
Non-Invasive Progressive Optimization for In-Memory
Databases

Steffen Zeuch
Humboldt University of Berlin

zeuchste@informatik.hu-
berlin.de

Holger Pirk
MIT CSAIL

holger@csail.mit.edu

Johann-Christoph
Freytag

Humboldt University of Berlin

freytag@informatik.hu-
berlin.de

ABSTRACT
Progressive optimization introduces robustness for database
workloads against wrong estimates, skewed data, correlated
attributes, or outdated statistics. Previous work focuses on
cardinality estimates and rely on expensive counting meth-
ods as well as complex learning algorithms.

In this paper, we utilize performance counters to drive
progressive optimization during query execution. The main
advantages are that performance counters introduce virtu-
ally no costs on modern CPUs and their usage enables a non-
invasive monitoring. We present fine-grained cost models to
detect differences between estimates and actual costs which
enables us to kick-start reoptimization. Based on our cost
models, we implement an optimization approach that esti-
mates the individual selectivities of a multi-selection query
efficiently. Furthermore, we are able to learn properties like
sortedness, skew, or correlation during run-time.

In our evaluation we show, that the overhead of our ap-
proach is negligible, while performance improvements are
convincing. Using progressive optimization, we improve run-
time up to a factor of three compared to average run-times
and up to a factor of 4,5 compared to worst case run-times.
As a result, we avoid costly operator execution orders and;
thus, making query execution highly robust.

1. INTRODUCTION
The migration of databases from disk to faster memories

such as RAM, Flash, or NVRAM fundamentally changes
the cost balance in analytical data management systems:
where disk-based system performance was largely dominated
by disk bandwidth and latency, in-memory analytics sys-
tems have to consider CPU efficiency as a major contributor
to performance. This requires a careful (re-)investigation
of various design decisions underlying “classic” relational
DBMSs with respect to these new considerations. This re-
investigation has been done for many components of the
classic analytical database design such as processing [4, 12],

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 14
Copyright 2016 VLDB Endowment 2150-8097/16/10.

indexing [10, 11], and compression [18]. However, most
of these techniques were developed to address hardware-
specific cost factors such as cache thrashing, misprediction
penalties, and synchronization costs. On the other hand,
many of these techniques use new hardware features such as
SIMD-instructions, transactional memory, or deep memory
hierarchies in order to overcome hardware challenges like the
memory wall.

In this paper, we apply this pattern to the idea of pro-
gressive optimization [14]. With progressive optimization, a
physical query plan is adapted to the characteristics of the
data subset that is currently processed. Following previous
work, our approach is based on monitoring and analysis.
However, unlike previous work, our approach has virtually
no CPU costs by making extensive use of a handy feature
of modern CPUs: the Performance Monitoring Unit. This
unit allows the counting of performance-related events such
as retired instructions, cache-misses, and branch mispredic-
tions. By comparing the obtained numbers with those of
fine-grained cost models at run-time, we might detect dif-
ferences of the estimated from the actual costs, thus pos-
sibly kick-starting a re-optimization process. In fact, our
approach effectively renders high quality decisions at query
compilation time unnecessary because it provides better and
more adaptive information at run-time. In addition to low
CPU-overhead, such non-invasive monitoring extends the
applicability of progressive optimization to cases when in-
strumentation is not an option such as binary UDFs or calls
to external libraries. These benefits, however, hinge on the
availability of appropriately accurate cost models. Conse-
quently, our specific contributions include

• an unified cost model for memory accesses as well as
branch misprediction costs in modern CPUs,

• an estimation component that derives data-specific char-
acteristics such as selectivities and domains from per-
formance event counters using non-linear optimization,

• a run-time execution component which balances the
trade-off between the quality of the estimation and the
required optimization time.

To illustrate the importance of avoiding bad plans when
evaluating analytical queries on memory-resident data, we
compared the cost of the worst and the best physical plan
for Query 6 of the TPC-H benchmark:

1659

10−4 10−3 10−2 10−1 100 101 102

1

2

3

4

Shipdate Selectivity (log scale)

C
o
st

W
o
rs

t
P

la
n

/
C

o
st

B
es

t
P

la
n

Figure 1: Best v. Worst Plan costs for TPC-H Query 6

SELECT sum(l_extendedprice * l_discount) as revenue

FROM lineitem

WHERE l_shipdate <= VALUE and l_quantity < 24

and l_discount between 0.06 - 0.01 and 0.06 + 0.01

We implemented Query 6 in C and use the order of the
four selection predicates and the selectivity of the shipdate
predicate as degrees of freedom. As shown in Figure 1, it
is important to select an appropriate plan, especially when
the selectivity of the shipdate condition is low. Further-
more, real life databases are bulk loaded and, hence, weakly
clustered on the date column. As a consequence, the selec-
tivity varies over the course of the table and thus different
plans are optimal for different phases of the scan. Thus,
quickly recognizing when a good plan has gone bad requires
fine-grained monitoring. In the remainder of this paper, we
describe an approach to perform such monitoring at negli-
gible overhead.

The rest of this paper is structured as follows: We provide
the necessary background on efficient in-memory data pro-
cessing in Section 2. In Section 3, we present the hardware-
conscious cost models we use as a basis for cost prediction.
We describe the process of data characteristics inference in
Section 4 and evaluate our approach in Section 5. Finally,
we present related work in Section 6 before we conclude in
Section 7.

2. BACKGROUND
This section provides the necessary background for mea-

suring and estimating query execution performance. Sec-
tion 2.1 describes how to transform a query expressed by
relational algebra into machine code. Section 2.2 introduces
branch-related and cache-related counters that enable us to
reason about hardware utilization.

2.1 From Relational Algebra to Machine Code
In the following, we describe how a DBMS transforms a

query into executable code using Just-In-Time compilation
like Hyper [16]. For this transformation, we use the following
query on the TPC-H data set. The query calculates the sum
of discounts for all lineitems with a quantity less than 100
and a shipdate before February 2nd 1992.

Select sum(d i s count) from l i n e i t e m
where q u a n t i t i y <=100
and sh ipdate <= ’ 1992−02−02 ’

This query can be transformed into code written in C (as-
suming a column-oriented data layout). We emphasize that

we convert the shipdate column from date to time-stamp
to replace an expensive string comparison with a cheaper
integer comparison.

for (int i = 0 ; i < l i n e i t e m . s i z e () ; i++)
i f (quant i ty [i] <= 100)

i f (sh ipdate [i] <= timeStamp)
sum += discount [i] ;

This C-program iterates over all elements in the lineitem
table. For each tuplei, it first checks if its quantity attribute
is less or equal to 100. If tuplei qualifies and its second at-
tribute is evaluated by the second predicate. If the ship-
date of tuplei is before or equal to 1992-02-02 and thus the
second predicate qualifies, its discount is added to the over-
all sum. In general, each predicate evaluation introduces a
branch with two possible outcomes. From a performance
perspective, there exist three important observations. First,
the quantity attribute as the first predicate is accessed for
each tuple, regardless of its selectivity. Second, the num-
ber of accesses to the second attribute shipdate depends on
the selectivity of the first predicate. Therefore, shipdate is
only evaluated for qualifying tuples of the previous predi-
cate. Third, the access to the third column discount de-
pends on the selectivity of the second predicate and is only
evaluated if all preceding predicates qualify that tuple.

For this transformation, we choose one possible Query Ex-
ecution Plan (QEP) that evaluates the quantity predicate
first. However, we could also evaluate the shipdate predi-
cate first to create another QEP. In this paper, we focus on
multi-selection queries and refer to each possible order as
one predicate evaluation order (PEO).

In a final step, a compiler translates the C-code into ma-
chine instructions. For each predicate evaluation, the com-
piler generates one comparison followed by a conditional
jump instruction. Additionally, one such pair and an in-
crement instruction for the loop counter is generated for the
entire loop. The conditional jump determines the following
execution path. If a tuple qualifies, the branch/jump is not
taken and thus the execution continues with the next in-
struction. In contrast, if a tuple does not qualify, a branch
is taken and therefore the program execution jumps to the
end of the loop code to test the loop condition. In the lat-
ter case, the subsequent instructions to check the second
predicate and update the sum are omitted.

2.2 Performance Counters
In this section, we introduce branch-related (Section 2.2.1)

and cache-related (see Section 2.2.2) performance counters
which allow us to reason about the performance of a QEP.
Modern CPUs provide dynamic data obtained from so-called
performance monitoring units (PMU) to measure the CPU
and system resource utilization. For our approach we di-
vide the relevant counters into constant counters that do
not change their values among all possible PEOs and mu-
table counters. The number of branches taken is constant
among all PEOs because all PEOs of the same QEP lead
to the same query result and thus induce the same number
of qualifying tuples. In contrast, the number of conditional
branches, i. e., branches not taken and cache-related coun-
ters, vary among PEOs. We refer to Zeuch et al. [23] for a
detailed introduction to performance counters for selections
on modern CPUs.

1660

2.2.1 Branch-related Counters
Branches strongly impact the query performance on mod-

ern CPUs. Therefore, CPUs consist of a dedicated branch
prediction unit [7] which tries to predict the outcome of
each branch. A wrongly predicted branch leads to pipeline
flushes, poor instruction cache locality, and limited instruc-
tion level parallelism [2]. Ross et al. [19] investigated this
effect for multi-selection queries and show, that the branch
predictor correctly predicts branches for queries with very
high or very low selectivities. On the other hand, queries
with medium selectivities lead to many incorrect predictions
which accumulate to the worst-case prediction behavior for
a selectivity of 50%. The branch-related performance coun-
ters in modern CPUs allow us to capture this behavior by
counting the number of right and wrong branch predictions.
Furthermore, we may divide mispredictions into branches
that are mispredicted as taken and branches that are mis-
predicted as not taken. Finally, PMUs are able to count the
number of branches taken and not taken as well as their sum
as the number of conditional branches [7]. In Figure 2, we
plot these counters for a single selection query with varying
selectivity. Whereas branch misprediction counters depend
on CPU internal branching algorithms, branch taken/not
taken counters depend solely on the generated code and
thus they are independent of CPU characteristics such as
prefetching or out-of-order execution.

We exploit the number of branches taken (bT) to deter-
mine the number of qualified tuples by a PEO. If all predi-
cates qualify, only one branch is taken at the end of the loop.
In contrast, if one predicate does not qualify, two branches
are taken (one to the loop condition and one back to the
beginning of the loop). Using n as the number of tuples, we
calculate the number of qualifying tuples by 2 ∗ n− bT .

We exploit the number of branches not taken (bNT) to de-
termine characteristics of individual predicates during run-
time. Each tuple induces 0...p branches not taken with p
as the number of predicates. Zero branches not taken are
induced if the first predicate does not qualify. In contrast,
p branches not taken are induced if all predicates qualify.
In between these boundaries, each descend of a tuple in the
PEO increments the branch not taken counter by one for ev-
ery tuple that qualifies. As a general performance rule, the
less tuples qualify, i. e., branches not taken are induced by a
PEO, the better the performance will be. The main reason
is that each predicate evaluation induces additional work in
terms of computation, memory accesses, and branching.

2.2.2 Cache-related Counters
The memory hierarchy of modern CPUs consists of reg-

isters, multiple layers of caches, main memory, and disks.
In our approach, we focus on the utilization of the multi-
level cache hierarchy to improve the performance of modern
in-memory databases [2, 12, 4].

For our approach, we exploit the number of accesses to
the L3 cache because they add up demand requests from
upper cache levels as well as prefetching requests from the
L1 or L2 prefetcher units. In contrast to L3 hits and L3
misses, the number of L3 accesses are independent of CPU
characteristics such as prefetching algorithms or out-of-order
execution. In this paper, we focus on multi-selection queries
that exhibit in general no tuple reuse. Therefore, the num-
ber of L3 accesses are equal to the number of accesses to the
L1 cache and the L2 cache plus prefetch accesses.

0 20 40 60 80 100

0

20

40

60

80

100

Selectivity

E
v
en

t
C

o
u
n
t

in
%

L3 Access Branch taken MP Branch not taken MP

Branch MP Branch taken Branch not taken

Figure 2: Counter Overview.

For a multi-selection query, the demand on the memory
bus depends on the number of predicate evaluations. In
general, a subsequent load and compare must be executed if
the current predicate qualifies the tuple at hand. Thus, the
selectivity as well as the order of the individual predicates
impact the number of load operations. However, selectivi-
ties cannot be changed because they are determined by the
individual predicate and the value distribution of the data
set. Therefore, the PEO remains the most important query
optimization parameter.

Finally, speculative execution and prefetching impact the
utilization of the memory hierarchy in modern CPUs. Spec-
ulative execution predicts the outcome of a branch, i. e., if
a tuple qualifies. If the prediction is correct, speculatively
loaded instructions and data are executed earlier in time and
thus the execution is accelerated. However, a wrong predic-
tion induces unnecessary memory accesses and executes ex-
pendable instructions. Prefetching on the other hand tries to
recognize memory access patterns and prefetches expected
memory accesses [7]. Similar to speculative execution, a
wrong prefetch induces unnecessary memory accesses and a
correct prediction accelerates execution. We refer to Zeuch
et al. [23] for an in-depth performance analysis of the rela-
tional selection operator using performance counters.

3. COST MODELS
This section presents the underlying cost models of our

approach. We introduce a model for cache accesses in Sec-
tion 3.1 and a model for branch mispredictions in Section 3.2.
In Figure 2, we plot the performance counters which are
modeled in this section.

3.1 Cache Cost Model
The extension of the generic cost model by Pirk et al. [17]

allows us to model the cache accesses of different PEOs. We
estimate induced cache accesses of a multi-selection query
by exploiting two patterns. The first predicate introduces
a single sequential access pattern which induces one ran-
dom access for accessing the first cache line and one sequen-
tial access for each subsequent cache line. Each subsequent
predicate introduces a sequential scan with conditional read
pattern which induces cache accesses depending on the se-
lectivity of the previous predicate. We refer to Pirk et al.
[17] for a detailed description of this model. Furthermore,
the generic cost model introduced by Manegold et al. [13]
allows us to model the cache accesses for other relational

1661

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

Selectivity

E
v
en

t
C

o
u
n
t

in
%

fr
o
m

ov
er

a
ll

b
ra

n
ch

es

2 States 4 States 5 States (+1NT)

5 States (+1T) 6 States 7 States (+1T)

7 States (+1NT) 8 States Ivy Sample

(a) Taken Misprediction.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

Selectivity

E
v
en

t
C

o
u
n
t

in
%

fr
o
m

ov
er

a
ll

b
ra

n
ch

es

2 States 4 States 5 States (+1NT)

5 States (+1T) 6 States 7 States (+1T)

7 States (+1NT) 8 States Ivy Sample

(b) Not Taken Misprediction.

0 10 20 30 40 50 60 70 80 90 100

0

20

40

Selectivity

E
v
en

t
C

o
u
n
t

in
%

fr
o
m

ov
er

a
ll

b
ra

n
ch

es

2 States 4 States 5 States (+1NT)

5 States (+1T) 6 States 7 States (+1T)

7 States (+1NT) 8 States Ivy Sample

(c) All Misprediction.

Figure 3: Markov Model Bits.

operators such as joins or sorts by combining atomic access
patterns.

Figure 2 shows L3 accesses for an increasing selectivity
described by Pirk et al. [17]. The main reason for this be-
havior is the high number of random misses for small selec-
tivities. These random misses occur because cache lines are
omitted. In contrast, with increasing selectivity, the access
probability per cache line increases and thus less cache lines
are omitted. This behavior is reflected by the reduced num-
ber of cache line accesses that are only present in the range
of 0-20% selectivity. For a selectivity larger than 20%, each
cache line is accessed and thus the number of cache line ac-
cesses remains constant. This characteristic also applies for
a multi-selection query.

Based on an extended evaluation of the cost model on
modern CPUs, we modify the cost model by Pirk et al. [17]
to double count the number of random misses which leads
to more precise estimations. This modification models the
effect, that a random cache miss induces one cache access
for the cache line that was predicted but not used and one
cache line access for the actually used cache line.

Finally, we provide a cost formular to model the cache
accesses for equi-joins. There are two main factors that de-
termine the relative costs of a sequence of join operators:
the number of accesses and their locality. The former is
determined by the selectivity of the operators preceding a
join while the latter is a property of the underlying data
distribution which is determined when loading the data. To
effectively optimize the order of joins for our cost-based ap-
proach we have to take these factors into account. For that
purpose, the generic cost model [13] contains equations to
predict the number and type (random or sequential) of of
cache misses. However, we found the equation for the num-
ber of cache misses in the original cost model was highly in-
accurate. We, therefore, developed an alternative equation
that yields significantly better predictions and is grounded
in the external memory model [1]. We used Equation 1 to
model random cache misses, the original model for sequen-
tial cache misses, and a multiplicative factor to distinguish
the two.

Mr
i =

{
Ci if Ci < #i

r ∗
(

1 − #i·Bi
R.n·R.w

)
if Ci ≥ #i

(1)

The number of accessed cache lines (Ci) is calculated from
the size of the relation (R.n), the width of a tuple in bytes
(R.w), the number of accesses (r) and the cache parameters

line size (Bi) and capacity in lines (#i), as in the original
model, using Equation 2.

Ci = R.n ·
(

1 −
(

1 − 1

R.n

)r)
(2)

3.2 Branch Cost Model
Zeuch et al. [23] point out, that branch mispredictions

follow the number of branches not taken for a selectivity
below 50% and the number of branches taken for a selec-
tivity above 50%. Thus, for a selection with a selectivity
below 50%, the branch predictor predicts that each tuple
doesn’t qualify (branch is taken) and therefore mispredicts
each qualifying tuple (branch not taken). Hence, the number
of branch mispredictions is equal to the number of branches
not taken. On the other hand, for a selection with a selec-
tivity above 50%, the branch predictor predicts that each
tuple qualifies (branch is not taken) and thus mispredicts
each not qualifying tuple (branch taken). Based on this ob-
servation, Zeuch et al. [23] calculate the number of branch
mispredictions (BRMP) using the number of branches not
taken (BNT) by:

BRMP (p) =

{
BNT (p), if p ≤ 0.5

BNT (1 − p), if p > 0.5
(3)

However, this estimation becomes inaccurate in the se-
lectivity range around 50%. Therefore, in this paper, we
propose a markov chain to model the branching behavior of
modern CPUs. This markov chain uses a stationary distri-
bution given the selectivity p as the transition probability.
In Figure 5, we show a six-state markov chain. In the first
three states, the branch predictor predicts the branch to be
not taken. In contrast, in the last three states, the branch
predictor predicts the branch to be taken.

The probability of a transition from one state to another
is determined by the selectivity p. With a probability of p, a
branch is not taken and the current state will transits to its
left neighbor state. In contrast, with a probability of 1 − p,
a branch is taken and the current state will transits to its
right neighbor state. A markov chain allows us to predict
the number of mispredictions as well as distinguish them
into branches that are mispredicted as taken and branches
that are mispredicted as not taken.

In Figure 3, we compare chains using a different num-
ber of states ranging from two to eight and the correctness
of their prediction. Additionally, we introduce an uneven

1662

'ivy.data' using 1:2:4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sel 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
S
e
l
2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Measured/Predicted Not Taken Branch Mispredictions.

'ivy.data' using 1:2:3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sel 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

S
e
l
2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Measured/Predicted Taken Branch Mispredictions.

'ivy.data' using 1:2:5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Sel 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

S
e
l
2

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

(c) Measured/Predicted Branch Mispredictions.

Figure 4: Two Predicate Branch Mispredictions.

state count which favors either branches taken (+1T) or
branches not taken (+1NT) by adding an additional state.
We compare these predictions against real occurrences on a
Ivy-Bridge CPU. Zeuch et al. [23] showed, that branching al-
gorithms which impact the execution of a selection have not
been changed over the last three micro-architectures Sandy-
Bridge, Ivy-Bridge, and Haswell. Thus, we show only real
occurrences on the Ivy-Bridge microarchitecture.

As shown in Figure 3, the six state markov chain esti-
mates the number of taken and not taken branches as well
as their corresponding sum almost exactly. Therefore, we
use a six state markov chain in the remainder of this paper.
Considering the number of all branch mispredictions (see
Figure 3c), other state counts produce good predictions too.
Although these state counts underestimates or overestimates
branches taken/not taken, their sum is predicted precisely.
Thus, they underestimate one event in the same portion as
they overestimate the other. Note, the peak occurrence of
mispredicted taken/not taken branches are shifted by 10%
percent as opposed to the overall number of mispredictions.
Finally, on AMD CPUs, we observe the most precise predic-
tion using four states.

To calculate the branch taken/not taken mispredictions,
we solve the following system of equations. Intuitively, the
probability that a current state is reached is composed of the
probability of the previous and subsequent state multiplied
by the probability that these states change to the current
state. We label the states as strong not taken (SNT), not
taken (NT), weak not taken (WNT), weak taken (WT), taken
(T), and strong taken (ST).

SNT = SNT ∗ p + NT ∗ p (4a)

NT = SNT ∗ (1 − p) + WNT ∗ p (4b)

WNT = NT ∗ (1 − p) + WT ∗ p (4c)

WT = WNT ∗ (1 − p) + T ∗ p (4d)

T = WT ∗ (1 − p) + ST ∗ p (4e)

ST = ST ∗ (1 − p) + T ∗ (1 − p) ∗ p (4f)

SNT + NT + WNT + WT + T + ST = 1 (4g)

By solving this system of linear equations, we can derive the
formulas to calculate the probability that a selection with a
selectivity p is in a certain state. Using the probabilities of
individual states, we sum up the probability that a branch
is taken by BTak = WT + T + ST and the probability that

Figure 5: Markov Chain.

a branch is not taken by BNotTak = SNT + NT + WNT .
Based on these probabilities, we determine the following es-
timation formulas for mispredictions (MP) and right pre-
dictions (RP). We calculate mispredicted branches taken
BTakMP and right predicted branches taken BTakMP , mis-
predicted branches not taken BNotTakMP and right pre-
dicted branches not taken BNotTakRP , and the sum of all
mispredictions BMP and right predictions BRP . Note that
we determine the actual number of mispredictions by multi-
plying these probabilities with the number of input tuples.

BTakMP = (1 − p) ∗BNotTak (5a)

BTakRP = (1 − p) ∗BTak (5b)

BNotTakMP = p ∗BTak (5c)

BNotTakRP = p ∗BNotTak (5d)

BMP = BTakMP + BNotTakRP (5e)

BRP = BTakRP + BNotTakRP (5f)

In Figure 6, we evaluate our prediction formulas against the
latest Intel microarchitectures Nehalem, Sandy-Bridge, Ivy-
Bridge, and Broadwell for a selection on 10M tuples. As
shown, only Nehalem as the oldest microarchitecture par-
tially differs from our predictions. In contrast, our predic-
tion fits real occurrences on Sandy-Bridge, Ivy-Bridge, and
Broadwell quite well. In particular, the overall branch mis-
predictions are estimated very precisely. However, in the se-
lectivity range around 40% and 60%, there are minor devia-
tions but the overall trend is predicted correctly. Compared
to Zeuch et al. [23], we present a more accurate estimation
that is able to distinguish between mispredicted taken and
not taken branches.

For a multi-selection query, we extend our branch estima-
tions to model each predicate p1...pn. Therefore, we replace
the number of input tuples by the number of output tuples
of the previous predicate. In Figure 4, we present branch
estimations for a selection using two predicates as a 2D heat
map. Each axis plots the selectivity of one predicate. At
the interception point of two selectivities, we plot the rela-
tionship between the measured performance counter and our
estimation. As shown, mispredicted branches not taken are
underestimated slightly in the selectivity range of 60-80% for
both predicates (see Figure 4a). In contrast, mispredicted
branches taken are slightly overestimated in the selectivity
range of 20-40% for the first predicate (see Figure 4b). Fi-
nally, overall branch mispredictions have a minor underesti-
mation in the range of 60-80% for both predicates but the
overall estimation differs in less than 10% (see Figure 4c).
Despite some outliers, we predict branch events for multi-
selection queries very precisely with only minor differences
in some selectivity ranges.

1663

0 10 20 30 40 50 60 70 80 90 100

0

2

4

·106

Selectivity

E
v
en

t
C

o
u
n
t

Ivy MP Ivy Tak MP Ivy NotTak MP

Nehalem MP Nehalem Tak MP Nehalem NotTak MP

Broadwell MP Broadwell Tak MP Broadwell NotTak MP

Est. MP Est. Tak MP Est. NotTak MP

Sandy MP Sandy Tak MP Sandy NotTak MP

Zeuch et al.

Figure 6: Branch Counter Overview.

4. OPTIMIZATION APPROACH
In this section, we present our progressive optimization

approach which exploits the cost models presented in the
previous section. Progressive optimization is valuable be-
cause determining the best predicate evaluation order (PEO)
at compile time is rarely possible. The main reasons are
uncertain or imprecise information at compile-time such as
wrong cardinality estimates, skewed data, correlated attri-
butes, outdated statistics, or user-defined functions which
may lead to sub-optimal decisions [8]. Our optimization
algorithm alleviates these uncertainties by deriving the se-
lectivity of individual predicates during runtime.

We present our progressive optimization approach in three
parts. First, we introduce the search space restriction in
Section 4.1 that allows us to prune some areas of the search
space. Second, we introduce the non-linear optimization al-
gorithm that explores the pruned search space and our cost
models to estimate individual predicate selectivities (Sec-
tion 4.2). Third, we introduce an algorithm to create differ-
ent start points inside the pruned search space for the op-
timization algorithm (Section 4.3). Finally, we summarize

Col1 Col1+2 Col1+2+3 Col1+2+3+4

0

100

200

300

C
u
m

u
la

te
d

A
cc

es
s

Search Query Upper Tuple Bound

Lower Tuple Bound Upper BNT Bound

Lower BNT Bound

Figure 7: Search Space Restriction.

the entire optimization process in Section 4.4 before exam-
ining the impact of skew and correlation on our approach in
Section 4.5.

4.1 Search Space Restriction
The initial search space for given a query with p predicates

encompasses a p−dimensional space with a possible selectiv-
ity between zero and 100% for each predicate. By exploiting
the number of input and output tuples of a query, we might
restrict this search space. The searched query has to be
between the upper and lower tuple bound. Intuitively, the
upper tuple bound represents the highest number of accesses
to col1...coln that is possible considering the given number
of input tuples tupsin and output tuples tupsout. In con-
trast, the lower tuple bound represents the lowest number
of accesses to these columns. We define the number of ac-
cesses to col1...coln by predicate p1...pn for the upper and
lower tuple bound as:

Upper TupleBound(p) =

{
tupsout, if p = n

tupsin, else
(6)

Lower TupleBound(p) = tupsout (7)

In Figure 7, we restrict the search space of an example
query. The search query consists of four predicates that se-
lect 10 output tuples from 100 input tuples. The accesses
to [col1, ..., col4] are [80, 70, 50, 10]. The sum of these ac-
cesses (210) is equal to the number of branches not taken.
Using the upper and lower tuple bound, we restrict the pos-
sible access intervals for [col1, ..., col4] to the lower bound
[10, 10, 10, 10] and the upper bound [100, 100, 100, 10]. Fig-
ure 7 shows the cumulative accesses for our example.

To further restrict the search space, we use the number
of branches not taken. The number of branches not taken
are independent of runtime or CPU characteristics and thus
exact. Furthermore, branches not taken (BNT) exhibit
two important characteristics. First, branches not taken
by predicate pi represent the number of accesses to column
coli. Second, we can sample the number of branches not
taken for an entire PEO and they correspond to the sum of
the accesses to col1...coln. Therefore, the sampled number
of branches not taken represents a definite integral among
accesses to col1...coln.

Furthermore, we exploit special characteristics of accesses
to the first and last column. All tuples in the first column
col0 are always accessed. In contrast, tuples in the last col-
umn coln are accessed for each output tuple. Thus, we can
define access(col0) = tupsin and access(coln) = tupsout.
Note, in the following, we argue among accesses to indi-
vidual columns which can be converted into the selectivity
product of p1...pi by

∏i
p=1 = Acc(coli)/tupsin. Using the

selectivity product, we determine individual predicate selec-
tivity by pi =

∏i
p=1 /

∏i−1
p=1.

We exploit the aforementioned characteristics to further
restrict the search space of a search query. At first, cumu-
lative accesses to col1...coln match the sampled number of
branches not taken. Thus, a query that introduces either
more or less branches not taken cannot be the search query.
Based on the sampled branches not taken and the special
characteristics that accesses to coli can only be less or equal
to accesses to coli−1, we can restrict the search space by
a new lower and upper bound on the number accesses per
column.

1664

A upper BNT bound is defined by assigning accesses to
p1..pn such that pi can access the maximum number of tu-
ples. The maximum number of accesses by pi requires that
all previous predicates p0...pi−1 access as many tuples as pi.
Otherwise, the constraint that pi is only allowed to access
less or equal tuples as pi−1 would be violated. The remain-
ing predicates pi+1...pn access the minimum number of tu-
ples (tupsout). If the maximum number of accesses by pi
exceeds the number of input tuples, we restrict pi to tupsin
because no predicate can access more tuples than exist. In
Figure 7, each query that has one sample point above the up-
per BNT bound cannot reach the desired number of output
tuples. This would require a predicate to access less tuples
than the number of output tuples. Thus, we define the up-
per BNT bound using BNTsamp as the sampled branches
not taken:

Upper BNT

Bound(p) =

tupsout, if p = n

tupsin, if Upper BNT Bound(p) > tupsin
BNTsamp−(tupsout∗(n−p−1))

p+1
, else

(8)

Similarly, we define a lower BNT bound by distributing
the number of branches not taken equally among p1...pn−1.
Intuitively, each query that has one sample point below this
line in Figure 7 cannot reach the desired number of output
tuples because no subsequent branch is allowed to induce
more BNT than the previous one. Thus, we define the
lower BNT bound as:

Lower BNT

Bound(p) =

tupsout, if p = n

tupsout, if Lower BNT Bound(p) < tupsout
BNTsamp−tupsout−((p−1)∗tupsin)

n−1
, else

(9)

Using the lower and upper BNT bound, we can restrict
the search space for our example query ([80, 70, 50, 10]) in
Figure 7 further. The accesses to [col1, ..., col4] have to be
in the interval between [67, 50, 10, 10] and [100, 95, 66, 10].
As shown, using the upper and lower BNT bound, we are
able to restrict the search space significantly.

4.2 Learning Algorithm
The main challenge for an algorithm that approximates

selectivities of individual predicates is the ability to distin-
guish different queries. We showed that this distinction is
possible for a query using one predicate (see Figure 2) and
two predicates (see Figure 4). However, for a multi-selection
query, we measure performance counters for the entire PEO
execution and thus have to infer the individual predicate
selectivity.

In our progressive optimization approach, we exploit four
performance counters: branches not taken, branch taken
and not taken mispredictions, and L3 accesses. These coun-
ters can be gathered simultaneously on modern CPUs. In
Figure 8, we plot the predictions of these counters for a
selection with two predicates on 10M tuples as a 2D heat
map. The predictions are calculated by our cost models
presented in Section 3. The selectivity of the first predicate
is shown on the x-axis and the selectivity of the second on
the y-axis. In general, we can distinguish two queries if they
differ in at least one of these counter values. In Figure 8,
a counter value is represented by the color of the square at
the intercept point of the selectivities. For example, a query

Figure 9: Start Point Selection.

using two predicates with 40% and 20% selectivity (orange
square) differs from a query using two predicates with 20%
and 40% selectivity (blue square) in the number of mispre-
dicted branches not taken (see Figure 8b).

To learn the selectivities of individual predicates, we ap-
ply a non-linear optimization algorithm. We use the open-
source library NLopt1. This library supports different al-
gorithms including gradient-based and derivation free algo-
rithms. Based on an extended evaluation of all available
algorithms regarding their correctness and speed, we choose
the Nelder-Mead simplex algorithm [15] as a local optimiza-
tion algorithm because it performs best for our selectivity
estimations.

Based on this decision, we define the following minimiza-
tion function for the non-linear optimization that uses the
difference between the sampled value and our estimation.

Costs = (BNTsamp −BNTest) + (L3samp − L3est)

+ (BRNotMPsamp −BRNotMPest)

+ (BRTakMPsamp −BRTakMPest) (10)

To restrict the optimization effort, we utilize the lower
BNT bound (see Equation 9) and upper BNT bound (see
Equation 8) as boundaries for the optimization. Addition-
ally, we specify an absolute tolerance from the previous itera-
tion and a maximum iteration count as termination criteria.

The algorithm proceeds as follows. In the first iteration,
the algorithm calculates the minimization function from a
given start point. Based on the calculated function value,
the algorithm internally changes the individual selectivities
to values between the upper and lower bound and recalcu-
late the minimization function for these new values. The
optimization terminates if the maximum iteration count is
reached or the current optima differs less than specified by
the absolute tolerance from the last iteration. In our tests, a
maximum iteration count of 10k and an absolute tolerance
of one result in the best estimations. As a result, the al-
gorithms returns a selectivity estimation for each individual
predicate.

4.3 Selection a Starting Point
In our optimization approach, our system of linear equa-

tion is under-defined because we cannot utilize as many per-
formance counters as individual predicates exists. Further-
more, it is possible that two PEOs of the same query in-
duce the same performance counter value in each exploited

1http://ab-initio.mit.edu/wiki/index.php/NLopt

1665

'sum.data' using 1:2:3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Predicate 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
P
re

d
ic

a
te

 2

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

(a) Predication: Branches Not Taken.

'sum.data' using 1:2:6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Predicate 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
re

d
ic

a
te

 2

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

(b) Predication: Misp. Branches Not Taken.

'sum.data' using 1:2:5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Predicate 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
re

d
ic

a
te

 2

 0
 500000
 1e+06
 1.5e+06
 2e+06
 2.5e+06
 3e+06
 3.5e+06
 4e+06
 4.5e+06
 5e+06

(c) Predication: Misp. Branches Taken.

'sum.data' using 1:2:4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Predicate 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
re

d
ic

a
te

 2

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

(d) Predication: L3 Accesses.

Figure 8: Two Predicate Prediction.

counter. This scenario mostly occurs if on query induce an
equal distribution of accesses and the other an extreme skew.

As a consequence, when performing the non-linear op-
timization only once, we could potentially terminate on a
local optima. To encounter this problem, we specify a set of
start points for our non-linear optimization algorithm and
perform the optimization multiple times.

In Figure 9, we outline our approach to create a set of
start points for a two-dimensional search space. At first,
we create start points at the vertices of each dimension.
In this example, we would create start points [0,0], [0,100],
[100,100], and [100,0]. We then set the initial point using
our null hypothesis. As our null hypothesis, we assume that
the overall query selectivity distributes evenly among the
predicates. Using this as a start point, we split the search
space in 2n sub-spaces. In Figure 9, the query induces a
selectivity of 25% and thus we create the initial point C1

which splits the search space into four equally sized squares.
For each additional start point, we search for the largest

sub-space and return its centroid as a start point for the
non-linear optimization algorithm. In Figure 9, the start
points in the first splitting phase are C2, C3, C4, and C5.
If an additional start point is required, C6 would be cre-
ated. Based on this algorithm, we create start points that
are evenly distributed among the search space to avoid the
termination on a local optima during the non-linear opti-
mization. Additionally, we explore the largest unseen part
of the search space for each new start point.

4.4 Progressive Optimization Algorithm
In Figure 10, we present our progressive optimization al-

gorithm which drives the vectorized execution. First, we
measure one vector execution and sample the required per-
formance counters. As next steps, we repeatedly generate a
start point (see Section 4.3), run the non-linear optimization
algorithm (see Section 4.2), and compare the current optima
against the previous optima. This sequence terminates if ei-
ther no better local optima was found in the previous n iter-
ations or if an overall iteration maximum m is reached. The
values of n and m represent a trade-off between the quality
of the estimation and the required optimization time. In
our experiments, n < 5 and m = 2p with p as the number of
predicates lead to the best trade-off between optimization
time and estimation precision.

After the sequence terminates, we reorder the predicates
according to the best estimation so far. A JIT-compiled
system like Hyper [16] would compile a new binary for the
new order. In contrast, a vectorized system like Vectorwise
[21] could have pre-compile primitives that are chained in
the new order. Using the new order, we execute another
vector and sample the required performance counters again.
If the performance counter values improve, the new order is
used for the consecutive vectors. If they deteriorate, the old

order is reestablished. Finally, vector execution continues
until the next optimization cycle is scheduled.

Figure 10: Optimization Sequence.

4.5 Skew and Correlation
Skewed data distributions and correlated attributes are

two of the traditional challenges of database query opti-
mization. Both are cases in which the quality of an opti-
mized plan may be low because the cost estimator cannot
accurately infer factors such as selectivity coefficients, the
probability of collisions when building hashes, or data ac-
cess locality. However, many of the tuning decisions that are
informed by these decisions such as buffer sizes, hash func-
tions, or selection strategies can be adapted during query ex-
ecution. Processing in fine-grained partitions can, therefore,
help to remedy poor decisions based on unpredictable data
characteristics such as skew and correlation. In fact, our
approach effectively renders high quality decisions at query
compilation time unnecessary because it provides better and
more adaptive information at runtime.

In our approach, skew is implicitly detected by periodi-
cally inspecting the performance of the execution. Thus, if
the value distribution of the data set changes for a subset,
we could detect this during the next optimization run. In
contrast to skew which affects a single attribute, correlation
affects a combination of attributes and violates the underly-
ing assumption of modern query optimizers, that the value
distribution of a seen data subset applies to the entire data
set. It introduces low quality estimates because not seen
data subsets may exhibit another distribution. As a conse-
quence, selectivities might change significantly. We handle
correlation in our approach by periodically execute different
PEOs. With an increasing number of optimization runs per
execution, more PEOs are executed and thus the probability
that a better PEO is missed cause of correlations is reduced.
Furthermore, by determining the amount of data seen by re-

1666

cent PEOs, we are able to introduce special PEO changes
to explore unseen data subsets and thus detect correlations.

5. EVALUATION
In this section, we evaluate our progressive optimization

approach for different selectivity and value distributions.
First, we present our experimental setup in Section 5.1.
Then, we start our evaluation by comparing the execution
of Q6 with and without our progressive optimization in Sec-
tion 5.2. After that, we evaluate different selectivity distri-
butions in Section 5.3 and different value distributions in
Section 5.4. In Section 5.5 and Section 5.6 we showcase how
sortedness can be exploited to reorder QEPs involving join
operators. Finally, we investigate the overhead of progres-
sive optimization in Section 5.7.

5.1 Experimental Setup
For our evaluation, we implement the original TPC-H

query six (Q6) and several modifications in a C++ pro-
totype. We utilize the common data generator to create a
data set using scaling factor 100. This translates into ap-
proximately 4,7 GB of data per column of the lineitem table
and approximately 600M tuples.

We evaluate our prototype on a Intel Xeon E5-2630 v2
processor. It contains six physical cores at 2.6 GHz fre-
quency and provides 12 logical cores using hyper threading.
Additionally, each core utilizes a separate 32KB L1 cache
for data and instructions and a unified 256KB L2. All cores
share a 15MB L3 cache.

5.2 TPC-H Common Case
In Figure 11, we execute all possible evaluation orders for

the five predicates in Q6 (120 orders). This includes the
slowest PEO with predicates ordered in descending selectiv-
ity order and the fastest PEO with predicates ordered in
ascending selectivity order. The black line represents the
base line for our evaluation which executes Q6 without pro-
gressive optimization. Therefore, we choose one PEO and
stick to it for all vectors. The green line represent the run-
time with progressive optimization. Overall, this query exe-
cutes 600 vectors with 1M tuples per vector and we start our
optimization approach after each 10th vector. We sort the
results on total runtime of the common execution pattern
without progressive optimization.

As shown in Figure 11, our approach improves run-time
for this query regardless of the first initial PEO choice.

0 20 40 60 80 100 120

3,000

4,000

5,000

6,000

Permutations

R
u

n
ti

m
e

in
m

se
c

Base Line Time Optimized Time.

Figure 11: TPC-H Common Case.

10−4 10−3 10−2 10−1 100 101 102

1,000

2,000

3,000

4,000

5,000

Shipdate Selectivity

R
u
n
ti

m
e

in
m

se
c

Min Base Line Max Base Line Avg Base Line

Avg ReopInt 10 Avg ReopInt 75 Avg ReopInt 200

Figure 12: Q6 with varying Shipdate Selectivity.

However, the actual improvement fluctuates to some degree
based on the start PEO and thus the time necessary to con-
verge to the best PEO. Our approach improves execution
time because we converge to the fastest PEO and react to
changing selectivities and data properties during execution.

5.3 Selectivity Distribution
This section explores the impact of selectivity on our ap-

proach. We execute Q6 using different selectivities on ship-
date and show the results in Figure 12. For each selectivity,
we plot the minimum, maximum, and average runtime of the
common execution pattern without progressive optimization
(base line). Additionally, we plot the average runtime using
progressive optimization and a reoptimization interval of 10,
75, or 200 vectors. With ReopInt 10/75/200, we apply our
optimization sequence described in Section 4.4, each 10th,
75th, or 200th vector, respectively. Thus, we might execute
different vectors using different PEOs.

For a selectivity below 0.1%, the average execution time
using progressive optimization differs up to a factor of two
from the minimal base line execution time. In this selectiv-
ity range, the position of the shipdate predicate is vital for
the resulting query performance. Because the impact is so
huge, the necessary optimization time transfer directly to
a sub-optimal runtime. The most affected PEOs evaluate
the shipdate predicate in the middle of the PEO. In this
case, our optimization algorithm requires multiple steps to
converge to the optimal PEO. In contrast, if the shipdate
predicate is evaluated early or late in the PEO, our pro-
gressive optimization algorithm converges very fast to the
optimal PEO.

In the selectivity range between 0.1% and 10%, the av-
erage runtime using progressive optimization mostly reach
the minimal base line runtime. Thus, our optimization algo-
rithm performs very efficiently in this selectivity range. For
selectivities over 10%, our optimization algorithm slightly
differs from the minimal base line runtime with the largest
difference for very high selectivities. In general, large se-
lectivities are hard to detect by our algorithm because the
high number of branches not taken leads to a high number
of possible selectivity distributions.

Overall, progressive optimization improves runtime up to
a factor of three compared to average runtime and up to
a factor of 4,5 compared to worst case runtime. Thus, we
efficiently alleviate bad initial PEOs and make the overall
query execute more robust.

1667

0 20 40 60 80 100 120
1,000

2,000

3,000

4,000

5,000

Permutations

R
u
n
ti

m
e

in
m

se
c

Base Time ReopInt 10

SReopInt 75 ReopInt 200

(a) TPCH Sorted Data set.

0 20 40 60 80 100 120

1,000

2,000

3,000

4,000

5,000

Permutations

R
u
n
ti

m
e

in
m

se
c

Base Line Time ReopInt 10

ReopInt 75 ReopInt 200

(b) TPCH Clustered Data set.

0 20 40 60 80 100 120
4,500

5,000

5,500

6,000

6,500

Permutations

R
u
n
ti

m
e

in
m

se
c

Base Line Time ReopInt 10

ReopInt 75 ReopInt 200

(c) TPCH Random Data set.

Figure 13: Q6 on Different Value Distributions.

5.4 Sortedness
In this experiment, we explore the impact of sortedness

on progressive optimization. We examine the runtime of
Q6 on differently sorted data sets and present the results in
Figure 13.

In Figure 13a, the data set is sorted on the shipdate col-
umn in ascending order. In general, shorter reoptimization
intervals result in better runtimes for sorted data. The main
reason for that is the point in time, at which the optimiza-
tion algorithm detects that a better PEO exists and change
to it. For Q6 with a lower and upper bound on the shipdate
column, there are three different optimal PEOs during exe-
cution. In the first data partition, it is beneficial to evaluate
the lower shipdate bound first because it has an effective
selectivity of 0%. In the middle partition of the data set
where shipdates fall in between the lower and upper ship-
date bound, both shipdate predicates should be evaluated
as late as possible in the PEO. Finally, in the last parti-
tion, the upper shipdate bound should be evaluated first to
eliminate unnecessary overhead.

Based on these partitions, the optimal PEO changes dur-
ing query execution. The larger the reoptimization interval,
the later a transition between partitions will be detected. In
the worst case, a transition is bypassed and an entire par-
tition is executed using a sub-optimal PEO. This situation
occurs for larger optimization intervals of 75 and 200 vec-
tors and lead to increased runtimes. Finally, for faster initial
PEOs (Permutation 80-120), this translates to slower run-
times for progressive optimization compared to the common
execution pattern. However, using progressive optimization
and a reoptimization interval of ten, we still introduce ro-
bust query execution with runtimes faster or at least as far
as the common execution pattern.

In Figure 13c, the data set is sorted randomly. As a re-
sult, each predicate has an arbitrarily selectivity on each
vector. Therefore, the underlying assumption of progressive
optimization that we can predict future runtime based on
sampling current vector execution, is no longer valid. The
reoptimization interval of 10 leads to the best runtimes be-
cause it reacts most rapidly to changing value distributions.
However, compared to the sorted data set, the runtimes
are even increased for faster initial PEOs (Permutations 90-
120). With larger optimization intervals, the improvements
of progressive optimization decrease further. Using a reopti-
mization interval of 200, the runtime is almost always above
base line execution.

In Figure 13b, we use knuth shuffling to redistribute the
shipdate column. To introduced a clustered data set, we
shuffle lineitems based on the shipdate column within the
time frame of a month. This represents a middle ground be-
tween a sorted and random data set. Compared to a sorted
data set, runtimes increase slightly for small reoptimization
intervals and moderate for large reoptimization intervals.
Compared to a random data set, the overall runtime is still
improved.

Overall, the improvements of progressive optimization de-
crease for randomly distributed data sets. In particular, a
decreased number of initial PEOs are improved. In gen-
eral, a short reoptimization interval leads to the best results.
However, in the next section, we present a method to detect
the sortedness of a data set which could be exploited to de-
cide if our progressive optimization should be applied and
which optimization interval should be used.

5.5 Sortedness and Expensive Predicates
In the previous section we showed how important sorted-

ness is if we try to choose the optimal PEO. In this experi-
ment, we utilize performance counters to detect the sorted-
ness of a data set. In Figure 14, we plot runtime and cache
misses for a query using an expensive selection and a foreign
key join. On the x-axis, we show different degrees of sorted-
ness using knuth shuffle ranging from a sorted data set (1T)
to a random data set (Mem). In between, the shuffle dis-
tance hit the size of a cache line (CL), L1, L2, or L3 cache.
On these data sets, we run a query that either executes a
selection or a foreign key join first and the other operator
afterwards.

As shown in Figure 14a, there is a break even point for
runtime. This point is reached if the shuffle distance ex-
ceeds twice the L1 cache size. For a sortedness below this
point, it is cheaper to perform the join before applying the
selection. The join is so cheap because such a sortedness
introduces a highly local access pattern which induces only
few cache misses. In contrast, if the sortedness spreads over
this point, the join becomes more expensive and thus the
selection should be applied first.

Note that, this kind of sortedness analysis can only be
derived from performance counter. In particular, counting
the number of qualifying tuples per vector is not sufficient.
Therefore, measuring the number of cache misses (see Fig-
ure 14b) allows us to infer the sortedness. In this scenario,
the trend of the runtime and the number of cache misses

1668

correlate. Thus, we could derive sortedness and reorder the
operations using progressive optimization.

5.6 Sortedness for Forgein Key Join
In this experiment, we use our optimization approach to

optimize the join order in a QEP. In Figure 15, we join
the lineitems table of the TPC-H benchmark with the order
and part table in different orders. On the x-axis, we show
the selectivity of both joins. Commonly, a query optimizer
would join lineitems first with part because it is about eight
times smaller than orders. However, as shown in Figure 15a,
for all selectivities, joining orders first is always faster. The
main reason for this is, that lineitems and orders are co-
clustered. In contrast, the access pattern to the part table is
random. This co-clusteredness leads to an improved accesses
pattern with less cache misses as shown in Figure 15b.

In our approach, we exploit Equation 1 from Section 3.1
to determine if a join is executed on a co-clustered table
pair. Using Equation 1, we can estimate the expected num-
ber of cache misses for a random access pattern. Then, we
compare these values against the sampled cache accesses. If
they match, we might reorder the join order; thus, eventu-
ally switching to a join order where a co-clustered join is
executed first. In contrast, when sampling much less cache
misses than expected, we gain knowledge that the we prob-
ably execute a co-clustered join first and do not have to
reorder. It is important to note, that this kind of join order
optimization can be exploited in our approach in addition to
the branch not taken/cache miss sampling approach which
we use for predicate only QEPs.

5.7 Overhead
In this experiment, we evaluate the overhead of our pro-

gressive optimization using performance counters against a
counter-based approach, called enumerator-based approach
in the following. An enumerator-based approach would in-
sert explicit counter variables into the source code after each
predicate evaluation to obtain the individual selectivities.
In contrast, we use non-invasive performance counters to
approximate these selectivities.

The overhead of progressive optimization is comprised of
two components. First, we have to compare the exploita-
tion of performance counters against the usage of explicit
counter variables. In Figure 16, we measure the overhead
for both variants for different predicate counts. As shown,
for larger predicate counts, the enumerator-based approach
almost doubles the runtime of the overall query. In contrast,

1T CL 100T1KT L1 L2 L3 Mem

102.8

103

103.2

Sortiness

R
u
n
ti
m
e
in

m
se
c

Run Time

Selection First RunTime
Join First RunTime

(a) Runtime.

1T CL 100T1KT L1 L2 L3 Mem

106

107

108

Sortiness

N
u
m
b
er

of
L
3
C
ac
h
e
M
is
se
s

Cache Misses

Selection First L3 Cache Accesses
Join First L3 Cache Accesses

(b) Cache Misses.

Figure 14: Exploitation of Sortedness.

20 40 60 80 100

102.9

102.95

103

Selectivity

R
u
n
ti
m
e
in

m
se
c

Run Time.

Order First Runtime.
Part First Runtime.

(a) Runtime.

20 40 60 80 100
107.8

107.85

107.9

Selectivity

N
u
m
b
er

of
L
3
C
ac
h
e
M
is
se
s

Cache Misses

Order First L3 Misses.
Part First L3 Misses.

(b) Cache Misses.

Figure 15: Foreign Key Join with different Orders.

performance counter do not impact the runtime. This obser-
vation follows Intel’s statement that performance counters
do not or only minimally impact the execution performance
[7]. In the common case selectivities do not change between
two optimization attempts and thus the enumerator-based
approach would double the run-time during each optimiza-
tion cycle. In contrast, performance counter introduce vir-
tually no costs.

Second, we have to compare the algorithm to infer the in-
dividual predicate selectivity used by our approach against
a similar algorithm for the enumerator-based approach. In
our evaluation we showed, that optimization overhead con-
tribute only minor to the total runtime. We assume, a com-
parable algorithm for an enumerator-based approach should
perform similar. Finally, progressive optimization using per-
formance counter rely solely on existing implementations. In
contrast, an enumerator-based approach has to maintain im-
plementations with and without counter variables for each
operator.

1 2 3 4 5 6 7 8 9 10

10−2

10−1

100

101

102

Number of Predicates

O
v
er

h
ea

d
in

%
(l

o
g

sc
a
le

)

Enumerator Overhead.

Papi Overhead.

Figure 16: Overhead.

6. RELATED WORK
Previous work on progressive optimization by Markl et al.

[14], Kabra et al. [8], and Babu et al. [3] validates cardi-
nality estimates against actual values measured during run-
time execution. If a significant disagreement is detected, the
query execution might stop and a reoptimization process is
triggered. Kache et al. [9] extends this approach for feder-
ated databases and Han et al. [6] for shared-nothing parallel
databases. This approaches can be collectively termed as
plan-switching approaches, as they involve run-time switch-
ing among complete query plans. In contrast to these ap-
proaches, we base our reoptimization decision on actual per-

1669

formance counters which induce virtually no costs. Further-
more, we progressively optimize the current execution by
inspecting the query vector-wise. This enables us to per-
form a more fine-grained optimization. Finally, we are able
to exploit more properties than just the cardinality to reop-
timize query plans and do not require any statistics over the
data.

Stillger et al. [22] presents with the LEarning Optimizer
LEO an approach to repair incorrect statistic and cardinality
estimates. By monitoring previously executed queries, LEO
computes adjustments based on the difference between opti-
mizer estimates and actual measured costs. In contrast, our
approach learns from the vector-wise processing of the same
query to optimize future vector execution. Thus, we provide
a feedback loop during run-time as opposed to a feedback
loop among multiple query executions like in LEO.

Rducanu et al. [20], propose a micro adaptivity approach
to learn the best implementation of a function during run-
time. Therefore, they measure the run-time of different
function implementations and apply a learning algorithm to
choose the most promising implementation. In contrast, by
sampling performance counters instead of run-time or even
incremental tuple counters, we are able to learn properties
of the data sets like sortedness or co-clusteredness of joins.
Furthermore, we significantly reduce the overhead during
run-time and provide a non-invasive approach.

Another research area discovers the best QEP based on
a subset of possible best plans. Dutt et al. [5] propose to
exploit a bouquet of plans from a set of optimal plans such
that at least one of this plans is near-optimal. In contrast to
our approach, they require more overhead during compile-
time as well as during run-time. During compile time, they
have to gather the bonquet of plans. In contrast, we create
different orderings of operators during run-time using JIT
compilation. During run-time, Dutt et al. [5] introduce ex-
plicit counters between operators. In contrast, we exploit
performance counter which nearly induce no costs.

7. CONCLUSION AND FUTURE WORK
This paper provides the necessary cost models to enable

performance counters for progressive optimization. Progres-
sive optimization using performance counters avoids worst
case predicate evaluation orders efficiently. Using progres-
sive optimization, we improve runtime up to a factor of three
compared to average runtime and up to a factor of 4,5 com-
pared to worst case runtime. Thus, we efficiently alleviate
slow initial PEOs and make the overall query execute more
robust. At the same time, the optimization overhead could
be restricted by fine tuning the termination criteria of the
underlying non-linear optimization algorithm, the number of
optimizations during execution, and the effort that is spent
to find the best optimization result.

Our evaluation showed, that expect for a random data
distribution, we almost always improve runtime compared
to the common execution pattern through periodically re-
optimizing sub-optimal PEOs. Finally, we showed that the
impact of sortedness, skew, and correlation can be alleviated
by our approach.

In future work, we will integrate other relational opera-
tors into our optimization approach. Additionally, if new
performance counters become available through new pro-
cessor technologies, we will implement them to improve our
estimations.

8. REFERENCES
[1] A. Aggarwal and S. Vitter, Jeffrey. The input/output

complexity of sorting and related problems. Commun.
ACM 31, 1988.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. Dbmss on a modern processor : Where does
time go ? VLDB, 1999.

[3] S. Babu, P. Bizarro, and D. DeWitt. Proactive
re-optimization. SIGMOD, 2005.

[4] P. Boncz, M. Zukowski, and N. Nes. Monetdb / x100 :
Hyper-pipelining query execution. CIDR, 2005.

[5] A. Dutt and J. R. Haritsa. Plan bouquets: Query
processing without selectivity estimation. SIGMOD,
2014.

[6] J. M. V. Han, Wook-shin Ng. Progressive optimization
in a shared-nothing parallel database. SIGMOD, 2007.

[7] Intel. IntelR© 64 and IA-32 Architectures Software
Developer’s Manual. 2012.

[8] N. Kabra and D. J. Dewitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
SIGMOD, 1998.

[9] H. Kache, V. Raman, S. Str, and V. Markl. Pop / fed
: Progressive query optimization for federated queries
in db2. EDBT, 2006.

[10] V. Leis, et al. The adaptive radix tree: Artful indexing
for main-memory databases. ICDE, 2013.

[11] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
bw-tree : A b-tree for new hardware platforms. ICDE,
2013.

[12] S. Manegold, P. Boncz, and M. Kersten. Optimizing
main-memory join on modern hardware. IEEE Trans.
on Knowl. and Data Eng. 14, 2002.

[13] S. Manegold, P. Boncz, and M. L. Kersten. Generic
database cost models for hierarchical memory systems.
VLDB, 2002.

[14] V. Markl, V. Raman, D. Simmen, G. Lohman,
H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization.
SIGMOD, 2004.

[15] J. A. Nelder and R. Mead. A simplex method for
function minimization. The Computer Journal 7, 1965.

[16] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. VLDB, 2011.

[17] H. Pirk, A. Kemper, F. Funke, S. Manegold, U. Leser,
M. Grund, T. Neumann, and M. Kersten. Cpu and
cache efficient management of memory-resident
databases. ICDE, 2013.

[18] V. Raman, et al. Db2 with blu acceleration: So much
more than just a column store. VLDB, 2013.

[19] K. A. Ross. Selection conditions in main memory.
TODS, 2004.

[20] B. Răducanu, P. Boncz, and M. Zukowski. Micro
adaptivity in vectorwise. SIGMOD, 2013.

[21] J. Sompolski, M. Zukowski, and P. Boncz.
Vectorization vs. compilation in query execution.
DaMoN, 2011.

[22] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil.
Leo - db2 s learning optimizer. VLDB, 2001.

[23] S. Zeuch and J.-c. Freytag. Selection on modern cpus.
IMDM, 2015.

1670

