
Dscaler: Synthetically Scaling A Given Relational Database

J.W. Zhang
School of Computing

National University of Singapore

jiangwei@u.nus.edu

Y.C. Tay
School of Computing

National University of Singapore

dcstayyc@nus.edu.sg

ABSTRACT
The Dataset Scaling Problem (DSP) defined in previous
work states: Given an empirical set of relational tables D
and a scale factor s, generate a database state D̃ that is sim-
ilar to D but s times its size. A DSP solution is useful for
application development (s < 1), scalability testing (s > 1)
and anonymization (s = 1). Current solutions assume all
table sizes scale by the same ratio s.

However, a real database tends to have tables that grow at
different rates. This paper therefore considers non-uniform
scaling (nuDSP), a DSP generalization where, instead of a
single scale factor s, tables can scale by different factors.

Dscaler is the first solution for nuDSP. It follows previ-
ous work in achieving similarity by reproducing correlation
among the primary and foreign keys. However, it intro-
duces the concept of a correlation database that captures
fine-grained, per-tuple correlation.

Experiments with well-known real and synthetic datasets

D show that Dscaler produces D̃ with greater similarity to
D than state-of-the-art techniques. Here, similarity is mea-
sured by number of tuples, frequency distribution of foreign
key references, and multi-join aggregate queries.

1. INTRODUCTION
In the Dataset Scaling Problem (DSP), the input is an

empirical relational database state D and a positive real
number s that specifies the scale factor; the output is a

synthetic database state D̃ that is similar to D but s times
its size. The similarity can be measured by graph properties,
query results, transaction throughput, etc.

Take, for example, the dataset D = DoubanBook1 gener-
ated by a Chinese social network that allows the creation
and sharing of content related to books. A query like “aver-
age rating of those users who have commented on a book”

should return similar values for D and for a scaled D̃.

1https://book.douban.com/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 14
Copyright 2016 VLDB Endowment 2150-8097/16/10.

The motivation for DSP depends on s. A start-up with

a small D may want a larger version D̃ for testing the scal-
ability of their system architecture. Since s > 1 for this

example, D̃ is necessarily artificial.
On the other hand, an enterprise with a large D may

want a smaller version D̃ for application development. Since

s < 1, one can sample D̃ from D, but it is not obvious how

similarity is to be enforced. For example, D̃ must satisfy
the same foreign key (FK) constraints and have the same
probability distributions as D. To draw an analogy, if we
randomly sample nodes/edges from a directed graph G, the

sampled G̃ may differ from G in terms of connectedness,
correlation between in/out-degree, etc. This is one reason

for D̃ to be synthetic, instead of being a sample of D.

Another reason for D̃ to be artificial lies in data protec-

tion, which is necessary if, say, D’s owner provides D̃ to a

vendor. If D̃ is a sample from D, the personal and pro-

prietary data in D̃ can be hidden through anonymization.
However, there are well-known examples where such efforts
have failed [12, 22]. In contrast, no anonymization is neces-

sary if D̃ is synthetic. Nonetheless, some information leakage

is unavoidable since D̃ is, after all, similar to D; e.g., one

might deduce from D̃ the users’ gender ratio in D.
Data protection is also why the case s = 1 can be useful:

D̃ is the same size as D, but all of D̃’s data are artificial.
The scale factor s can be interpreted in different ways.

It can be GBytes, or the number of users if D is from a
social network, etc. The first version of DSP [29] assumes
uniform scaling, i.e. the number of tuples for each table in
D scales by the same ratio s. This is a strong assumption:

If s > 1 and D̃ models the growth of D, the tables may grow
at different rates. For example, the number of customers for
a retailer may grow faster than the number of suppliers.

We therefore introduce a generalization of DSP to Non-
Uniform Dataset Scaling Problem (nuDSP):

Given a database of relational tablesD = {T1, . . . , TK}
and a scaling vector s = [sT1 , . . . , sTK], generate

a similar database D̃ = {T̃1, . . . , T̃K} where |T̃i| =
sTi |Ti| and |T | is the number of tuples in T .

This paper presents a solution to nuDSP, namely Dscaler.

1.1 Approaches that do not solve nuDSP
For scaling down (i.e. sTi < 1), one natural approach is

to sample the tuples [17, 30]. Such a solution is nontrivial
(e.g. consider the issue of FK constraints mentioned above),

1671

Figure 1: The 3-phase Dscaler Scaling Framework, where
there are multiple possibilities for F .

but sampling does not work for scaling up (i.e. sTi ≥ 1)
anyway. For scaling up, one possible approach is to make
sTi copies of table Ti [7], but that means a table T for
an Employee-Manager management tree, say, will scale to

some T̃ with sT separate management trees; besides, this
copy&paste approach does not work for scaling down.

If similarity between D and D̃ is to be measured with a set
of queries Q, one approach may be to use Q when generating

D̃ [3, 4]. However, this will mean regenerating D̃ whenever
Q is changed. In contrast, the UpSizeR solution to DSP [29]

does not target any queries, but generates D̃ by replicating
the data correlations it extracts from D. However, UpSizeR
only solves the special case sT1 = · · · = sTK = s.

1.2 Main ideas and insights
Dscaler has 3 phases, as illustrated in Figure 1:

Phase0: Extract some features F from D.
Phase1: Use vector s to scale F to F̃ .
Phase0: Use F̃ to generate tuples and thus synthesize D̃.
The main ideas and insights in this solution are as follows:

(I1) Features. Abstractly speaking, UpSizeR has the same
3 phases in Figure 1. This 3-phase process is thus a frame-
work, in the sense that other nuDSP solutions can use it
with a different choice for F and different algorithms in each
phase. The feature set F plays two roles in this framework:

(i) F is an input to constructing D̃ (via F̃).

(ii) F defines the similarity between D and D̃.
These two roles are conflicting: The smaller F is, the easier

it is to construct D̃; on the other hand, the bigger F is, the

more similar are D and D̃.

(I2) Correlation. To choose the feature set F , we observe
that, fundamentally, relational queries rely on joins to re-
construct tuples that are decomposed into separate tables,

and these joins mostly match key values. For D̃ to be similar

to D in query results, D̃ and D must therefore have simi-
lar correlation among their primary and foreign key values.
This is why Dscaler chooses key value correlation as the
features to include in F .

(I3) Uniqueness. One kind of correlation that compli-
cates value synthesis for keys is uniqueness. For example,
in the DoubanBook social network, the table for books in

D̃ should not have two tuples with the same title-author

pair for these FKs. Yet, if the scale factor for the table is
big enough, then (by Pigeonhole Principle) repetition is un-
avoidable. We therefore need to determine necessary and
sufficient conditions for uniqueness to be possible.

(I4) Decoupling. There are two keywords in nuDSP: scal-
ing and similar. The Dscaler solution decouples these two
requirements into Phase1 and Phase2. Phase1 (scaling) de-
termines the number of tuples to generate for each correla-
tion pattern, and Phase2 (similarity) constructs the neces-

sary number of tuples. These two phases are independent:
one can change the algorithm in one phase without affecting
the algorithms in the other phase.

(I5) CoDa. The features in F can be statistical distribu-
tions, graph properties, etc. To capture the correlation in
(I2), we view D as a directed graph induced by the FK
constraints, and base F on the frequency distributions for
indegrees and outdegrees in this graph. These reference
counts are per-tuple (in contrast to the coarse granular-
ity used by UpSizeR, which groups tuples into clusters and
capture inter-cluster correlation). The frequency distribu-
tions can be represented as tables, so F is itself a relational
database that we call the correlation database, denoted
F = CoDaD. Hence, Phase1 first scales CoDaD to give

another correlation database F̃ = CoDaD̃, before Phase2

generates key values to transform CoDaD̃ into D̃.

(I6) Size. Recall from (I1) that F plays the role of input to

constructing D̃. With F defined as CoDaD (I5), this input
is much smaller than D and easier to store and transfer. For
example, an enterprise can upload F into the cloud, then

use it to generate D̃ in the cloud.

(I7) Loss. On the other hand, recall from (I1) that F also

defines similarity between D and D̃. With F = CoDaD,
any correlation that is not captured by CoDaD is lost in

constructing D̃. In a social network, for example, two friends
are more likely to comment on each other’s post, but CoDaD
does not include such correlations.

1.3 Overview
To summarize, our contribution in this paper are:

1. We generalize the DSP definition to nuDSP by intro-
ducing a table scaling vector s = [sT1 , . . . , sTK] to re-
flect non-uniform table growth in real datasets.

2. We present Dscaler, a solution to nuDSP. It is the
first solution for non-uniform scaling.

3. A naive scaling algorithm can violate the uniqueness
requirement (I3) above. We present necessary and suf-
ficient conditions for satisfying uniqueness.

4. We compare Dscaler to state-of-the-art techniques,
using synthetic (TPC-H) and real (financial, Douban-
Book) datasets. The results show Dscaler generates

greater similarity between D̃ and D, as measured by
syntactic (number of tuples, degree distributions) and
semantic (aggregate queries) metrics.

We begin by surveying related work in Section 2. Sec-
tion 3 introduces some necessary definitions and notation.
Feature extraction for CoDaD is straightforward, so we will
not elaborate on Phase0. Phase1 and Phase2 can be broken
down into smaller steps, as shown in Figure 2. These steps
are described in detail in Section 4 for Phase1 and Section 5
for Phase2.

For the experiments, Section 6 describes the alternative
algorithms we compare Dscaler with, specifies the simi-
larity measures that we use, and summarizes the results.
Section 7 and Section 8 present the results for uniform and
non-uniform scaling, respectively. Section 9 revisits the is-
sue of information loss (I7), before we conclude the paper
in Section 10.

1672

Figure 2: Phase1 and Phase2 in Figure 1 can be broken down into smaller steps.

2. RELATED WORK
In Section 1.1, we pointed to some previous work when

describing possible approaches to solving nuDSP. We now
survey these and other related work.

Related work on generating relational datasets have a va-
riety of objectives; e.g. some focus on environment or soft-
ware testing [26, 27]. They can be classified into two cate-
gories: query-aware and query-independent.

Query-aware techniques [3, 4] usually need a set of queries
as input for dataset generation. For example, RQP (Reverse
Query Processing) [4] takes a set of queries and the database
schema as input, and generates a synthetic database as out-
put. Similarly, QAGen [5] uses a set of queries and some car-
dinality constraints as input to generate a synthetic database
that satisfies the constraints. However, for n different queries,
QAGen will generate n different databases. Later, My-
Benchmark [19] tackles this QAGen issue by minimizing
the number of databases generated for one set of queries.
Nonetheless, MyBenchmark does not always generate a sin-
gle database. These query-aware techniques provide simi-
larities that are based on the input queries.

Query-independent techniques [6, 14, 26, 27, 29] do not
have a set of queries as input, and aim to provide similar-
ity for all queries (as is the case for Dscaler). Examples
include DGL (Data Generation Language) [6] and Houkjær
et al.’s graph model [16].

UpSizeR is another graph-based tool [29] that uses at-
tribute correlation extracted from an empirical database to
generate a synthetic database; it is the first solution to DSP.
ReX [7] is later work that scales up the original database by
an integer factor s, using an automated representative ex-
trapolation technique. This is a variant of copy&paste that
generates s copies of D (hence the integer value for s). For
example, given D for a social network and s = 3, ReX would
produce 3 separate social networks. Moreover, the technique
cannot scale down a dataset.

Database sampling is a form of scaling down [17, 30].
These sampling algorithms have two main motivations: (i)
to reduce the computational cost for data mining [18, 24],
and (ii) to provide approximate answers [2, 9] for queries.
For example, a density-biased sampling approach [23] can be
used to find the same clusters as in the original database,
and thus reduce the cost for data mining. For (ii), Join Syn-
opses [1] and Linked Bernoulli Synopses [13] are examples.
However, maintaining the foreign key integrity for these syn-
opses is computationally expensive, hence time consuming
for database generation. VFDS [8] is a more recent tool that
maintains the referential integrity in the sampling. The au-
thors’ experiments show that VFDS has similar accuracy as
Join Synopses and Linked Bernoulli Synopses, and performs
at least 300 times faster.

A
PK
a1
a2

B
PKFKA

b1 a2
b2 a2
b3 a1
b4 a1

C
PKFKAFKB

c1 a1 b1
c2 a2 b1
c3 a1 b2
c4 a2 b3

Figure 3: Input database
Deg in our running exam-
ple.

A
PK
(2, 2)
(2, 2)

B
PKFKA

(2) (2, 2)
(1) (2, 2)
(1) (2, 2)
(0) (2, 2)

C
PKFKAFKB

(0) (2, 2) (2)
(0) (2, 2) (2)
(0) (2, 2) (1)
(0) (2, 2) (1)

Figure 4: CoDaDeg .
Each value v in T of Fig-
ure 3 is replaced by joint
degree ∆T (v).

For anonymization without scaling, Gupta et al. employ
privacy mechanisms [21] to hide key statistics of the original
database for privacy control [15]. This approach is later
extended [20], with a guarantee of privacy for individuals in
the database. For Dscaler, any privacy loss in key values
will be via CoDaD which, however, has no values from D.

Scaling appears in other fields as well. The AO bench-
mark [11] is the first tool that scales down an RDF dataset.
Later, RBench [25] is proposed to both scale down and up.
However, these two benchmarks are evaluated with differ-
ent metrics (dataset coherence, relationship specialty, literal
diversity), so it would be unfair to use them for comparison.

None of these papers provide a solution for nuDSP — they
either do not scale the dataset, or cannot scale by nonuni-
form factors. For experimental comparison, VFDS and Up-
SizeR are the state-of-the-art algorithms that are closest to
Dscaler, so we will further describe them in Section 6.

3. DEFINITIONS AND NOTATION
To simplify the definitions, notation and description of

Dscaler, we assume that if T ′ references T (denoted T ′ →
T), it does so via one foreign key constraint only. This as-
sumption can be easily relaxed for Dscaler.

We use the databaseDeg in Figure 3 as a running example.
In Deg, table B references table A, and table C’s foreign
keys FKA and FKB are the primary keys (PKs) of A and
B respectively. For any tuple t with PK value p, we refer to
t as p if there is no ambiguity; e.g. we use a2 to represent
the second tuple in A. The following definition narrows the
scope of the feature set F to the keys:

Definition 1. For a table T , the FK matrix FT is the
projection of T on its foreign keys, and the key matrix KT
is the projection of T on its primary and foreign keys.

In Section 4.3, we will consider the possibility that this pro-
jection yields repeated rows in FT . We can view each tuple
as a node in a graph, with edges pointing from PK tuples
to FK tuples. We thus get the following:

1673

Definition 2. Suppose T ′ → T and t ∈ T . The degree
of t, denoted δT ′→T (t), is the number of tuples in T ′ refer-
encing t.

In Deg, δB→A(a2) = 2, δC→B(b2) = 1, and δC→B(b4) = 0.
To capture the correlation among FKs in a table, we need
their joint distribution:

Definition 3. Suppose tables T1, . . . , TK reference T and
t ∈ T . Then ∆T (t) = (δT1→T (t), . . . , δTK→T (t)) is the joint
degree for t.

In Deg, ∆A(a1) = (2, 2), ∆B(b1) = (2) and ∆B(b2) = (1).
These joint distributions form the feature set F :

Definition 4. The Correlation Database of D, denoted
CoDaD, is the database that omits non-key values and sub-
stitutes D’s key values with their joint degrees.

CoDaDeg is shown in Figure 4. The correlation patterns
among keys are modeled as vectors:

Definition 5. For table T and t ∈ T , the referencing
vector (RV) φT (t) is the projection of t in CoDaD on its
foreign keys. The key vector (KV) ΦT (t) is the projection
of t in CoDaD on its primary and foreign keys.

InDeg, φC(c1) = ((2, 2), (2)), φC(c3) = ((2, 2), (1)), ΦB(b1) =
((2), (2, 2)) and ΦC(c1) = ((0), (2, 2), (2)). Dscaler needs
to count these patterns:

Definition 6. Suppose T ′ → T , t ∈ T and ∆T (t) = α.
The appearance number ΥT ′→T (α) is the number of times
α appears in the foreign key of T ′ in CoDaD.

For Deg, ΥC→A((2, 2)) = 4 = ΥB→A((2, 2)). Lastly, the fre-
quency distributions for degree (Oδ), joint degree (O∆),
RV (Oφ), and KV (OΦ) count the various patterns:

• OT
′→T

δ (x) = w means w tuples in T have degree x,
and these w tuples are referenced from T ′.

• OT∆(α) = w means w tuples in T have joint degree α.

• OTφ (β) = w means w tuples in T have RV β.

• OTΦ(γ) = w means w tuples in T have KV γ.

InDeg, OB→Aδ (2) = 2, OC→Bδ (1) = 2, OB∆((1)) = 2, OB∆((0)) =
1, OCφ ((2, 2), (1)) = 2, OBφ ((2, 2)) = 4, OBΦ ((1), (2, 2)) = 2

and OCΦ ((0), (2, 2), (1)) = 2.
Table 1 lists the above notation for easy reference.
In the following sections, we will use Deg to demonstrate

how it is scaled to D̃eg in Figure 5. The scaling vector is
s= [sA, sB , sC] = [2, 7

4
, 2].

4. PHASE1: FEATURE SCALING
Phase0 for feature extraction is straightforward, so we

proceed directly to Phase1 for feature scaling, which has
4 steps (Figure 2): Step1a uses the scaling vector s to scale

the degree distributions OT
′→T

δ ; Step1b combines the de-

grees (scalars) to derive the joint-degree distributions OT̃∆;
Step1c combines the joint degrees into vectors that cap-

ture the FK correlation OT̃φ ; and Step1d combines the FK

correlation with PK degrees to get OT̃Φ . Phase1 transforms
CoDaDeg in Figure 4 to CoDaD̃eg

in Figure 6.

Notation Description

Deg/D̃eg original/scaled example database
sT scaling factor for table T

T/T̃ original/scaled table
PK/FK primary/foreign Key
F/K FK matrix/Key matrix
δT ′→T (t) number of tuples in T ′ referencing t.
∆T (t) joint degree for t ∈ T
ΥT ′→T (α) appearance number for α in T ′

φT (t) referencing vector (RV) for t in T
ΦT (t) key vector(KV) for t in T
Oδ, O∆

Oφ, OΦ

frequency distribution for degree, joint de-
gree, RV, KV

α/α̃ original/scaled joint degree

β/β̃ original/scaled RV
γ/γ̃ original/scaled KV

Table 1: Frequently Used Notation

Ã
PK
ã1
ã2
ã3
ã4

B̃
PKFKA

b̃1 ã2
b̃2 ã3
b̃3 ã2
b̃4 ã3
b̃5 ã4
b̃6 ã4
b̃7 ã1

C̃
PKFKAFKB

c̃1 ã2 b̃1
c̃2 ã2 b̃2
c̃3 ã3 b̃1
c̃4 ã4 b̃2
c̃5 ã3 b̃3
c̃6 ã4 b̃4
c̃7 ã1 b̃5
c̃8 ã1 b̃6

Figure 5: Scaled D̃eg for
[sA, sB , sC] = [2, 7

4
, 2]

Ã
PK
(1, 2)
(2, 2)
(2, 2)
(2, 2)

B̃
PKFKA

(2) (2, 2)
(2) (2, 2)
(1) (2, 2)
(1) (2, 2)
(1) (2, 2)
(1) (2, 2)
(0) (1, 2)

C̃
PKFKAFKB

(0) (2, 2) (2)
(0) (2, 2) (2)
(0) (2, 2) (2)
(0) (2, 2) (2)
(0) (2, 2) (1)
(0) (2, 2) (1)
(0) (1, 2) (1)
(0) (1, 2) (1)

Figure 6: Scaled
CoDaD̃eg

4.1 Step1a: Degree Scaling
Dscaler first uses Algorithm 1 to scale the degree fre-

quency distribution OT
′→T

δ to OT̃
′→T̃

δ , with 3 requirements:

(i) OT̃
′→T̃

δ should be similar to OT
′→T

δ , (ii)
∑
xO

T̃ ′→T̃
δ (x) =

|T̃ | and (iii)
∑
xO

T̃ ′→T̃
δ (x)×x = |T̃ ′|. The details are as fol-

lows:
Tuple Scaling. Let Sx = OT

′→T
δ (x)× sT for all x. Then,

OT
′→T

δ is first scaled to OT̃
′→T̃

δ by the following operation:

OT̃
′→T̃

δ (x) =

{
dSxe with probability Sx − bSxc
bSxc with probability dSxe − Sx

(1)

Thus, the average is E[OT̃
′→T̃

δ (x)] = Sx = OT
′→T

δ (x)× sT .
Tuple Adjustment. With randomness introduced in Eq.1,

we may have ñ =
∑
xO

T̃ ′→T̃
δ (x) 6= |T̃ |. Hence, |ñ − |T̃ ||

tuples with random degrees are added/removed, to make∑
xO

T̃ ′→T̃
δ (x) = |T̃ |.

FK Adjustment. Tuple Adjustment enforces ñ = |T̃ |.
Let m̃ =

∑
xO

T̃ ′→T̃
δ (x) × x. Next, we need to scale the

number of referencing tuples to make m̃ = |T̃ ′|:

Case m̃ < |T̃ ′|: increase the number of high degree tuples

and decrease the number of low degree tuples in T̃ .

Case m̃ > |T̃ ′|: decrease the number of high degree tuples

and increase the number of low degree tuples in T̃ .

1674

Algorithm 1: Degree Scaling

1 Tuple Scaling
2 Tuple Adjustment

3 while m̃ 6= |T̃ ′| do
4 FK Adjustment

5 return OT̃
′→T̃

δ

B̃ → Ã

OB̃→Ãδ (1) = 1

OB̃→Ãδ (2) = 3

C̃ → Ã

OC̃→Ãδ (2) = 4

C̃ → B̃

OC̃→B̃δ (0) = 1

OC̃→B̃δ (1) = 4

OC̃→B̃δ (2) = 2

Figure 7: Degree Frequency

Distribution for D̃eg

Ã

OÃ∆(1, 2) = 1

OÃ∆(2, 2) = 3

C̃

OC̃∆ (0) = 8

B̃

OB̃∆(0) = 1

OB̃∆(1) = 4

OB̃∆(2) = 2

Figure 8: Joint Degree Fre-

quency Distribution for D̃eg

To illustrate, CoDaDeg in Figure 4 has

OC→Bδ (0) = 1, OC→Bδ (1) = 2, OC→Bδ (2) = 1
Tuple scaling with sB = 7

4
gives

OC̃→B̃δ (0) = 2, OC̃→B̃δ (1) = 4, OC̃→B̃δ (2) = 2

Thus, ñ = 2 + 4 + 2 6= |B̃| = sB |B| = 7; tuple adjustment
removes 1 tuple with random degree (degree= 2), so

OC̃→B̃δ (0) = 2, OC̃→B̃δ (1) = 4, OC̃→B̃δ (2) = 1

Next, m̃ = (0×2)+(1×4)+(2×1) = 6 < |C̃| = sC |C| = 8, so
FK adjustment increases the number of high degree tuples
(degree=2), and decrease the number of low degree tuples
(degree=0), to give

OC̃→B̃δ (0) = 1, OC̃→B̃δ (1) = 4, OC̃→B̃δ (2) = 2
The scaled degree frequency distribution after FK adjust-
ment is presented in Figure 7.

4.2 Step1b: Joint Degree Correlation (JDC)
Recall from Definition 3 that, for table T and t ∈ T , the

joint degree is ∆T (t) = (δT1→T (t), . . . , δTK→T (t)) where ta-
bles T1, . . . , TK reference T . Having scaled the degree distri-

bution from OT1
′→T

δ to OT̃1
′→T̃

δ , we need to combine them

to construct the joint-degree distribution OT̃∆, with the aim
of preserving the joint-degree correlation in D (Figure 2).

Algorithm 2 sketches the algorithm for constructing OT̃∆

from OT̃1
′→T̃

δ . Intuitively, suppose T̃1 and T̃2 reference T̃ ;

to synthesize a tuple t̃ ∈ T̃ with joint degree (d̃1, d̃2), Algo-

rithm 2 chooses a tuple t̃1 from OT̃1→T̃
δ with δT̃1→T̃ (t̃1) = d̃1

and t̃2 from OT̃2→T̃
δ with δT̃2→T̃ (t̃2) = d̃2. It then combines

t̃1 and t̃2 to form a new tuple t̃, so t̃ has joint degree (d̃1, d̃2).

In detail, for any table T̃ , Algorithm 2 loops through
OT∆(x1, . . . , xk) and executes the following steps:
1-Norm Minimization . For each (x1, . . . , xk), choose

(x̃1, . . . , x̃k) closest to (x1, . . . , xk), by minimizing ||(x1 −
x̃1, . . . , xk−x̃k)||1 =

∑
i |xi − x̃i|, and x̃i ∈ domain(OT̃i→T̃

δ).
Incrementing Value (IV). For (x̃1, . . . , x̃k), increment

OT̃∆(x̃1, . . . , x̃k) by w, where w is the largest integer satisfy-
ing following IV Constraints:

C1. w ≤ dOT∆(x1, . . . , xk)× sT e, so the number of tuples
for (x1, . . . , xk) is scaled by sT .

Algorithm 2: Joint Degree Correlation

1 initialize OT̃∆ as 0

2 for OT∆(x1, . . . , xk) and
∑
α̃

OT̃∆(α̃) < |T̃ | do

3 (x̃1, . . . , x̃k)← 1-Norm(x1, . . . , xk)
4 w ← IV Calculation(x̃1, . . . , x̃k)
5 Value Update(w)

6 return OT̃∆

C2. w ≤ min1≤i≤k O
T̃i→T̃
δ (x̃i), since the w tuples are

constructed from tuples in OT̃i→T̃
δ (x̃i).

Value Update (VU). The w from the above IV calcu-

lation is used to update OT̃∆ and OT̃i→T̃
δ , as follows:

(i) OT̃∆(x̃1, . . . , x̃k)← OT̃∆(x̃1, . . . , x̃k) + w

(ii) ∀i, OT̃i→T̃
δ (x̃i)← OT̃i→T̃

δ (x̃i)− w
We demonstrate these steps with OA∆(2, 2): Figure 7 shows

domain(OB̃→Ãδ) = {1, 2}, and domain(OC̃→Ãδ) = {2}, so
for 1-Norm Minimization, the closest (x̃1, x̃2) is (2, 2).
Figure 4 shows OA∆(2, 2) = 2, so C1 in IV calculation re-

quires w ≤ d2 × sAe = 4; Figure 7 shows OB̃→Ãδ (2) = 3

and OC̃→Ãδ (2) = 4, so C2 requires w ≤ min{3, 4} = 3.

Thus, w = 3. For VU, OÃ∆(2, 2) is incremented by 3, while

OB̃→Ãδ (2) and OC̃→Ãδ (2) are each decremented by 3.
Figure 8 shows the resulting joint-degree distributions for

D̃eg when Algorithm 2 terminates.

4.3 Step1c: Referencing Vector Correlation
(RVC)

The next step towards CoDaD̃eg
construction in Figure 2

is Referencing Vector Correlation (RVC). JDC in the previ-
ous section correlates scalars (degrees) δT̃i→T̃

to synthesize

the vectors ∆T̃ (t̃) in each FK of Figure 6. Recall from Defi-
nition 5 that the referencing vector φT (t) is the projection of
CoDaD on its FKs, so it is a vector of ∆T (t) vectors. RVC,
described below, correlates these ∆T̃ (t̃) vectors for multiple
FKs.

The algorithm for RVC is similar to JDC construction,
except if T does not allow repeated FK tuples. For example,
if T says user uid posted video vid, (uid, vid) should not
appear twice in T .

Definition 7. For a table T , the FK matrix FT is unique
if and only if it does not have any repeated rows. Moreover,
T is unique if and only FT is unique.

For example, C in Figure 3 is unique, but B is not. This
property enforces an extra uniqueness constraint in addition
to C1 and C2 presented in Section 4.2.

Theorem 1. Suppose table T references tables T1, . . . , Tk.
If T is unique, then T satisfies the uniqueness constraint:

OTφ (α1, . . . , αk) ≤
∏

1≤i≤k

OTi
∆ (αi). (2)

Conversely, if this constraint is satisfied, then there is a
unique T .

The necessity in Theorem 1 says the number of tuples
with RV (α1, . . . , αk) is bounded by the maximum number

1675

B̃

OB̃φ (1, 2) = 1

OB̃φ (2, 2) = 6

C̃

OC̃φ ((2, 2), (2)) = 4, OC̃φ ((2, 2), (1)) = 2

OC̃φ ((1, 2), (1)) = 2

Figure 9: Referencing Vector Frequency Distribution for D̃eg

of possibilities. Section 5.2.2 will address the sufficiency of

this constraint. RVC scales OTφ to OT̃φ like in JDC:
1-Norm Minimization . For (α1, . . . , αk), choose the

closest (α̃1, . . . , α̃k) where
∑

1≤i≤k ||αi−α̃i||1 is minimized,

and α̃i ∈ domain(OT̃i
∆), ∀1 ≤ i ≤ k.

Incrementing Value (IV). For each (α̃1, . . . , α̃k), incre-

ment OT̃φ (α̃1, . . . , α̃k) by w, where w is the largest integer
satisfying the IV Constraints:

C1′. w ≤ dOTφ (α1, . . . , αk)×sT e. Similar to JDC, C1’ en-

forces the incremental value proportional to OTφ (α1, . . . , αk).

C2′. w ≤ min
1≤i≤k

ΥT̃i→T̃
(α̃i). Since OT̃φ (α̃1, . . . , α̃k) is

based on OT̃1
∆ (α̃1), . . . , O

T̃k
∆ (α̃k), the maximum number of

tuples incremented should not be larger than the maximum
appearance allowed for each ΥT̃i→T̃

(α̃i).

C3′. If T is unique, then w ≤
∏

1≤i≤k
OT̃i

∆ (α̃i)−OT̃φ (α̃1, . . . ,

α̃k), as required by Theorem 1.
Value Update (VU). After w is calculated, the corre-

sponding distributions are updated, as follows:

(i) OT̃φ (α̃1, . . . , α̃k)← OT̃φ (α̃1, . . . , α̃k) + w
(ii) ∀i,ΥT̃i→T̃

(α̃i)← ΥT̃i→T̃
(α̃i)− w

We demonstrate the above for OCφ ((2, 2), (2)) = 2 in Fig-
ure 4:

For 1-Norm Minimization , domain(OÃ∆) = {(1, 2), (2, 2)},
and domain(OB̃∆) = {(0), (1), (2)} in Figure 8. Thus, the
closest (α̃1, α̃2) is ((2, 2), (2)).

For IV , by C1′, w ≤ d2 × sCe = 4. By C2′, w ≤
min{ΥC̃→Ã(2, 2),ΥC̃→B̃(2)} = min{6, 4} by Figure 6. Since

C is unique, C3′ requires w ≤ OÃ∆(2, 2)×OB̃∆(2)

−OC̃φ ((2, 2), (2)) = 3× 2− 0, by Figure 8. Hence, w = 4.

For VU , (i) OC̃φ ((2, 2), (2)) ← 0 + 4, (ii) ΥC̃→Ã(2, 2) ←
6− 4, and ΥC̃→B̃(2)← 4− 4.

When the RVC loop terminates, we get the scaled refer-

encing vector frequency distribution for D̃eg in Figure 9.
Due to the uniqueness constraint, it is possible that

GT̃ =
∑

α̃1,...,α̃k

OT̃φ (α̃1, . . . , α̃k) < |T̃ | (3)

To increaseGT̃ , we can generate some random tuples. Specif-

ically, GT̃ < |T̃ | implies there are some ΥT̃1→T̃ (θ̃1) > 0, . . .,

ΥT̃k→T̃
(θ̃k) > 0, so Dscaler randomly combines them to

form new tuples t̃ with φT̃ (t̃) = (θ̃1, . . . , θ̃k), without violat-

ing the uniqueness constraint. If GT̃ < |T̃ | is still true,

we choose θ̃1, . . . , θ̃k from ΥT̃1→T̃ , . . . ,ΥT̃k→T̃
to swap

with some generated OT̃φ (α̃1, . . . , α̃k). The idea is to re-
move 1 generated tuple with referencing vector (α̃1, . . . , α̃k),

and form two new tuples, (α̃1, . . . , α̃i−1, θ̃i, α̃i+1, . . . , α̃k) and

Primary Key Vector

Ã PÃ(1, 2) = [ã1]
⊺ PÃ(2, 2) = [ã2, ã3, ã4]

⊺

B̃ PB̃(2) = [b̃1, b̃2]
⊺,PB̃(1) = [b̃3, b̃4, b̃5, b̃6]

⊺,PB̃(0) = [b̃7]
⊺

C̃ PC̃(0) = [c̃1, c̃2, . . . , c̃8]
⊺

Figure 10: Primary Key Vector for D̃eg

(θ̃1, . . . , θ̃i−1, α̃i, θ̃i+1, . . . , θ̃k). The net effect of one success-

ful swap increases OT̃φ by 1 tuple.

In the worst case, GT̃ < |T̃ | remains true after this swap-

ping. We then generate |T̃ | −GT̃ shadow tuples (see Sec-
tion 5.4).

4.4 Step1d: Key Vector Correlation(KVC)
The last step in Figure 2 for constructing CoDaD̃ from

CoDaD is Key Vector Correlation (KVC). This construction
to correlate primary and foreign keys is similar to the above
RVC for correlating FKs, so we omit the details here; the
reader can refer to the pseudo-code in the full paper[31].
After KVC, the scaled CoDaD̃eg

is as shown in Figure 6.

5. PHASE2: VALUE SYNTHESIS
The tuples in CoDaD̃ generated by Phase1 only contain

degree correlation patterns. Phase2 must now replace these
correlation patterns with synthetic attribute values, and add
non-key values. The 4 steps in Figure 2 are described below.

5.1 Step2a: PK Vector Synthesis
For joint degree α̃ and OT̃∆(α̃) = w, Step2a must generate

w unique PKs to give a vector PT̃ (α̃). For D̃eg, Figure 8

shows OÃ∆(1, 2) = 1 and OÃ∆(2, 2) = 3, so Step2a generates
one tuple with PK ã1 and joint degree (1, 2), and 3 tuples
with PKs ã2, ã3, ã4 and joint degree (2, 2). Figure 10 shows

the PK vectors D̃eg.

5.2 Step2b: FK Matrix Synthesis
Next Step2b generates the FK matrix FT̃ , where T̃ refer-

ences T̃1, . . . , T̃k. For OT̃φ (α̃1, . . . , α̃k) = w, tuples t̃1, . . . , t̃w
are generated for FT̃ , each with RV (α̃1, . . . , α̃k). We first
sketch the basic ideas and main challenges, before describing
the Dscaler solution.

5.2.1 Basic ideas: column and row generation
To generate the submatrix of FT̃ for RV (α̃1, . . . , α̃k), we

can proceed in two steps:

Column Generation (CG). For the k columns C̃1, . . . , C̃k
of FT̃ (α̃1, . . . , α̃k), select w PK elements from T̃i for each

C̃i, such that the joint degree ∆T̃i
(ẽ) = α̃i, ∀ẽ ∈ C̃i. How-

ever, there are many possibilities for choosing these w ele-

ments. In D̃eg, Figure 9 shows OC̃φ ((2, 2), (1)) = 2, so we
need to choose the 2 elements for FKA with joint degree
(2, 2). Figure 10 shows PÃ(2, 2) = [ã2, ã3, ã4]ᵀ, so there are
3 candidates, and each can appear 2 times. Thus, there are

6 possibilities for C̃1: {ã2, ã2}, {ã3, ã3}, {ã4, ã4}, {ã2, ã3},
{ã2, ã4}, {ã3, ã4}.
Row Generation (RG). After CG generates the column

elements, we need to generate the rows by matching ele-
ments in different columns. This matching cannot be ar-

bitrary if T̃ has the uniqueness constraint. For example,

1676

C̃1 =




a
a
b
b


 C̃2 =




d
d
e
e


 M1 =




a d
a d
b e
b e


 M2 =




a d
a e
b d
b e




Figure 11: Row Generation (RG): M1 violates uniqueness.

in Figure 11, the permutation in M1 yields repeated rows,
whereas that in M2 has no repeated rows.

There are two challenges in column and row generation:
(i) The choice of elements in column generation should facili-
tate enforcement of the uniqueness constraint. For example,

if C̃1 = [a, a, a, b]ᵀ in Figure 11, then there is no way of get-
ting unique rows by permuting the columns. (ii) If there
is a permutation of the column elements that can generate
unique rows, then it must be found with minimal effort.

5.2.2 Uniqueness from uniformity
Intuitively, to enforce the uniqueness constraint is to max-

imize the variety in the rows. We can achieve this by en-
suring that the column elements have a uniform number of
repetitions, as follows:
Uniform Column Generation (uCG). For each

FT̃ (α̃1, . . . , α̃k) = w, suppose there are ni tuples in T̃i with

joint degree α̃i, and they appear as FK in T̃ for w times;
uCG distributes these w appearances evenly to the ni tuples,

so each element appears d w
ni
e or b w

ni
c times in C̃i. Thus, for

each C̃i, its elements’ appearances differ by at most 1. This
allows maximum variety and facilitates uniqueness in row
generation below.

Unique Row Generation (uRG). If the desired num-
ber of rows w exceeds the possible number of unique rows,
then (by Pigeonhole Principle) some rows of FT̃ must repeat;
otherwise, we can get w unique rows by a straightforward
lexicographic ordering. This intuition says the inequality in
Theorem 1 is sufficient for uniqueness, and is confirmed by
the theorems below. (Space constraint prevents us from pre-
senting the proofs, which can be found in the full paper[31].)
In the following, um in a multiset denotes m copies of u.

Theorem 2. Given multiset U = {umu1
1 , . . . , u

mun1
n1 },

V = {vmv1
1 , . . . , v

mvn2
n2 }, and

∑

ui∈U

mui = |U| = |V| =
∑

vj∈V

mvj

max
ui∈U

mui − min
ui∈U

mui ≤ 1

max
vj∈V

mvj − min
vj∈V

mvj ≤ 1.

Let w = 〈w(0), w(1)〉 where w(0) ∈ U and w(1) ∈ V denote
a match. Then there exists a multiset of matches W =
{w1, w2, . . .} such that

U =
⋃

k

{wk(0)}, V =
⋃

k

{wk(1)}

max
wk∈W

mwk − min
wk∈W

mwk ≤ 1

∀wk ∈W,mwk ≤ d
|W|

n1 × n2
e.

Table Foreign Key Matrix

B̃ F
B̃
(2, 2) = [[ã2], [ã3], [ã2], [ã3], [ã4], [ã4]]⊺, F

B̃
(1, 2) = [[ã1]]⊺

C̃ F
C̃
((2, 2), (2)) = [[ã2, b̃1], [ã2, b̃2], [ã3, b̃1], [ã4, b̃2]]⊺

F
C̃
((2, 2), (1)) = [[ã3, b̃3], [ã4, b̃4]]⊺

F
C̃
((1, 2), (1)) = [[ã1, b̃5], [ã1, b̃6]]⊺

Figure 12: Foreign Key Matrix for D̃eg

Theorem 2 says that, suppose we have two multisets U,V
with the same cardinality, each has n1, n2 different elements
respectively, and the maximum and minimum multiplicity
in each multiset differ by at most 1. If we match up all the
elements in U,V to form a matching set W, then there is a
matching set W where the maximum and minimum multi-
plicity of the pairings differ by at most 1 as well. Moreover,

the maximum multiplicity is not greater than d |W|
n1×n2

e. It

follows that, if |W| ≤ n1n2, then the multiplicities are at
most 1, so the matches are unique.

We can generalize this result to k multisets:

Theorem 3. For k multisets U1, . . . ,Uk with equal car-
dinality, ni is the number of different elements in Ui and

∀Ui, max
ej∈Ui

mej − min
ej∈Ui

mej ≤ 1,

then there is a matching multiset W with maximum multi-

plicity d |W|∏
1≤i≤k

ni
e.

In the Dscaler context, Ui are the elements of Ci, each
match is a row of FT̃ , and lexicographic ordering generates
a unique FT̃ if and only if |W| ≤

∏
1≤i≤k

ni. We thus get:

Theorem 4. Dscaler’s uCG and uRG generate a unique
FT̃ (α̃1, . . . , α̃k) if and only if the inequality in Theorem 1 is
satisfied.

For D̃eg in Figure 3, C̃ is unique, but B̃ is not. We demon-

strate FT̃ generation for the case OC̃φ ((2, 2), (2)) = 4 from

Figure 9: By Figure 10, PÃ(2, 2) shows C̃1 has elements

ã2, ã3 and ã4, while PB̃(2) shows C̃2 has elements b̃1 and

b̃2. The desired number of tuples is w = 4, so by uCG, we

get C̃1 = {ã2, ã2, ã3, ã4} and C̃2 = {b̃1, b̃1, b̃2, b̃2}. Lexico-
graphic ordering in uRG then generates 4 unique matches

[ã2, b̃1], [ã2, b̃2], [ã3, b̃1] and [ã4, b̃2], as desired.
Figure 12 shows the FK matrices generated by uCG and

uRG for all the tables in D̃eg.

5.3 Step2c: Key Matrix Synthesis
So far, Step2a in Section 5.1 has generated the PK vector

PT̃ and Step2b in Section 5.2 has generated the FK matrix

FT̃ for each T̃ . Step2c now uses the KV distribution OT̃Φ to
match the PKs and FKs to generate the key matrix KT̃ .

For OT̃Φ(α̃, β̃) = w, we generate KT̃ (α̃, β̃) by pairing w ran-
domly chosen elements from PT̃ (α̃) and w randomly chosen

elements from FT̃ (β̃).

We demonstrate this pairing for OB̃Φ ((2, 2), (2)) = 2 in Fig-

ure 6. Figure 10 shows PB̃(2) = [b̃1, b̃2]ᵀ and Figure 12 shows
FB̃(2, 2) = [[ã2], [ã3], [ã2], [ã3], [ã4], [ã4]]ᵀ. To generate w = 2

tuples, we use b̃1, b̃2 from PB̃(2) and (randomly) choose

ã2, ã3 from FB̃(2, 2) to form [b̃1, ã2], [b̃2, ã3] for submatrix
KB̃((2), (2, 2)). Figure 5 presents the scaled key matrices.

1677

5.4 Step2d: Non-Key Value Synthesis
Phase1 in Figure 2 omits the non-key attributes in scal-

ing CoDaD̃. Phase2 therefore needs a last Step2d to re-
introduce non-key attributes. For this paper, we reuse non-
key values from D, instead of generating synthetic values.

To see the underlying issue, consider a table book-review

where each review has two non-key values d and n, for the
date and number of “likes”. Reproducing the correlation be-
tween these two values will require assumptions about their
domains and joint distributions. Space constraint prevents
us from examining this issue. For now, we would simply
reproduce the correlation by sampling (d, n) pairs from D.

In general, Dscaler assigns the non-key values based
on the tuples’ key vector KV. For all the non-key values,
Dscaler assigns the non-key values based on the closest

KV. For example, t̃ in scaled table T̃ has KV γ̃. In the
original table T , the KV that is closest (see Section 4.2)
to γ̃ is γ, and t1, . . . , tk in T are the tuples having KV γ.
Dscaler randomly selects non-key values from t1, . . . , tk to
assign to t̃. Since Dscaler treats the non-key values as
a whole, Dscaler thus maintains the non-key correlations
better than non-key attribute assignment.

As pointed out at the end of Section 4.3, there may be
a few shadow tuples resulting from RVC. For these shadow
tuples, we just randomly fill in the values without violating
the uniqueness constraint. In our experiment, the number
of shadow tuples is small (< 1% for our experiments, on
average), and happens for one data set only (DoubanBook).

6. EXPERIMENTAL EVALUATION
This section describes the alternative algorithms, datasets

and similarity measures used in our experiments.

State-of-the-Art Alternatives
As explained in Section 2, we focus our Dscaler compar-

ison on two state-of-the-art algorithms:
1. VFDS is a random sampling approach for scaling down a
relational database [8]. VFDS first chooses a most relevant
starting table T∗ from D, then randomly selects the tuples
to form O(T∗). Next, VFDS enlarges O(T∗) by sampling tu-
ples associated with O(T∗) (references or being referenced).
It stops sampling when all tables have been visited. VFDS
thus samples a subset of the original dataset by following
foreign keys. In contrast, Dscaler constructs the required
number of correlation patterns (Phase1), then replace those
patterns with key values (Phase2). Buda et al.’s experiments
show that VFDS is about 300 times faster than previous
sampling approaches, and provides similar query answers.
2. UpSizeR is the first solution to DSP for a scalar scaling
factor s [29]. It generates tables in the (partial) order dic-
tated by the FK references, starting with tables that have no
foreign keys. For a table with just one FK, this generation
is based on the degree distribution; for a table with multi-
ple FKs, UpSizeR clusters the values in each FK, does co-
clustering[10], then generates FK values per co-cluster. In
contrast, Dscaler replicates per-tuple correlation patterns,
thus facilitating non-uniform scaling and greater similarity.
UpSizeR does not guarantee uniqueness (Definition 7).

Datasets
We present experiments on 3 datasets, 2 from previous

work and 1 newly crawled (schemas in the full paper[31]).

1. TPC-H2 is a synthetic database containing typical busi-
ness data, such as suppliers and orders; there are 8 tables
with a well-known schema. It is generated by dbgen and the
size is set to 1GB. This dataset was used by UpSizeR.

2. financial database3 first appeared in PKDD’99 Chal-
lenge Discovery. It contains typical financial data, such as
loans and transactions. financial has 8 tables, and the
table size (number of tuples) ranges from 77 (District) to
1056320 (Transactions). This dataset was used by VFDS.

3. DoubanBook4 was crawled from book.douban.com, a
Chinese social network website that allows the creation and
sharing of content related to movies, books, music, and re-
cent events and activities in Chinese cities. DoubanBook con-
tains the book-related data. It has 12 tables and 39082997
tuples, and the table size ranges from 686605 to 12891598.
DoubanBook is different from the previous two datasets by
having two heavily referenced table, user and book. Such a
property is very common in social network datasets.

Similarity Measure
The similarity of the scaled database and original database

is measured by the following properties:
Table Size Error. The relative error of the table size

is eT̃ = ||T̃ |−sT |T ||
sT |T |

. For a database D̃ = {T̃1, . . . , T̃K}, the

relative error of database size is eD̃ = (
∑
i eT̃i

)/K.
Query Error. The database semantic similarity is mea-

sured by the result of an aggregate query. q(D′) is the (nu-
merical) result when query q runs on database D′. For uni-
form scaling factor s, the relative error for a count query q is

eCOUNT = |q(D̃)−s×q(D)|
s×q(D)

, while the relative error for an average

query q is eAVE = |q(D̃)−q(D)|
q(D)

.

Distribution Error. Queries are application-specific:
different datasets will not have the same set of queries, espe-
cially if the datasets are from different domains. Hence we
also need a more generic (application-independent) measure
for similarity. Here, we use the frequency distribution for de-
gree as defined in Section 3. To measure the similarity of two
probability distributions, we use the Kolmogorov-Smirnov
(KS) D-statistic supx |F1(x)− F2(x)|, where F1 and F2 are

cumulative distribution functions (cdf). For a database D̃,
we take the average KS D-statistic for all FK references.

Results Summary
All experiments are done on a Linux machine with 128GB

memory and AMD Opteron 2.3GHz processor. For Up-
SizeR, we use the original C++ implementation4. For VFDS,
we also use the original Java implementation5. Dscaler is
implemented in Java.

The experiments show that Dscaler is consistently one of
the best-performing algorithms. VFDS sometimes matches
Dscaler’s performance for TPC-H and financial, but not
for DoubanBook (e.g. Figure 13). Similarly, UpSizeR some-
times matches Dscaler’s performance, but has unreason-
ably long execution time for DoubanBook (e.g. Figure 16).
In fact, if a plot does not include UpSizeR, that indicates
it takes too long to finish. Section 7 and Section 8 present
details for uniform and nonuniform scaling respectively.

2https://www.tpc.org/tpch/
3http://lisp.vse.cz/pkdd99/berka.htm
4http://www.comp.nus.edu.sg/∼upsizer/
5https://github.com/tbuda

1678

 10

 100

 1000

 10000

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

TPC-H
VFDS

UpSizeR
Dscaler

 0
 5

 10
 15
 20
 25
 30
 35
 40

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Financial
VFDS

UpSizeR
Dscaler

 100

 1000

 10000

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

DoubanBook
VFDS

Dscaler

Figure 13: Execution Time (seconds, log scale) for Scaling Down.

 10

 100

 1000

 10000

2 3 4 5 6

Scaling Up

UpSizeR-TPC-H
Dscaler-TPC-H

UpSizeR-Financial
Dscaler-Financial

Dscaler-DoubanBook

Figure 14: Execution Time (seconds, log scale) for Scaling Up

7. UNIFORM SCALING
Previous algorithms all use a single scaling factor s, so

we do the same here with s = 1
5
, 1

7.5
, 1

10
, 1

12.5
, 1

15
, 1

17.5
, 1

20
for

scaling down, and s = 2, 3, 4, 5, 6 for scaling up. In the plots,
the horizontal axis is s, purple color is for VFDS, green is
for UpSizeR, and Dscaler is red.

Execution Time
Figure 13 presents the results for scaling down. For TPC-H

and financial, Dscaler and VFDS are equally efficient.
For DoubanBook, VFDS is much slower (note the log scale)
than Dscaler, and UpSizeR takes unreasonably long to
finish. DoubanBook has two tables, user and book, that are
heavily referenced by others; they dramatically increase the
run time for VFDS and UpSizeR.

For scaling up, VFDS does not apply, so Figure 14 only
compares UpSizeR and Dscaler. It shows UpSizeR is com-
parable to Dscaler for the small financial dataset, slower
for TPC-H and, again, unreasonably slow for DoubanBook.

Table Size Error
For scaling down, Figure 15 shows that Dscaler has neg-

ligible Table Size Error (see Tuple Scaling in Step1a). Up-
SizeR is similar, but has noticeable errors for financial.
The error for VFDS increases as the sample size gets smaller
(contrary to the point of scaling down, where s is small).

For scaling up, Figure 16 shows that UpSizeR is com-
parable to Dscaler for TPC-H and has larger errors for
financial; it does not finish in time for a comparison to
Dscaler for DoubanBook.

Query Error
To measure query error for TPC-H, we adapt queries Q1–

Q5 used for UpSizeR [29, 31]. For scaling down, Figure 17
shows UpSizeR and Dscaler have similar performance.
VFDS does badly for Q3 and Q5, likely because of its large
Table Size Errors (Figure 15). For scaling up, Figure 18
shows that both Dscaler and UpSizeR have small errors.

The queries for financial are categorized into four groups
[7, 8]: (G1) queries that compute an aggregate value on key
attributes; (G2) queries that compute an aggregate value
on non-key attributes; (G3) queries that compute an ag-

 0

 1

 2

 3

 4

 5

 6

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

TPC-H

VFDS
UpSizeR
Dscaler

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Financial
VFDS

UpSizeR
Dscaler

 0

 0.5

 1

 1.5

 2

 2.5

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

DoubanBook

VFDS
Dscaler

Figure 15: Table Size Error for Scaling Down

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

2 3 4 5 6

Scaling Up

UpSizeR-TPC-H
Dscaler-TPC-H

UpSizeR-Financial
Dscaler-Financial

Dscaler-DoubanBook

Figure 16: Table Size Error for Scaling Up.

gregate value on key attributes with a WHERE clause;
(G4) queries that compute an aggregate value on non-key
attributes with a WHERE clause. We run 3 queries for
each group, so there are 12 queries [31]. Due to space con-
straint, we present only the average error for each group. For
scaling down, Figure 19 shows UpSizeR has errors that are
similar to Dscaler for G1, G2 and G3, but generally larger
for G4. The VFDS errors are similar to Dscaler’s for G3
and G4, but larger for G1 and G2. For scaling up, Figure 20
shows that the UpSizeR errors are similar to Dscaler’s for
G1 and G3, but larger for G2 and G4.

For DoubanBook, we use queries Q1, . . ., Q8 that are de-
signed to be meaningful [31]; e.g. Q3 is “select the num-
ber of authors whose books have been read by some users”.
Since DoubanBook is too big for UpSizeR, we only compare
VFDS and Dscaler for scaling down. Figure 21 shows
that Dscaler has negligible errors for all 8 queries, whereas
VFDS is accurate only for Q2 and Q6. For scaling up, there
is no comparison since VFDS only scales down, and Up-
SizeR fails for DoubanBook; Figure 22 shows Dscaler has
very small errors, except for Q3 (at most 0.06).

Distribution Error
For distribution error, Figure 23 shows that all 3 algo-

rithms have similarly small errors for scaling down financial,
but Dscaler is best for TPC-H and DoubanBook. For scaling
up, Figure 24 shows negligible error for Dscaler; UpSizeR’s
errors for TPC-H and financial are also small (< 0.01).

8. NONUNIFORM SCALING
Since previous algorithms do not perform nonuniform scal-

ing, this section only presents results for Dscaler.

Dataset Partitioning
For a dataset D, we can think of its various sizes as de-

termined by growth. Hence, let Di be a snapshot of D at
timestamp i = 1, . . . , n, and assume D1 ⊂ D2 ⊂ · · · ⊂ Dn.
By taking the ratio of Di and D1’s table sizes, we get the
scaling factor sT (≥ 1) for each table T .

For TPC-H, we use the default dbgen tool to generate the
datasetsD1, D2, D3, D4, D5; D1 is the starting database with
size 1GB, and D2, D3, D4, D5 are the databases of size 3GB,
5GB, 7GB, 9GB respectively.

1679

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q1

VFDS
UpSizeR
Dscaler

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q2

VFDS
UpSizeR
Dscaler

 0

 0.5

 1

 1.5

 2

 2.5

 3

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q3

VFDS
UpSizeR
Dscaler

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q4

VFDS
UpSizeR
Dscaler

 0

 0.5

 1

 1.5

 2

 2.5

 3

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q5

VFDS
UpSizeR
Dscaler

Figure 17: TPC-H Query Error for Scaling Down

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

2 3 4 5 6

Q1-Q3
UpSizeR-Q1
Dscaler-Q1

UpSizeR-Q2
Dscaler-Q2

UpSizeR-Q3
Dscaler-Q3

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04

2 3 4 5 6

Q4-Q5
UpSizeR-Q4
Dscaler-Q4

UpSizeR-Q5
Dscaler-Q5

Figure 18: TPC-H Query Error for Scaling Up

 0

 0.2

 0.4

 0.6

 0.8

 1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

G1
VFDS

UpSizeR
Dscaler

 0

 0.2

 0.4

 0.6

 0.8

 1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

G2
VFDS

UpSizeR
Dscaler

 0

 0.2

 0.4

 0.6

 0.8

 1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

G3
VFDS

UpSizeR
Dscaler

 0

 0.2

 0.4

 0.6

 0.8

 1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

G4
VFDS

UpSizeR
Dscaler

Figure 19: financial Query Error for Scaling Down

For financial, we grow it chronologically. D1 contains all
tuples (and associated tuples) with date < 1997 -10-01, and
D2, D3, D4, D5 contain all tuples with dates < 1998-01-01,
1998-04-01, 1998-07-01, 1998-10-01 respectively.

For DoubanBook, the dataset is obtained similarly, but
with a longer time span. D1 contains all tuples (and asso-
ciated tuples) with date < 2012-07-01, and D2, D3, D4, D5

contain all tuples with dates < 2013-01-01, 2013-07-01,
2014-07-01, 2015-07-01 respectively.

With this partitioning, TPC-H grows almost uniformly, in
contrast to financial and DoubanBook. For example, in
DoubanBook’s D1, the user and book-wish table sizes are
2013879 and 4582596 but, in D5, the user and book-wish

table sizes are 3519093 and 12891598. Thus, book-wish and
user scale by 3 and 1.7 times, respectively.

Since Dscaler’s Step1a ensures near-zero table size er-
rors, we only report Query and Distribution Errors below.

Query Error
For uniform scaling, Query Error is measured against the

input D, using s in the case of qCOUNT. For nonuniform scaling,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6

G1-G2
UpSizeR-G1
Dscaler-G1

UpSizeR-G2
Dscaler-G2

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5 6

G3-G4
UpSizeR-G3
Dscaler-G3

UpSizeR-G4
Dscaler-G4

Figure 20: financial Query Error for Scaling Up

 0

 2

 4

 6

 8

 10

 12

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q1-Q2
VFDS-Q1

Dscaler-Q1
VFDS-Q2

Dscaler-Q2

 0

 0.5

 1

 1.5

 2

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q3-Q4
VFDS-Q3

Dscaler-Q3
VFDS-Q4

Dscaler-Q4

 0

 0.5

 1

 1.5

 2

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q5-Q6
VFDS-Q5

Dscaler-Q5
VFDS-Q6

Dscaler-Q6

 0

 2

 4

 6

 8

 10

 12

 14

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Q7-Q8
VFDS-Q7

Dscaler-Q7
VFDS-Q8

Dscaler-Q8

Figure 21: DoubanBook Query Error for Scaling Down

the tables grow at different rates, so we measure Query Error

by comparing the scaled D̃i to the empirical Di instead; i.e.

for query q (COUNT or AVE), error eq = |q(D̃i)−q(Di)|
q(Di)

. We use

the same queries from Section 7. The results for D̃2, D̃3,

D̃4, and D̃5 are grouped together by query.
For TPC-H, Figure 25 shows about 0.07 error for Q2 on

D5, but much less (< 0.005) for other queries and Di. For
financial, the queries are more complex, but the errors
are at most 0.12 (for G4). For DoubanBook, although the
database is partitioned by longer time spans, Dscaler still

produces D̃i with less than 0.1 error for most queries, except
Q1 (with 0.15 average error).

Distribution Error
Figure 26 shows that Dscaler has negligible distribution

errors for TPC-H; this is expected, since dbgen scales the
tables in TPC-H almost uniformly. The errors for financial
are consistently small (≈ 0.005). For DoubanBook, the errors
are larger, but still small (< 0.04).

1680

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2 3 4 5 6

Q1-Q4
Dscaler-Q1
Dscaler-Q2
Dscaler-Q3
Dscaler-Q4

 0
 1x10-5
 2x10-5
 3x10-5
 4x10-5
 5x10-5
 6x10-5
 7x10-5
 8x10-5
 9x10-5
 0.0001

2 3 4 5 6

Q5-Q8
Dscaler-Q5
Dscaler-Q6
Dscaler-Q7
Dscaler-Q8

Figure 22: DoubanBook Query Error for Scaling Up

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

TPC-H

VFDS
UpSizeR
Dscaler

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

Financial
VFDS

UpSizeR
Dscaler

 0

 0.2

 0.4

 0.6

 0.8

 1

1/20
1/17.5

1/15
1/12.5

1/10
1/7.5

1/5

DoubanBook
VFDS

Dscaler

Figure 23: Distribution Error for Scaling Down

 0
 0.0002
 0.0004
 0.0006
 0.0008

 0.001
 0.0012
 0.0014
 0.0016
 0.0018

 0.002

2 3 4 5 6

TPC-H
UpSizeR

Dsaler

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

 0.01

2 3 4 5 6

Financial
UpSizeR
Dscaler

 0

 0.002

 0.004

 0.006

 0.008

 0.01

2 3 4 5 6

DoubanBook

Dscaler

Figure 24: Distribution Error for Scaling Up

9. LIMITATIONS
Dscaler aims to reproduce features in F , so (naturally)

it may not do well for features not in F . Due to space con-
straint, we list just two examples:

(1) Join Topologies
Consider COUNT queries on DoubanBook. For n ≥ 1, define

a star n-join to be a query that joins n + 1 tables on the
same key, and a linear n-join to be a query that joins n+1
tables on n different keys. Further, star 0-join and linear
0-join both refer to a selection on a single table (no join),
such as “number of books which were read by some user”.

For examples of a star topology, “number of books which
have been read and commented by some users” is a 1-join,
“number of books which have been read, commented and
authored before” is a 2-join, and “number of books which
have been read, commented, indicated as wish to read, and
authored before” is a 3-join. For examples of a linear topol-
ogy, “number of books which have been read by some users
who have written some diary before” is a 1-join, “number of
books which have been read by some users who have written
some diaries about the same book” is a 2-join, and “num-
ber of books which have been read by some users who have
written some diaries about the same book and also wrote
some reviews” is a 3-join. Their corresponding SQL queries
are presented in the full paper [31].

Since Dscaler replicates Referencing Vector Correlation
in Step1d, we expect it to do well for star joins, as confirmed
by Figure 27. For linear joins, however, Figure 27 indicates
errors are big even for a 1-join, and they increase with n.
This is also expected, since CoDaD does not capture the
chained correlation in a linear n-join.

 0

 0.05

 0.1

 0.15

 0.2

Q1 Q2 Q3 Q4 Q5

TPC-H

D2
D3
D4
D5

 0

 0.05

 0.1

 0.15

 0.2

G1 G2 G3 G4

Financial

D2
D3
D4
D5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

DoubanBook

D2
D3
D4
D5

Figure 25: Query Error for Nonuniform Scaling

(2) Social Networks
For DoubanBook, two users may form a social link via their

posts. Consider a feature like mutual-comment, where user
Ux makes x comments on posts written by user Uy, who
makes y comments on posts written by Ux. Such correlation
between Ux and Uy is not in CoDa. If z counts the number of
such (x, y) pairs, the frequency distribution for z is plotted
in Figure 28 for diary as posts, and in Figure 29 for review.
They show the empirical distribution for D2 is much more

skewed than the distribution for D̃2 generated by Dscaler.

10. CONCLUSION
This paper introduces nuDSP, presents a solution Dscaler

(with supporting Theorems 1–4) and uses 3 similarity mea-
sures to compare it to 2 algorithms for 3 datasets.

Recall from I1 and I7 (Section 1.2) that one could improve

the similarity between D and D̃ by adding more features into
the 3-phase framework, but that would make the solution
harder. Surely, it would not be scalable (pun intended) to
design a new algorithm everytime a new feature is added
to F . Instead, our current work explores the possibility of

developing a set of tools for tweaking D̃.
For example, to enforce similarity for linear joins in addi-

tion to CoDa, we want to generate D̃ by Tlinear(Dscaler(D,
s)), for some tool Tlinear that tweaks the Dscaler output.
Similarly, to generate social links, we would run some tool
Tsocial on the Dscaler output.

There are several challenges to this approach. For exam-
ple, to get Tsocial(Tlinear(Dscaler(D, s))), running Tsocial
after Tlinear may adversely perturb the correlation injected
by Tlinear; moreover, Tsocial and Tlinear may not commute,
i.e. Tsocial(Tlinear(Dscaler(D, s))) 6=
Tlinear(Tsocial(Dscaler(D, s))).

Our current work on developing a set of scaling tools is
a step towards the vision for application-specific benchmark
generation, as proposed in previous work [28].

11. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. Join synopses for approximate query
answering. In SIGMOD, pages 275–286, 1999.

1681

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

TPC-H Financial DoubanBook

Distribution Error

D2
D3
D4
D5

Figure 26: Distribution Error for Nonuniform Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

0-Join 1-Join 2-Join 3-Join

Star Join

D2
D3
D4
D5

 0

 0.2

 0.4

 0.6

 0.8

 1

0-Join 1-Join 2-Join 3-Join

Linear Join

D2
D3
D4
D5

Figure 27: Query Error for Star Join and Linear Join

Figure 28: Mutual-comment
for diary

Figure 29: Mutual-comment
for review

[2] S. Agarwal, A. P. Iyer, et al. Blink and it’s done:
interactive queries on very large data. VLDB,
5(12):1902–1905, 2012.

[3] A. Arasu, R. Kaushik, and J. Li. Data generation
using declarative constraints. In SIGMOD, pages
685–696, 2011.

[4] C. Binnig, D. Kossmann, and E. Lo. Reverse query
processing. In ICDE, pages 506–515. IEEE, 2007.

[5] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu.
QAGen: generating query-aware test databases. In
SIGMOD, pages 341–352, 2007.

[6] N. Bruno and S. Chaudhuri. Flexible database
generators. In VLDB, pages 1097–1107, 2005.

[7] T. Buda, T. Cerqueus, et al. ReX: Extrapolating
relational data in a representative way. In Data
Science, LNCS 9147, pages 95–107. 2015.

[8] T. S. Buda, T. Cerqueus, et al. VFDS: An application
to generate fast sample databases. In CIKM, pages
2048–2050, 2014.

[9] S. Chaudhuri, G. Das, and U. Srivastava. Effective use
of block-level sampling in statistics estimation. In
SIGMOD, pages 287–298, 2004.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In KDD, pages
89–98. ACM, 2003.

[11] S. Duan, A. Kementsietsidis, et al. Apples and
oranges: a comparison of RDF benchmarks and real
RDF datasets. In SIGMOD, pages 145–156, 2011.

[12] H. Fu, A. Zhang, and X. Xie. Effective social graph
deanonymization based on graph structure and
descriptive information. ACM Trans. Intell. Syst.
Technol., 6(4):49:1–49:29, July 2015.

[13] R. Gemulla, P. Rösch, and W. Lehner. Linked
Bernoulli synopses: Sampling along foreign keys. In
Scientific and Statistical Database Management, pages
6–23, 2008.

[14] J. Gray, P. Sundaresan, et al. Quickly generating
billion-record synthetic databases. In SIGMOD, pages
243–252, 1994.

[15] V. Gupta, G. Miklau, and N. Polyzotis. Private
database synthesis for outsourced system evaluation.
In Proc. AMW, May 2011.

[16] K. Houkjær, K. Torp, and R. Wind. Simple and
realistic data generation. In VLDB, pages 1243–1246,
2006.

[17] G. H. John and P. Langley. Static versus dynamic
sampling for data mining. In KDD, volume 96, pages
367–370, 1996.

[18] H. Köhler, X. Zhou, et al. Sampling dirty data for
matching attributes. In SIGMOD, pages 63–74, 2010.

[19] E. Lo, N. Cheng, and W.-K. Hon. Generating
databases for query workloads. PVLDB,
3(1-2):848–859, 2010.

[20] W. Lu, G. Miklau, and V. Gupta. Generating private
synthetic databases for untrusted system evaluation.
In ICDE, pages 652–663, Mar. 2014.

[21] F. McSherry and I. Mironov. Differentially private
recommender systems. In KDD, pages 627–636, 2009.

[22] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symp. Security and Privacy, pages 111–125, 2008.

[23] C. R. Palmer and C. Faloutsos. Density biased
sampling: An improved method for data mining and
clustering. SIGMOD Rec., 29(2):82–92, May 2000.

[24] F. Provost, D. Jensen, and T. Oates. Efficient
progressive sampling. In SIGMOD, pages 23–32, 1999.

[25] S. Qiao and Z. M. Özsoyoğlu. RBench:
Application-specific RDF benchmarking. In SIGMOD,
pages 1825–1838, 2015.

[26] T. Rabl, M. Danisch, et al. Just can’t get enough:
Synthesizing big data. In SIGMOD, pages 1457–1462,
2015.

[27] J. M. Stephens and M. Poess. MUDD: a
multi-dimensional data generator. In SIGSOFT
Software Engineering Notes, pages 104–109, 2004.

[28] Y. C. Tay. Data generation for application-specific
benchmarking. PVLDB, 4(12):1470–1473, 2011.

[29] Y. C. Tay, B. T. Dai, et al. UpSizeR: Synthetically
scaling an empirical relational database. Inf. Syst.,
38(8):1168–1183, 2013.

[30] X. Yin, J. Han, et al. Efficient classification across
multiple database relations: A CrossMine approach.
IEEE TKDE, 18(6):770–783, 2006.

[31] J. W. Zhang and Y. C. Tay. Dscaler: Synthetically
scaling a given relational database.
http://www.comp.nus.edu.sg/∼upsizer/, 2016.

1682

