑

i=1

(Ci ∗ ri)/Di for a compression plan to be

GPU-friendly.
We define the optimal compression selection problem as finding

a plan which can minimize the data transfer time while maintaining
the GPU-friendliness:

min
n∑

i=1

Ci ∗ ri/BIO

s.t.
n∑

i=1

Ci ∗ ri/BIO >= TG +
n∑

i=1

(Ci ∗ ri)/Di
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The problem of selecting the optimal compression combination
is proved to be an NP-hard problem by a reduction from the 0-
1 Knapsack problem [26]. Similar to the greedy algorithm for
the 0-1 Knapsack problem [26], we propose a 2-approximation
greedy algorithm, which has two steps. First, the algorithm sorts
the columns in non-decreasing order of (Ci ∗ ri)/Di, as shown in
Line 26 in the GFC algorithm (Figure 6). Second, it greedily picks
columns in the above order (Line 28 - 33). Due to space limitations,
we omit the proof of the NP-hardness and the 2-approximation.

In the GFC algorithm, we integrate the GPU-friendliness re-
quirement when generating the compression plans. Given a com-
pression plan generated by MSC (Line 6 - 9, 16 - 19), Line 20 calls
the greedy algorithm to convert it into an optimal (approximately
and locally1) GPU-friendly compression plan. Line 21 - 24 com-
pare all locally-optimal compression plans and choose the globally
optimal one to return.

4. SSD-SPECIFIC OPTIMIZATIONS
HippogriffDB improves the data transfer from the slow SSDs by

allowing direct data transfer from the SSD to the GPU and using a
query-adaptive compression to further improve compression ratio,
trading storage spaces for the improved system throughput.

In the following sections, we first introduce the new data path,
Hippogriff. We then illustrate the inefficiency of the fixed compres-
sion strategy and based on such observation, introduce an “adap-
tive” compression strategy to extend the benefit of compression to
a wide-range of queries.

4.1 Hippogriff
HippogriffDB relies on three components to provide the multi-

threaded, peer-to-peer data transfer:
1. Hippogriff API: HippogriffDB provides APIs for program-

mers to specify the data transfer sources and destinations.
2. Hippogriff runtime system: it maintains the runtime infor-

mation from all processes that use Hippogriff.
3. Hippogriff: HippogriffDB uses Hippogriff to perform peer-

to-peer transfers between the SSD and the GPU.
Compared with existing systems, HippogriffDB improves the

I/O bandwidth in two aspects:
HippogriffDB implements a peer-to-peer data transfer path be-

tween the SSD and the GPU by re-engineering the software stack
of NVMe SSDs as in [4, 25, 36]. When the storage system receives
a request with a GPU device address as the source or destination,
the NVMe software stack leverages NVIDIA’s GPUDirect [3] to
make the source or destination GPU device memory address visible
for other PCIe devices (by programming the PCIe base address
registers). Upon the success of exposing device memory to PCIe
interconnect, our NVMe software stack issues NVMe read to the
SSD using these GPU addresses as the DMA addresses instead of
main memory addresses. The SSD then directly pulls or pushes
data from or to the GPU device memory, without further interven-
tions from the CPU and the main memory.

HippogriffDB uses multi-threaded data transfer. It invokes mul-
tiple threads (4 threads in the current design) to read data from SSD.
To provide fair sharing among processors, the NVMe SSD period-
ically polls the software-maintained NVMe command queue for
each processor. As a result, the SSD can under-utilize both internal
access and outgoing bandwidth if only one or two processes are
issuing commands to the SSD. HippogriffDB fixes this problem
by querying the occupancy of the SSD NVMe command queues.
If the queues are nearly empty, it boosts performance by running
multiple peer-to-peer transfers in parallel to improve bandwidth.
1Given the certain primary-secondary sort key combination, < Ci, Cj > in
the algorithm, it is the optimal plan.

4.2 Adaptive compression
HippogriffDB uses adaptive compressions to further improve com-

pression ratio for databases on secondary storage. The GFC algorithm
in Section 3 aims to minimize the table size while maintaining
GPU-friendliness, however, it could work poorly on some queries.
In this section, we first show the inefficiency of the fixed com-
pression scheme and then demonstrate how HippogriffDB fixes the
problem with the adaptive approach.

QUERY 2

SELECT SUM(lo.revenue), d.year, p.brand1

FROM lineorder lo, date d, part p, supplier s

WHERE lo.orderdate = d.datekey AND lo.partkey = p.partkey

AND lo.suppkey = s.suppkey AND lo.quantity < 25

AND p.category = 'MFGR#12'  AND s.region = 'AMERICA'

GROUP BY d.year, p.brand1

The best compression plan for one query can work poorly on
other queries. For Query 2, the best compression plan is as fol-
low: RLE on lo partkey, DELTA on lo supplykey, DICT on
lo orderdate and lo revenue. However, this plan works poorly
on the query below, as one column in it is not compressed and
compression ratio of other columns is not as good as it could be.

SELECT c.nation, s.nation, d.year, SUM(lo.revenue) as revenue

FROM customer c, lineorder lo, supplier s, date d

WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppkey

AND lo.orderdate = d.datekey

AND c.region = ‘ASIA’

AND s.region = ‘ASIA’

AND d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year

To be adaptive to different queries, HippogriffDB uses the adap-
tive compression mechanism by allowing a table to keep multiple
compressed versions. For the example above, instead of having a
version that applies RLE on lo partkey, DELTA on lo supplykey,
DICT on lo orderdate and revenue, the system may also main-
tain another version which applies RLE on lo supplykey, DELTA
on lo custkey, DICT on lo orderdate and lo revenue. Hippo-
griffDB may maintain other compression versions as well.

During the query processing, HippogriffDB examines all avail-
able compression plans and then calculates the overall compression
ratio for each of them. It will then adopt the one with the best
compression ratio for the query and send it to the GPU.

Suppose the number of foreign-key columns (on which Huffman
and DICT work poorly) is n, the adaptive strategy will produce at
most n(n− 1) different compression plan. Each compression plan
will create a compressed version of the table, which can be a big
space overhead. The following theorem reduces the space cost by
half, without significant performance degradation.

THEOREM 1. Given two compression planA andB, where the
only difference between them is that they switch the primary and
secondary sort key, the compression ratio difference is asymptoti-
cally 0 (Assume that P = o(N), where P is the cardinality of the
primary sort key and N is the number of rows in the fact table).

For databases with large number of foreign key columns, we
trade slight compression degradation for big space efficiency im-
provement. Instead of enumerating all primary-secondary sort key
combinations, we only enumerate the primary sort key column.
Hence, we reduce the number of different compressed tables from(
n
2

)
to n with minor cost (we can still use other compression meth-

ods for the column that is originally encoded using DELTA). For
example, when running Q2.2 int the Star Schema Benchmark (S-
F=10), the overall compression ratio increased from 0.28 to 0.32
and the entire system system throughput only drops by 13%.
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In practice, database users may have additional knowledge about
the database (e.g., query logs) that can help reduce the space over-
head even further.
Remark In this section, we discuss the optimizations for the sec-
ondary storage. Those optimizations also work for other storages as
well. For example, the adaptive compression is applicable in a dis-
tributed topology, as the space is abundant in such architecture. [5]
also allows a direct data transfer from NICs to the GPU, bypassing
the CPU/memory overhead for the distributed databases.

5. QUERY-OVER-BLOCK MODEL
The query-over-block model handles data sets larger than the

GPU memory. It provides high scalability by processing input in
a streaming manner. It also removes intermediate results and im-
proves GPU kernel efficiency with the operator fusion mechanism.

In this section, we first introduce the data schemas that we focus
on, then formally (re)define the queries running on these schemas.
Based on the definition, we introduce three physical operators and
then show how HippogriffDB uses them to optimize the query plan.

5.1 Schema and query definition
HippogriffDB targets data warehouse applications. Data ware-

houses typically organize data into multidimensional cubes (or
hypercubes) and map hypercubes into relational databases using
the star schema or the snowflake schema. In the star schema, a
central table contains fact data and multiple dimension tables ra-
diate out from it. The fact table and the dimension tables connect
through the primary/foreign key relationships. Existing compari-
son results show that star schema is prevalent in data warehouses [6,
23]. HippogriffDB focuses on star schema queries (SSQ). For other
queries and schemas, HippogriffDB can work as an accelerator on
SSQ subexpressions and leave the rest to classic methods.

The operators inside an SSQ fall into three categories. The first
category is unary operations, such as selection and projection, on
dimension tables. The second category includes unary operations
on the fact table and natural join between the fact and the dimen-
sion tables. The last category is aggregation and group by on the
join results. As an example, we categorize the operations in Query
2 into these three categories, as shown in Table 2.

Figure 7 provides the Normalized Algebra (NA) expression for
SSQs. This attribute grammar has the ability to describe all SSQs.
The root of the NA is either an aggregation of a join or just a join.
The join here is either a series of joins over F,D1, . . . Dn or F
itself, where F is a fact table (or the result of unary operations on
the fact table) and Di is a dimension table (or the result of unary
operations on the dimension table).

5.2 Query-over-block execution model
Query-over-block improves the scalability and efficiency using

an “operator fusion” mechanism and a stream-based approach. In
this subsection, we first introduce three new physical operators
and then demonstrate how query-over-block generates query plans
using these physical operators.
5.2.1 Operator fusion

We implement three physical operators using operator fusion
mechanism to improve the kernel efficiency and to eliminate in-
termediate results. Below, we first define these physical operators
and then discuss their implementations.
Physical operator definition
Based on the attribute grammar in Section 5.1, HippogriffDB intro-
duces three corresponding physical operators: ΛR,c,K,V , 1̂R,c,L1,...,Ln ,
and ΓJ,f1,...,m . We define the three operators logically as follows:

1. ΛR,c,K,V outputs πK,V σc(R), a hashmap L with πKσc(R)
as the keys and πV σc(R) as the values.

Category Operations
Category 1 p.category = MFGR#12

s.region = AMERICA’
Category 2 lo.orderdate = d.datekey

lo.partkey = p.partkey
lo.quantity < 25

Category 3 SUM(lo.revenue)
GROUP BY d.year, p.brand1

Table 2: Categorization of operations in Query 2.

2. 1̂R,c,L1,...,Ln outputs σc(R) 1 L1 1 . . . 1 Ln.
3. γJ,A,f1,...,m outputs the results of γA,f1,...,m(J).

Implementation We implement the physical operators as follows:

1. ΛR,c,K,V . We implement the hashtable using Cuckoo Hash-
ing [29]. Each GPU thread evaluates the selection condition
on its input and, if the condition is met, inserts the input
into the hash index. We use atomic instructions that CUDA
provides to avoid conflicts in the parallel program.

2. 1̂R,c,L1,...,Ln . We assign each GPU thread a row in the
fact table. The GPU thread first evaluate selection condi-
tions on the relation R and then probes the hash indices of
L1, ..., Ln.2

3. γJ,A,f1,...,m . We use the hashmap or array (if we know the
domain size in advance) for the aggregation. We use atomic
instructions to resolve conflicts between different threads.

Operator fusion mechanism
HippogriffDB mollifies the memory contention that the inter-

mediate results cause using the operator fusion mechanism. This
mechanism combines multiple operators into a single GPU kernel
and, in this way, turn intermediate results passing into local vari-
ables passing inside each GPU thread.

For example, for the physical operator 1̂R,c,L1,...,Ln , we fuse
all joins (hash joins) and selections on the fact table into one GPU
kernel. We provide the operator fusion mechanism in Algorithm 1.
The kernel first evaluates the selection operation on a given row (Line
7-9). If the row survives the selection conditions, it will proceed to
join with other dimension tables (Line 10-12). The GPU kernel
passes intermediate results using local variables inside the thread.
The implementations of physical operator ΛR,c,K,V , γJ,f1,...,m fol-
low similar approaches.

We use Query 2 as an example to compare our query plan with
the query plan that existing models generate. Figure 8 (a) presents
the query plan that most existing GPU-based databases adopt. Af-
ter joining lineorder and part, the system sends the join result-
s (intermediate results) to join another table, supplier, and then
generates another set of intermediate results, and so forth. The
existing query plan sends large intermediate results several times
during the query execution, which is costly as accessing GPU glob-
al memory is slow. In addition, storing those intermediate results
on a memory-scarce device hurts the scalability of the system. Fig-
ure 8(b) shows our approach. It packs the selections on the dimen-
sion tables and hash index building into the Λ operator. It fuses
the three natural joins, the selection on table lineorder, and the
aggregation into one GPU kernel. In this way, HippogriffDB avoids
all intermediate results.
Discussion [7] uses invisible joins to reduce redundant data trans-
fers. It first evaluates the invisible join and then, based on the join
results, reads the other columns on demand. HippogriffDB does not
adopt this approach, as the second step would involve large amount
of random reads to the SSD, which is slow for a flash-based SSD
(and also hard disks).
2We assume the hash indices can fit in the GPU memory. We discuss the
memory requirement at the end of this section.
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Figure 7: An attribute grammar of SSQs
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Figure 8: The query plan for Query 2 by YDB and HippogriffDB. Query plan that HippogriffDB
generates can avoid intermediate results and support dataset larger than GPU memory.

Algorithm 1: Operator fusion algorithm
Input: A fact table F , dimension table indices

H={H1, ...,Hn}, a list of selection conditions
C={C1, ..., Cm}, join conditions J ={J1, ..., Jl},
groupby columns G={G1, ..., Gk}, aggregation
function A={A1, ..., Ap}

Output: Analytical resultsR
1 Func fused kernel(F,H,J , C,G,A) ;
2 R← ∅ ;
3 cuda fused kernel<<<...>>>(R, F,H,J , C,G,A);
4 returnR ;
5 Func fused kernel(R, F,H,J , C,G,A) ;
6 r← R[thread id] ;
7 for c ∈ C do
8 if eval(c, r) == false then
9 return false ;

10 for j ∈ J do
11 ifHj .find (Pr,j) == NULL then
12 return false ;

13 evalAggr(R, Pr,G , A ) ;

5.2.2 Block-oriented execution plan
HippogriffDB uses a block execution plan to improve the system

scalability. It streams the fact table to support data sets larger
than the GPU memory. HippogriffDB adopts double buffering to
support asynchronous data transfer, which allows the overlapping
between the kernel execution and the data transfer.

HippogriffDB generates the physical query plan for a given query
in three phases. It first pushes down unary operators (category 1)
on the dimension tables and builds in-GPU-memory hash indices
for them (physical operator ΛR,c,K,V ). In the second phase, it
evaluates natural joins (category 2) using the hash indices built in
the previous stage (physical operator 1̂R,c,L1,...,Ln ). The third
stage evaluates aggregations on the join results (physical operator
ΓJ,f1,...,m ).

HippogriffDB adopts a circular input buffer to enable asynchronous
data transfer for efficient streaming. The data transfer manager
continues to transfer data while the kernel manager evaluates the
received input.
Memory requirement In the current implementation, Hippogriff-
DB requires the hash indices of the dimension tables fit in the GPU
memory. We also maintain the input and output buffer in the GPU
memory. Hence, the memory requirement is Sinput + Soutput +∑
Hi, where Hi denotes the size of hash indices of the dimension

table i and Sinput, Soutput denote the size of the input/output buffer.
Discussion We use the star schema queries to demonstrate the query-
over-block execution model. However, the query-over-block tech-
nique can apply to other schemas as well, with appropriate mod-

ifications. The execution model first pushes down the selection
operators on the dimension tables and then fuses the other oper-
ators (selection, join and aggregations on the fact table) into one
GPU kernel. This approach can be straightforwardly extended to
snowflake schema queries, as both steps in the query-over-block
execution model can be applied to the snow flake schema.
The query-over-block execution model has two limitations. First,
it assumes that the indices of the dimension tables can fit into the
GPU device memory. We look forward to using multiple GPUs or
enlarged GPU device memory in future generations, as one solution
to this issue. Second, it requires that the query execution is driven
by processing blocks of the fact table. As we discussed above,
both star-schema and snowflake-schema queries can be processed
by iterating over blocks of the fact table. However, there are also
queries that cannot be processed by streaming a single table and
immediately aggregating it. For example, queries involving many-
to-many joins will need a future extension where we utilize the host
memory to store intermediate results.

6. EXPERIMENTAL METHODOLOGY
We built HippogriffDB and a testbed that contains an Intel Xeon

processor, an NVIDIA K20 GPU and a PCIe-attached SSD. We
evaluate HippogriffDB using two popular data analytic benchmarks
and we compare it with two state-of-the-art data analytics. This
section describes our test bed, benchmark applications, and the two
systems that we compare HippogriffDB with.
6.1 Experimental platform

We run our experiments on a server with an Intel Xeon E52609V2
processor. The processor contains 4 cores and each processor core
runs at 2.5 GHz by default. The server contains 64 GB DDR3-
1600 DRAM that we used as the main memory in our experiments.
The GPU in our testbed is an NVIDIA Tesla K20 GPU accelerator,
which contains 5 GB GDDR5 memory on board3. The K20 GPU
connects to the rest of the system through 16 lanes of the PCIe in-
terconnect that provides 8 GB/sec I/O bandwidth in each direction.
We use a high-end PCIe-attached SSD as the secondary storage
device ( with 1 TB capacity). The testbed uses a Linux system
running the 3.16.3 kernel. We implement the GPU operator library
in HippogriffDB based on NVIDIA CUDA Toolkit 6.5.
6.2 Benchmarks

To evaluate our system, we use two popular analytical bench-
marks. The two benchmarks are the Star Schema Benchmark (SS-
BM) [28] and the Berkeley Big Data Benchmark (BBDB) [31].

SSBM is a widely used benchmark in database research due to
its realistic modeling of data warehousing workloads. In SSBM,
the database contains one fact table ( lineorder table) and four
dimension tables (supplier, customer, date and part table).
The fact table refers to the other four dimension tables, as shown
in Figure 9(a). SSBM provides 13 queries in 4 flights. Hippogriff-
DB supports all 13 queries. When the scale factor is 1, the total
3 we use an NVIDIA GTX650 GPU for the wimpy hardware experiment,
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Figure 10: Normalized speedup relative to MonetDB (SF=10) when data are in memory.
HippogriffDB outperforms competitors by 1-2 orders of magnitude.
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(SF=10) when data are in SSD. HippogriffDB
outperforms YDB by up to 12×.
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Figure 9: Schema of the database in SSBM and BBDB.

database size is about 0.7 GB. We vary the scale factor from 1 to
1000 in our experiments. The database size is 0.7 TB when the
scale factor reaches 1000.

BBDB includes several search engine workloads. The database
in BBDB contains three tables, depicting documents, pageranks
and user visits information, as shown in Figure 9(b). The bench-
mark contains 4 queries. The third query contains a string join,
which current HippogriffDB does not support, and the last one in-
volves an external Python program. Hence, we evaluate our system
using Query 1 and Query 2 in this benchmark.

6.3 Competitors
We compare HippogriffDB with two analytical database sys-

tems, MonetDB [9] and YDB [41]. MonetDB is a state-of-the-
art column-store database system that targets analytics over large
inputs. YDB is a GPU execution engine for OLAP queries. Exper-
iment results show that YDB runs up to 6.5× faster than its CPU
counterpart on workloads that can fit in GPU’s memory.

7. RESULTS
In this section, we present the experimental results for Hippo-

griffDB. This section first presents the end-to-end performance com-
pared with the two competitors. After that, we evaluate the effec-
tiveness of the proposed methods in balancing component through-
put inside the system. We then evaluate the execution model.
7.1 Overall performance

We first evaluate the speedup that HippogriffDB can achieve.
We compare out system with two baselines: MonetDB [9] and
YDB [41]. We provide two versions of HippogriffDB here: Hippo-
griffDB without compression and pipelining optimizations (HDB-
NO-OPT) and the full-fledged version (HDB).

Figure 10(a) shows the normalized speedup of different systems
(relative to MonetDB) when data are in the GPU memory. We use
10 as the scale factor here. In this case, the working set size is 0.96-
1.44 GB for SSBM. For BBDB, we adopt a 1.2 GB input. As shown
in Figure 10(a), HDB-NO-OPT outperforms MonetDB by 38× and
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Figure 12: Break down of query Q1.1 execution time. HDB improves
both kernel and I/O efficiency compared with other analytical systems.

YDB by 2.6× on average for SSBM queries. The full-fledged ver-
sion (including compression and pipelining) outperforms MonetD-
B by 147× and YDB by 9.8× on average. For BBDB, HDB-NO-
OPT achieves 4.2× speedup compared with MonetDB and with
optimizations the speedup rises to 11.8×, as shown in Figure 10(b).
HDB-NO-OPT produces less speedup for BBDB compared with
SSBM, as the queries in BBDB are relatively simple and cannot
fully utilize the GPU computation power.

Figure 11 compares the execution time when the database resides
in the SSD. As shown in the figure, HDB-NO-OPT outperforms
YDB by 2.4× on average. With optimizations, HDB outperforms
YDB by 8.4× on average.

Figure 12(a) breaks down the execution time of Q1.1 into I/O
and kernel execution when HippogriffDB (both HDB-NO-OPT and
HDB) and YDB store data in the main memory. We do not show
MonetDB here, as it is not a GPU-based database and it does not
have these two stages. To measure the execution time breakdown,
we disable the pipelining mechanism in our systems. The execution
time breakdown indicates that the majority of performance boost
comes from the GPU kernel. By removing intermediate results and
using new physical operators, HDB-NO-OPT runs 9.8× faster than
YDB. In addition, the data transfer rate in HDB-NO-OPT is also
36% faster than YDB, due to less software and metadata overhead4.
Compression reduces the table size by 4.6× and hence reduces the
I/O time in HDB. Though the decompression adds additional cost
to the GPU processing, because of the significant improvement
from the I/O stage, HDB still achieves 2.5× speedup compared
with HDB-NO-OPT.

We also show the execution time breakdown for the SSD version
in Figure 12(b). The performance gain in this case is mainly from
the optimized data transfer in HippogriffDB. The inefficiency of

4We use the same method as in [39] to run YDB: warm up memory
by executing each query once before the experiments. Reading from a
warm cache could be slower compared with reading directly from the main
memory due to some operating system overhead.
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Figure 13: HippogriffDB with
and without compressions, S-
F=10. Compression helps improve
system throughput by up to 5×.
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peer I/O optimization, SF=1000.
Direct datapath and multi-threaded
help improve system throughput by
18%.

1 10 100 1000
HDB-Q-ADAPTIVE 0.28 0.30 0.31 0.32

HDB-Q-INSENSITIVE 0.42 0.46 0.48 0.49
DICT 0.44 0.48 0.52 0.55

Table 3: Compression ratio of query-adaptive and query-insensitive
compression. Query-adaptive compression can keep good compression
ratio when the database scales up (x-axis is the scale factor).

I/O in YDB agrees with the results in [39]. The I/O bandwidth
HDB can achieve is up to 2.3× larger than its competitor.

7.2 Close the GPU-I/O bandwidth gap
HippogriffDB fixes the gap between the fast GPU kernel and the

slow data transfer by overcoming the I/O bottleneck in two ways:
(1) it compresses databases and trades idle GPU cycles for decom-
pression to achieve better data transfer efficiency. (2) it redesigns
the data path to bypass the host CPU and the main memory when
transferring data from the SSD to the GPU. In this subsection, we
evaluate these approaches.

7.2.1 Effect of compression
HippogriffDB stores data in a compressed format and trades

GPU cycles for better I/O performance. In this subsection, we study
the effect of data compression in terms of bandwidth improvement.

We first compare the execution time with compression (HDB)
and without compression (HDB-NO-COMPRESSION) for various
queries. We use 10 as the scale factor here. Figure 13 shows
the comparison results. Compression can achieve 2.8 × −4.9×
improvement in system throughput. As discussed in Section 3,
compression on the foreign key columns is the most difficult, due
to its large cardinality. Compression benefits most in Q1.1, as this
query only involves one foreign key. For other queries, HDB can
still reach a rather decent compression ratio.

HippogriffDB adopts query-adaptive compression for databases
stored in SSD. We compare the compression ratio difference be-
tween a query-adaptive compression (HDB-Q-ADAPTIVE) and a
fixed approach (HDB-Q-INSENSITIVE) using the example given
in Section 4.2. We show the compression ratio in Table 3. As
shown in the table, the query-adaptive compression can maintain
decent compression ratio when databases scaling up while the com-
pression efficiency of the fixed approach degrades significantly. It’s
because the fixed compression fails to apply effective compression
methods on critical foreign keys. Previous literature [41] indicates
that DICT can achieve a satisfying compression effect on small
data sets while our results show that the performance of DICT also
degrades rapidly when data sets scale up.

7.2.2 Effect of peer-to-peer data transfer
Observing that data transfer bandwidth is the system bottleneck,

we adopt several optimizations to improve the bandwidth. In this
subsection, we evaluate the bandwidth improvement using the multi-
threaded, peer-to-peer communication mechanism.
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Figure 16: Effect of closing the GPU-IO bandwidth gap. Proposed
approaches narrow the GPU-IO gap by up to 21×.

Figure 15 compares the throughput of moving data from the
SSD to the GPU using Hippogriff (M) against standard NVMe (N-
VMe), pipelined NVMe (NVMe-pipeline) 5 and the single channel,
peer-to-peer transfer (Hippogriff (S)). We report the data transfer
throughput under different file sizes, excluding the overhead of
allocating all necessary resources (e.g., memory buffers) along the
data paths.

Hippogriff (M) outperforms all other route options. The per-
formance advantage of Hippogriff (M) becomes more significant
as file size increases. When transferring a 4 GB file between the
SSD and the GPU, Hippogriff (S) that performs file access requests
using a single NVMe command queue only achieves bandwidth
of 1110 MB/sec, due to the under-utilized NVMe SSD resources.
Hippogriff (M), on the other hand, offers up to 2221 MB/sec band-
width. NVMe-pipeline improves the performance of standard N-
VMe by compensating for latencies with multiple data transfers.
However, NVMe-pipeline can still only achieve a throughput of
1691 MB/Sec between the SSD and the GPU for 4 GB files, 34%
slower than Hippogriff (M), because NVMe-pipeline requires more
CPU resources.

We compare the execution time of using an optimized host route
and using Hippogriff. Experiment shows that the peer-to-peer data
transfer helps reduce the end-to-end latency by 19%.

As a summary of the effect of the endeavours discussed above,
Figure 16 shows the effect of narrowing the bandwidth gap between
the GPU kernel and I/O. We compare the difference between GPU
kernel and data transfer bandwidth using SSBM Q1.1 and show the
results for both SSD-based and memory-based HippogriffDB. For
the SSD version, the initial gap (BASE) is up to 82×. The direct
data transfer (Direct-IO) brings it down to 38× and the compres-
sion (Direct-IO+CMP) further brings the gap down to 3.9×. For
the in-memory version, compression (CMP) narrows the gap from
12× to 1.2×, very close to achieving the balance.

7.3 Query-over-block model evaluation
5This is an optimized baseline that overlaps the SSD access with GPU
memory copy.
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1 10 100 1000
YDB 12.27 98.03 N/A N/A

HippogriffDB 1 10.27 93.60 938.0

Table 4: Normalized scalability performance with increasing SF (from
1 to 1000). Results testify the scalability of HippogriffDB (x-axis is the
scale factor).
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Figure 17: Scalability of GPU
kernels on SSBM. GPU kernel
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order of magnitude.
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reduce the execution time by up
to 15% without compression. It
can further improve system perfor-
mance with other optimizations.

The query-over-block model makes HippogriffDB the first GPU-
based database system that provides native support for big data ana-
lytics. The query model uses several optimizations to improve per-
formance, including removing materialization and double buffer-
ing. In this subsection, we first evaluate the system scalability and
then analyze the effect of the proposed optimizations.

7.3.1 System scalability
We test the scalability of HippogriffDB by varying the scale

factor from 1 to 1000 (database size from 0.7 GB - 0.7 TB). We
run the SSBM Q1.1 in the experiment without compression. Table
4 reports the execution time for queries on YDB and Hippogriff-
DB. The database resides in SSD in this experiment. As shown
in the table, YDB cannot support queries when the scale factor is
above 10 while HippogriffDB shows its superiority by scaling up
to support terabyte-level input.

When scaling up, the throughput of HippogriffDB remains sta-
ble (as same as the data transfer bandwidth). This is because the
GPU kernel always runs faster than data transfer bandwidth in this
case. We show the GPU kernel throughput in Figure 17: the speed
that the GPU processes database queries (more than 20 GB/s) is at
least 12× higher than the I/O bandwidth. This trend sustains when
the input scales up to terabyte-level tables. The double buffering
always keeps I/O device busy and saturates the I/O bandwidth. As
a result, the performance remains the stable when scaling up. The
I/O bandwidth without optimization is not satisfiable and that is the
reason we propose compression and peer-to-peer data transfer to
improve the effective I/O bandwidth.

7.3.2 Effect of double buffering
HippogriffDB uses double buffering to overlap the data transfer

and kernel execution, reducing the execution time of query process-
ing. We compare the effect of using double buffering in Figure 18
(SF = 10). The double buffering reduces the execution time for
Q1.1 in SSBM by 3% and 7% for SSD-based and memory-based
HippogriffDB. For Q4.1, it can help improve the execution time
by 5% and 15% respectively. Double buffering works better on
complex queries, as the GPU kernel time consumes higher portion
in the total execution time for complex queries. Double buffering
can further improve the system performance in combination with
other optimizations, such as compression. With data compression,
the gap between faster part and slower part narrows and hence the
overlapping can result in more performance gain.
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Figure 19: Effect of removing intermediate results. Removing
intermediate results can improve query execution time by up to 91%.

7.3.3 Effect of avoiding intermediate results
Figure 19 compares the the benefit of reducing intermediate re-

sults using SSBM Q1.1 and Q4.1. We vary SF from 1 to 1000
(database size from 0.7 GB - 0.7 TB). We compare the throughput
of HippogriffDB (HDB) and HippogriffDB without operator fu-
sion (HDB-NO-FUSION). As shown in Figure 19, the GPU kernel
throughput improves by 91% for Q1.1 and 43% for Q4.1. Reducing
intermediate results works better on light-weighted queries. For
heavy-weighted queries, the computation can take a significant por-
tion of time and operator fusion will not optimize for this part. For
query 4.1, the benefits of reducing intermediate results decreases
with the growth of the scale factor. It is also because the computa-
tion load increases with the growth of the scale factor.

7.4 Performance on wimpy hardware
In the previous sections, we discuss the proposed optimizations

on the high-end hardware. In this subsection, we examine the
optimizations on the wimpy hardwares, such as low-end GPUs.

While Hippogriff does not work with low-end GPUs because
of the BIOS setup of manufacturers, the query-over-block execu-
tion model can still improve the kernel efficiency on the wimpy
hardware. By reducing the intermediate results, the query-over-
block execution model improves the GPU processing rate by 2.9×
for light-weighted query (SSBM Q1.1, SF = 10) and by 2.4× for
heavy-weighted query (SSBM Q4.1, SF=10). Without peer-to-peer
data communication supports, the multi-threaded transfer still helps
boost the bandwidth in the system using low-end GPUs. As shown
in Figure 15, using multi-threaded I/O can achieve up to 1.6 GB/s
on our SSD. Compression still works to narrow the bandwidth mis-
match between the SSD and the GPU. For example, the compres-
sion can increase the effective I/O bandwidth by 4.6× on SSBM
Q1.1 while the GPU can still process at 22.9 GB/s, 3.3× larger
than the effective bandwidth.

8. RELATED WORK
With the end of Dennard scaling [12] (power density stays con-

stant), it is hard for general purpose CPUs to provide scalable per-
formance in the future due to the power challenges [13, 16]. In
recent years, researchers in database community started to use het-
erogeneous computing to overcome the scaling problem of CPUs
and to continue delivering scalable performance for database appli-
cations [18, 19, 33, 41].

Among various hardware accelerators, GPU is the one that draws
the most attention. Several full-fledged GPU database query en-
gines [10, 20, 41] came out in the recent years. Ocelot [20] pro-
vides a hybrid analytical query engine as an extension to MonetDB.
HyPE [10] is a hybrid analytical engine utilizing both the CPU and
the GPU for query processing. YDB [41] is a GPU-based data
warehouse query engine. Though YDB allows database store in the
main memory or the SSD, it still assumes that the working set can
fit in the main memory. HippogriffDB differs from the previous
work as HippogriffDB is targeting large scale database systems
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(TB scale input). HippogriffDB allows data sets larger than the
GPU memory capacity. To cope with the limited GPU memory
capacity, HippogriffDB uses streaming database operations which
enable data processing on small chunks.

Several CPU-based databases also use block-oriented execution
model. [9] identifies that the system bottleneck in a CPU-based
in-memory database is the limited memory bandwidth and uses
a cache-aware approach to reduce memory traffic. However, the
limited memory bandwidth concern of CPU-based databases does
not hold for a GPU-based system, as the GPUs have much higher
memory bandwidth (100s GB/sec). HippogriffDB uses a block-
based execution to remove the scalability limitation posed by the
small GPU memory capacity. The block size between Hippogriff-
DB and [9] is also different: HippogriffDB chooses a size that is
large enough to deliver good I/O bandwidth from the SSD to the
GPU, which is much larger than the cache size (10s KB on GPUs).

Compression is a popular strategy to reduce the storage space
and the amount of data transfer. Several works [14, 27, 30] dis-
cussed the algorithms of compression/decompression on GPU. YDB
[41] uses dictionary and run-length encoding to reduce data sets
so that it can support tables slightly larger than the GPU memory
capacity. HippogriffDB differs from the previous work as Hippo-
griffDB uses the query-adaptive compression. Wu et al. [40]
proposed a primitive fusing strategy to reduce the back-and-forth
traffic between GPU and hosts. HippogriffDB adopts a similar
technology to reduce the data exchange.

There are several related projects on the direct communication
between two PCIe devices. For example, GPUDirect [3] offers
direct communication between two GPUs and [22] offers direct
communication between the Network Interface Card (NIC). Our
work differs from those works in two ways. First, our work demon-
strates that low I/O bandwidth from the SSD to the GPU is largely
due to the failure to fully utilize the internal parallelism inside the
SSD. To address this issue, we adopt multi-threaded I/O to boost
the utilization of the multiple data transfer units. Second, our work
offers direct communication between a GPU and a PCIe SSD.

Several works [32, 37] discussed the gap between throughput of
GPU kernel and off-chip memory bandwidth and proposed using
compression to alleviate discrepancy. HippogriffDB differs from
these works in two aspects. First HippogriffDB tries to reduce
the gap between between the GPU kernel and SSD I/O throughput.
Second, HippogriffDB achieves better compression ratio by using
aggressive and adaptive compression strategies.

9. CONCLUSION
In this paper, we proposed HippogriffDB, an efficient, scalable

heterogenous data analytics system. HippogriffDB is the first GPU-
based data analytics that can scale up to support terabyte input.
HippogriffDB reaches high performance by fixing the huge imbal-
ance between GPU kernel and I/O using compression and peer-to-
peer transfer path. HippogriffDB uses a streaming execution model
to process data sets larger than the GPU memory. Our comprehen-
sive experiments have demonstrated the superiority of Hippogriff-
DB in terms of both scalability and performance. test [24].
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