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ABSTRACT
Data is increasingly being purchased online in data mar-
kets and REST APIs have emerged as a favored method to
acquire such data. Typically, sellers charge buyers based
on how much data they purchase. In many scenarios, buy-
ers need to make repeated calls to the seller’s API. The
challenge is then for buyers to keep track of the data they
purchase and avoid purchasing the same data twice. In this
paper, we propose lightweight modifications to data APIs to
achieve optimal history-aware pricing so that buyers are only
charged once for data that they have purchased and that has
not been updated. The key idea behind our approach is the
notion of refunds: buyers buy data as needed but have the
ability to ask for refunds of data that they had already pur-
chased before. We show that our techniques can provide
significant data cost savings while reducing overheads by
two orders of magnitude as compared to the state-of-the-art
competing approaches.

1. INTRODUCTION
Data in business and even certain sciences is increasingly

being acquired from other companies [5,6,7,8,9,22,26] This
has led to the emergence of data markets to facilitate the
buying and selling of data. Schomm et al. [20] survey data
sellers and list 46 commercial data suppliers as of 2013.

The most common method for selling data online is to
make it available through a RESTful API [2, 5, 6, 9, 18, 22,
26, 27]. Existing APIs enable buyers to submit requests for
data in the form of parameterized queries. For example,
to purchase data from Twitter, one can specify keywords of
interest, say a username, in the API call and Twitter returns
all activity, up to an API defined limit, that matches the
query. Typically, sellers charge buyers based on how much
data they purchase. That is, the cost of an API call is the
sum of the cost of the tuples returned by that call [26].

In many scenarios, buyers need to make repeated calls to
the seller’s API. One example is when purchased data drives
an application and the use of that application determines the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 14
Copyright 2016 VLDB Endowment 2150-8097/16/10.

1 2 3 4 

Figure 1: An illustration of the limitations of REST data
APIs. Alice makes an API call for data in the circle covering
regions 1, 2, and 3. Data in region 3 changes. Alice makes
another API call for data in the circle covering regions 2, 3,
an 4. With today’s pricing methods, Alice will pay twice for
data in region 2 and the unchanged data from region 3.

data that needs to be purchased. In those scenarios, buyers
may inadvertently purchase the same data twice. In fact, it
is hard to build applications that never purchase the same
data again. We illustrate with a concrete example:

Example 1.1. Bob sells data on people who have visited
a given business (examples of such services are Yelp [28]
and Foursquare [7]). Bob provides an API checkins(lat,

long, r, t), where (lat, long) define the latitude and
longitude of a circle’s center with radius r. checkins returns
the list of (possibly anonymized) users, along with their at-
tributes, who have visited businesses, after a timestamp t,
that lie in the circle.

In our example, Alice first makes an API call,
checkins(x1, y1, r, t1), waits for some time, and makes
another API call, checkins(x2, y2, r, t1), for a different
center but the same radius. Figure 1 depicts the two calls.
Between the two calls, some businesses in area 3 recieve new
visits. Currently, if Alice executes the two queries, she will
pay twice for the data in area 2 and for the old data from
area 3. Since she does not know what updates were made to
the data, she must make the API call to know if the data
was updated.

To only get the updates, Alice can change the time in the
second call to t2 = t1 + 1. She may still end up paying for
redundant data if there were any checkins with time t > t2
in her first call. This happens when such customers visit a
business in regions 2, 3, or 4 after time t2, thus, being part
of the answer returned to Alice during both API calls. In
fact, in this example, it is impossible to avoid overpaying
for data purchases with existing APIs.

Even for static datasets, to avoid paying twice for the data
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in areas 2 and 3, multiple tiny circles that exactly cover area
4 and nothing outside it, are needed.1

Today, sellers only keep track of the total amount of data
purchased by a buyer but not the details of the purchased
data. A primary drawback of only storing limited data
about user purchases is that it puts the burden on the buyer
to never purchase the same data twice or risk paying multi-
ple times for the same data.

Buyers may cache the result of API calls and attempt
query rewriting to only ask for new data. Caching will,
however, be unusable in the case of time-varying data and
caching restrictions. For datasets such as weather and traf-
fic, the underlying data changes over time. In such cases, it
may not be possible to predict when changes are made to
the subset of data that a buyer is interested in and the only
way to know of an update is to redo the call to the data
API. Some APIs such as Yelp [28] prohibit caching beyond
a single user session, while others, such as Twitter [24], pro-
hibit caching of location and geographic information, except
when joined with a tweet, while permitting caching of other
parts of the data. Thus, even if the buyer knew that they
would require a newly purchased data item in the future,
they are prohibited from caching it and reusing it when the
need arises. Thus, in both circumstances, the buyer can not
avoid making multiple API calls and must incur the cost of
repeat purchases of the same data.

Sellers could store users’ purchase histories to enable pric-
ing that accounts for prior API calls. It may be beneficial for
sellers to provide a service that only charges for data once so
as to enable price discrimination. Although there are cus-
tomers who may pay the full price of the data and not worry
about paying extra, there are price-conscious customers who
may not buy the dataset unless the data is available within
their budget. Providing an avenue for such customers to
optimize and reduce their data costs can increase revenues.

However, as we evaluate in Section 6, the computational
overhead of storing the purchase history at the seller is sig-
nificant. Space and time overheads can be in the order of the
data size and the number of previous API calls. Moreover,
this might dissusade those customers who prefer that their
querying history not be stored permanently at the seller.

To address the above challenges, in this paper, we pro-
pose lightweight modifications to data APIs to achieve the
following three goals:

• Optimal history-aware pricing: We provide a method
to price API calls so that buyers are only charged once
for data that they have purchased and that has not
been updated. We refer to this as history-aware pric-
ing.

• Constant overheads: We provide a method to support
history-aware pricing that only requires the seller to
store a constant amount of state per buyer. Currently,
sellers already store such information so as to keep
track of a user’s aggregate use of their services.

• Anonymity: In addition to the above cost and perfor-
mance properties, we also provide anonymity to the
buyers about what data they purchase and when the
purchases are made. That is, the seller need not re-
tain any identifying information about the user that

1Only a finite number of such API calls are needed since we
assume the domains for lat, long, radius to be finite.

can recreate a user’s query history. A service to sell
data without remembering what the users purchased
is a desirable feature for both users and sellers: (a)
users are assured of anonymity of their query history;
the query history might permit disclosure of compet-
itive intelligence, and, (b) the sellers need not invest
additional resources in securing user purchase histories
since they are not stored by the seller.

The key idea behind our approach is the notion of refunds:
buyers buy data as needed but have the ability to ask for re-
funds of data that they had already purchased before. Thus,
the payment for data is conducted in two steps: the usual
payment when data is received and another round where the
buyer asks for refunds. While asking for refunds, the buyer
proves to the seller that she has been charged multiple times
for the same data. The proofs are constructed so as to pro-
tect against tampering by the buyer even when the buyer is
not truthful or can collude with other buyers.

In this paper, we make the following contributions:

1. In Section 4, we propose the notion of refunds as a
way to provide optimal, history-aware pricing for data
APIs that can be expressed as SPJU queries, without
negation nor duplicate elimination. We describe the
construction of refunds for a single-buyer setting with
no updates and prove properties about the correctness
and optimality of such a system.

2. In Sec. 5, we propose a generic and extensible frame-
work to support refunds. We then show how the frame-
work can be used to accommodate multiple buyers, up-
dates, and optimizations to reduce the computational
and communication overheads of using refunds.

3. In Section 6, we evaluate empirically and compare the
refund-based approaches to approaches that store user
history at the server as well as approaches that do
not provide optimal pricing. We show that even for
small workloads, cost savings from 10× to 99× can
be obtained through the use of refunds, compared to
history-agnostic pricing. The associated performance
overheads, compared to history-agnostic pricing, are
no larger than 2× in the best case (when no refunds
need to be asked) and 6× in the worst case (when the
entire query is repeated). Refund approaches are com-
parable in performance to history-based approaches
while protecting privacy. Further, the optimizations
we develop in Section 5 cut overheads by a factor of
22.2× as compared to the basic refund protocol.

We first define our problem setting (Sec. 2) and describe
two algorithms (Sec. 3), that are not based on refunds, to
manage the pricing of API calls. In Sec. 4, we describe
the desiderata of a basic refund protocol and describe our
construction of a refund scheme. In Sec. 5, we generalize the
basic refund protocol and optimize the protocols to reduce
the overhead of using refunds. In Sec. 6, we compare these
algorithms against the refund-based pricing framework.

2. PROBLEM DESCRIPTION
We first define the pricing functions and our setting. In

current data markets, it is the buyer who must agree to
terms and restrictions set by the seller. Thus, our model
assumes that the seller is trusted, while the buyer is not.
In our setting, Alice runs an application that acquires data
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from Bob, the data seller. Bob charges Alice separately for
each output tuple in her answer set.

We assume a database D storing relations D1, . . . , Dk
with schemas of the form: (tid, ver, A1,..., Am). Here
the column tid is a primary key and ver indicates the ver-
sion number of the tuple. The version numbers are initial-
ized to 0 and are incremented every time an update is made
to the tuple; the system only keeps the last version of each
tuple. Thus, the version numbers are just an extra attribute
that we add to each tuple. The pricing function generates a
price per output tuple; that is, for a query Q over D, there
is a pricing function p that assigns a price to each output
tuple t ∈ Q. This is a common way [26] to price relational
data in commercial data markets. In the rest of the paper,
we assume that all tuples have the same price (taken to be
a unit of some currency), but the techniques generalize to
cases with non-uniform prices.

Pricing Full Selection Queries. Given a function that
assigns a price to each base tuple, pricing selection queries,
SELECT * FROM Di WHERE [condition], is trivial since each
query returns a subset of base tuples. The price of each
output tuple is the price of the corresponding base tuple.
Further, since each base tuple contributes to at most one
output tuple, the price of the query is the sum of the prices
of the tuples in the query’s output.

Pricing Full Join Queries without Self-Joins. For
queries with joins, but without projections or self-joins, such
as,

SELECT * FROM D1,..., Dk WHERE [conditions]

where ∀i, j, i 6= j : Di 6= Dj , this paper prices each out-
put tuple, t, as the sum of the prices of the base tuples from
relation Di that belong to the where provenance of t. Since
a single tuple may contribute to many output tuples, to pre-
vent charging multiple times for the tuple, Bob must price
the overall query as the sum of the prices of the base tuples
returned by k queries of the form:

SELECT DISTINCT Di.* FROM D1,..., Dk WHERE [conditions]

That is, Bob must price the tuples from the individual
relations separately, by computing semi-joins for each rela-
tion.

Pricing Projection Queries without Duplicate
Elimination The price of a query with projections, but
without duplicate elimination, is identical to the price of
the corresponding full query.

Pricing More Complex Queries. Consider any tech-
nique (like the ones presented in this paper) that can price
a sequence of SPJ queries without unions, self-joins, or du-
plicate elimination, such that Alice only pays once for each
tuple, irrespective of how many queries in the sequence the
tuple belongs to. Any such technique can be augmented to
also support sequence of queries with unions and self joins,
as we discuss below.

Pricing a Query Sequence with Unions. For queries
with unions, say Q1 ∪Q2, Bob prices Q1 and Q2 separately
as if they were two independent queries in the sequence.

Pricing a Query Sequence with Self-Joins. Simi-
larly, for queries with self-joins, such as,

SELECT * FROM D1, D2,..., Dk WHERE [conditions]

Algorithm 1: HistoryStream

Input: userId INT, tupid INT
begin

// costs(uid, cost) is table with cost of purchased tuples
// for user uid. historyStore(uid, history) stores a bit
// vector, for user uid, to remember their bought tuples.
DECLARE myhistory bytea;
SELECT INTO myhistory history FROM historyStore

WHERE uid = userId;
if get bit(myhistory, tupid) = 0 then

UPDATE costs SET cost = cost + 1 WHERE uid = userId;
myhistory := set bit(myhistory, tupid, 1);
UPDATE historyStore

SET history = myhistory WHERE uid = userId;

where Di = Dj for some pair i, j ∈ [1, k], Bob prices the
tuples from the individual relations separately. That is, Bob
prices the following sequence of queries from i ∈ {1, . . . , k}.

SELECT DISTINCT Di.* FROM D1,..., Dk WHERE [conditions]

For any framework that provides optimal history-aware
pricing, our desiderata are: (1) minimize state at the seller,
(2) minimize processing at the seller, (3) keep data transfer
overheads low, and (4) minimize query latency overheads.

Given that pricing join and union queries reduces to pric-
ing selection queries, in the rest of the paper, we assume
a single relation D and focus on selection query pricing to
simplify the presentation.

3. NAÏVE APPROACHES
We now look at two classes of solutions to manage pricing:

the first does not provide optimal pricing, in the sense that
Alice would pay multiple times for the same tuple she pur-
chases; the other does provide optimal history-aware pric-
ing, but does not satisfy the first two requirements of the
desiderata.

The näıve way to compute the prices is through two
queries: ‘result = Q(D)’ followed by ‘SELECT COUNT(*)

FROM result’. Bob charges the amount calculated by the
second query to Alice and returns a cursor to result. Both
queries belong to a single transaction to prevent the data
from being updated between the time when the price is com-
puted and the cursor to Q is returned. We call this method
CountBlock, where ‘Block’ indicates that the query’s cost
is computed before the cursor to the query’s answer is re-
turned to Alice. Another approach, called CountStream,
counts the cardinality as Alice advances the cursor. Nei-
ther CountBlock nor CountStream store query history at the
seller, and hence they charge Alice for each tuple, even if the
tuple was purchased by Alice in a previous query.

Another approach is for Bob to track the tuples purchased
by Alice in a bit vector with one bit per tuple in table D.
Bob keeps one such bit vector for each user. Whenever Al-
ice buys a tuple, the associated bit is set; while, whenever
Bob updates a tuple, the corresponding bit is cleared. Al-
gorithm 1, HistoryStream, is a function that updates the
bit vector in a streaming fashion, as the cursor is advanced;
while Algorithm 2, HistoryBlock, is a blocking implemen-
tation where updates to the bit vector are performed inside
a user defined aggregate that aggregates over the set of tu-
ple ids in a query’s answer. The pseudo-codes are based
on the PL/PGSQL syntax. As before, the above steps are
encapsulated in a single transaction to prevent updates to
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Algorithm 2: HistoryBlock user defined aggregate

// history has a composite type with (vec bytea, price int).
// vec is the history bit vector.
Input: INOUT history, IN userId, IN tupid
begin

if history IS NULL then
history := ROW(0, 0); history.price := 0;
SELECT ph.history INTO history.vec

FROM historyStore AS ph WHERE ph.uid = userId;

else if get bit(history.vec, tupid) = 0 then
history.vec := set bit(history.vec, tupid, 1);
history.price := history.price + 1;

the data between the time when the price is computed and
when the cursor to Q is returned. One drawback of using
the history-based approach is that the seller must provide
durable storage for user history. Another drawback is that
buyer purchases can no longer be anonymous.

4. REFUNDS
In this section, we propose refunds as a new mechanism

for optimal, history-aware pricing of a sequence of queries.
With support for refunds, Alice can make multiple API calls
without modifying her queries. If she makes repeated pur-
chases, they are identified and the extra amount she paid
for the repeated purchases are refunded by Bob to Alice.

To support refunds, Bob computes additional informa-
tion, called refund coupons, which he returns along with the
results of Alice’s queries. Bob continues to charge Alice as he
normally would (using either CountStream or CountBlock,
whichever leads to higher throughput, depending on the
query), without accounting for any previous queries from
Alice. The coupons are designed so that if there is a com-
mon tuple with identical tid, say with value id, in the re-
sult of two different queries, there is a coupon from the first
query and a corresponding coupon from the second query
such that Bob can inspect the two coupons to determine
that they refer to the same tuple with tid = id. Given
this, Bob knows that Alice was charged twice for id and he
can refund the price of the tuple.

Alice is responsible for storing the coupons, detecting re-
peat purchases, and using the coupons to ask for refunds.
Keeping track of coupons is easier than tracking the tuples
purchased since (a) coupons naturally work with updates
and (b) Alice need not modify her queries.

We now formally define the protocol to support refunds
for a single seller and a single buyer over a static database.
We then generalize the protocol to multiple buyers and to
support updates. In Section 5, we consider specialized opti-
mizations to reduce the overhead of supporting refunds.

We define the protocol by the messages Alice and Bob
send to each other. The protocol begins when Alice sends
a query Q to Bob. Bob sends back two messages: Q(D) and
refunds(Q, D). Both messages are sets of tuples with the
following properties:

1. The schema for refunds(Q, D) is (tid, qid,

digest), where tid is a tuple identifier, qid is a query
identifier, and digest is the output of a hash func-
tion. The schema for refunds is independent of the
schemas for Q and D. We call each tuple in refunds(Q,

D) a coupon where coupon c is defined as

c = (id, τ,H(id⊕ τ ⊕ κ)) (1)

Here id is the tuple identifier; τ is a unique identifier
assigned by the server to each query such that τ is
monotonically increasing; H is a cryptographic hash
function, SHA1 in our implementation; ⊕ is the XOR
operation;2 and, κ is a secret key only known to Bob.
In the single-buyer protocol over static data, τ is an
integer that is initialized to 0 and is incremented for
each query Alice sends to Bob.

2. There is a one-to-one correspondence between tuples
in refunds(Q, D) and tuples in Q(D). That is,

∀t ∈ Q(D), ∃ρ ∈ refunds(Q, D) : t[tid] = ρ[tid], and

∀ρ ∈ refunds(Q, D),∃t ∈ Q(D) : ρ[tid] = t[tid]

In case Alice gets the same tuple, with tid = id twice,
from queries Q1 and Q2, she will also get two coupons c1 and
c2 such that c1[tid] = c2[tid] = id. Note that we have as-
sumed that all tuples are identically priced.3 If Alice detects
repeat purchases, she can ask Bob for a refund by sending a
message consisting of a pair of coupons for the same tuples.
Bob verifies that the hash values of the returned coupons
are the ones he previously computed and credits the refund
to Alice. We call this protocol BasicRefunds. Formally,
BasicRefunds is defined as follows:

1. Alice sends a refund message ρ = 〈c1 =
(id1, τ1, h1), c2 = (id2, τ2, h2)〉.

2. Bob verifies the following: (a) id1 = id2, (b) τ1 < τ2,
and (c) ∀i ∈ {1, 2} : hi = H(idi ⊕ τi ⊕ κ).

Intuitively, the refund message ρ asks a refund for tuple
id = id1 = id2 purchased for a query with qid = τ2 using the
coupon for the same tuple purchased with a previous query
with qid = τ1.

We now define the criteria for safety and optimality of any
refund-based pricing protocol. Let W = (M1, . . . ,Mnq+nr )
be a sequence of messages from Alice to Bob consisting of
nq queries and nr refund requests, where each Mi is either
a query Q or a refund request ρ. If over the nq (possibly
different) queries, tuple ti was purchased ni times, then let

T (W ) = {(t1, n1), . . . , (tm, nm)}

be the set of all tuples purchased by Alice along with their
counts. Given that p : tid → R is the function that assigns
prices to tuples, we denote by P (W ) the amount Alice pays
for the queries in W :

P (W ) =
∑
Q∈W

∑
t∈Q(D)

p(t[tid]) =
∑

(t,n)∈T (W )

n · p(t[tid]) (2)

Similarly, R(W ) denotes the amount Bob refunds to Alice
after processing W :

R(W ) =
∑
ρ∈W

p(ρ[tid]) (3)

W may contain multiple refund requests for the same tu-
ple. For example, say ρ1 and ρ2 are refund requests for
2For simplicity, all ids are assumed to be integers. If not,
they can be cast into a string type along with the use of
string concatenation in place of XOR.
3For non-uniform prices, use the coupon
c = (id, p,H(id⊕ p⊕ κ)), where p is the tuple’s price.
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the same tuple, tid = 1. In such case, R(W ) would be
p(ρ1(tid = 1)) + p(ρ2(tid = 1)) = 2p(t[tid = 1]).

Let ∆(W ) = P (W )−R(W ) be the net payment by Alice
with message sequence W .

Safety. A refund protocol is safe if Alice must pay at least
once for each tuple she has purchased. Formally,

∀W : ∆(W ) ≥
∑

(t,n)∈T (W )

p(t[tid]) (4)

Optimality. A refund protocol is optimal if there is a way
to ask for refunds so that Alice never pays more than
once for each tuple she has purchased. Formally, if Q̄ =
(Q1, . . . , Qnq ) are the queries in W , ρ̄ = (ρ′1, . . . , ρ

′
n′r

) are

refunds, and W ′ = Q̄ · ρ̄ is their concatenation, that is,
W ′ = (Q1, . . . , Qnq , ρ

′
1, . . . , ρ

′
n′r

) where W ′ is the set of all
messages that Alice sends to Bob, then,

∀W ∃W ′ : ∆(W ′) =
∑

(t,n)∈T (W )

p(t[tid]) (5)

That is, given the queries in a message sequence W , it is
always possible to request refunds to obtain the maximum
possible safe refund.

Before analyzing BasicRefunds’s safety and optimality,
we note that Alice only controls three aspects of the refund
protocol: when she asks for refunds, the number of refund
messages, and the coupons she uses for her refund messages.
She can not forge coupons of her own since H is a crypto-
graphic hash and only Bob knows the secret key κ.

Lemma 4.1. BasicRefunds is optimal.

Proof. We use induction on the number of queries in W .
Base case. With no queries, W = ∅, P (W ) = R(W ) =

∆(W ) = 0. Thus, BasicRefunds is optimal.
Inductive case. For a sequence of i − 1 queries

(Q1, . . . , Qi−1), let Wi−1 be the optimal sequence of queries
and refunds. For a new query Qi, let the refund messages be
(ρi1, . . . , ρik) where each ρij is a refund for a tuple t that has
been purchased before. Refund ρij is constructed by taking
the coupon for t, received with query Qi, and any coupon
for the same tuple id tid = t[tid] received with a previous
purchase. Then the sequence is Wi = Wi−1 · Qi · ρi1 · · · ρik
is optimal. Let Tnew = {t ∈ Qi(D) ∧ (t, n) /∈ T (Wi−1)} and
Told = {t ∈ Qi(D) ∧ (t, n) ∈ T (Wi−1)}. Given the notation
p(t) = p(t[tid]), we get,

∆(Wi) = P (Wi−1) + P (Qi)− R(Wi−1)−
k∑

j=1

R(ρij)

= P (Wi−1)− R(Wi−1) +
∑

Tnew

p(t) +
∑
Told

p(t)−
k∑

j=1

R(ρij)

= ∆(Wi−1) +
∑

t∈Tnew

p(t) +
∑

t∈Told

p(t)−
∑

t∈Told

p(t)

= ∆(Wi−1) +
∑

t∈Tnew

p(t)

=
∑

(t,n)∈T (Wi−1)

p(t) +
∑

t∈Tnew

p(t)

=
∑

(t,n)∈T (Wi)

p(t)

Hence, Wi is optimal.

BasicRefunds is not safe, though. Given any non-empty
sequence of messages W , W can repeat a non-empty query
q, and repeatedly ask for refunds of a single tuple. That is,
if 〈c1, c2〉 is a legitimate refund request, Alice keeps sending
the request multiple times and can thus get more as refunds
than the cost of the data itself.

To handle this case, we modify BasicRefunds to
MonotoneRefunds. MonotoneRefunds is both safe and opti-
mal. To implement the protocol, Bob maintains an expected
query id τexp for refunds by Alice. τexp is initialized to 0
when Alice registers with Bob. The protocol is as follows:

1. Alice sends a 〈 BEGIN REFUND τ 〉 message. Here τ is
a query id.

2. Alice sends one or more refund messages. Each refund
message ρ = 〈c1 = (id, τ1, h1), c2 = (id, τ, h2)〉 uses
the same query id τ for the second coupon as the τ
specified in the 〈 BEGIN REFUND τ 〉 message.

3. Alice sends a 〈 END REFUND τ 〉 message.

4. Apart from checking that the digest of the message is
equal to the computed hash value as in BasicRefunds,
Bob also checks that (a) there is only one refund mes-
sage for each tuple with tid = id, (b) the query id of
all second coupons, τ are identical and equal to the τ
in the 〈 BEGIN REFUND τ 〉 message, and (c) τ ≥ τexp.

5. If any of the conditions are not met, all the coupons in
the BEING ...END block are rejected. Else, Bob credits
the total refund to Alice and updates τexp to τ + 1.

An alternative view of MonotoneRefunds refund protocol
is that steps 1 through 3 define a “session” where one session
is an atomic way for Alice to transmit a set of coupons
associated with a single query. Alice checks the coupons
after each new query and sends refund coupons once for each
query, while Bob only keeps track of the most recent query
for which refund coupons have already been processed.

To check the uniqueness of refund messages in Step 4, Bob
can use a hash table. To directly check the uniqueness within
a DBMS, Bob can also store the refunds in a temporary
table, tempRefunds, and run: SELECT 1 FROM tempRefunds

GROUP BY tid HAVING COUNT(*) > 1. A non-empty answer
indicates a repeated refund.

Lemma 4.2. MonotoneRefunds is optimal.

Proof. If τlatest is the latest query id whose coupons
have not been used for refunds, then τexp ≤ τlatest. This is
because all refunds issued in W must have a query id τ ≤
τlatest−1 and hence, τexp ≤ τlatest by definition. Given this,
the construction of the refunds in the proof for Lemma 4.1 is
also valid for MonotoneRefunds and hence, it is optimal.

We prove a stronger safety property about individual tu-
ples that implies our original safety definition for queries.

Lemma 4.3. For each tuple t, let k ≥ 1 be the number
of queries by Alice that contain t, and let r be the number
of valid refund messages that request a refund for t, then,
MonotoneRefunds ensures that k − r ≥ 1 at all times.

Proof. Let the tuple be t. We prove the safety by in-
duction on the length of W . The base case is trivially true
when the first query that includes t is executed. Note that
with a single query including t, valid refund messages can
not be constructed, since the two coupons in the refunds
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must have different query ids τ . Thus k = 1 and r = 0 and
the base case is satisfied.

For the inductive case, given a message sequence Wn−1

of length n− 1 with kn−1 = k ≥ 1 queries containing t and
rn−1 = r−1 refunds, such that kn−1−rn−1 ≥ 1, we consider
Mn, the nth message. There are four cases:

1. Mn is a query Q. If it returns the tuple t, then, kn =
kn−1 + 1, else kn = kn−1. Since there are no refunds,
rn = rn−1. Thus, kn − rn ≥ 1.

2. Mn is a BEGIN REFUND message. In this case, kn =
kn−1 and rn = rn−1 and thus, kn − rn ≥ 1.

3. Mn is a valid refund message ρ = 〈c1 = (t′, τ, h1), c2 =
(t′, τ, h2)〉. If Mn is not a valid message for t, that
is t′ 6= t, neither k nor r change. Otherwise, by the
induction hypothesis: k − (r − 1) ≥ 1. Thus, k ≥ r.
(1) If k ≥ r + 1, then the ρ makes rn = rn−1 + 1 = r
and kn − rn = k − r ≥ 1 by assumption.
(2) If k = r, then consider the r − 1 previous refunds.
They must use coupons from r distinct query ids. This
is because the first refund uses two distinct query ids
(by the construction of coupons) and all r− 1 refunds
use their second coupons from r − 1 different queries,
since only one refund coupon for a tuple is allowed
in a BEGIN REFUND ...END REFUND block and τexp is
incremented after each valid END REFUND. Thus, the r−
1 previous refunds have used coupons from r queries.
Since k = r, the expected query id in the refund Mn

must be at least one more than the query id of the kth

query that contains t. But since no unused coupon for
t exists, the refund Mn is not a valid coupon. This is
a contradiction.
Thus, the kn − rn = k − r ≥ 1 holds.

4. Mn is a END REFUND message. In this case, kn = kn−1

and rn = rn−1 and thus, kn − rn ≥ 1.

Thus, MonotoneRefunds is safe for tuple t.

Lemma 4.3 implies the safety definition in Eq.(4) as shown
in our technical report [25, §10.1].

Thus, MonotoneRefunds is both optimal and safe.

5. EXTENSIONS AND OPTIMIZATIONS
We now consider extensions and performance optimiza-

tions that generalize the protocols to more realistic settings.

5.1 Extensions
In the protocols described in the previous section, the

safety and optimality proofs continue to hold as long as the
tuple ids are such that different tuples have different ids and
identical tuples have the same id, irrespective of the query
to which the tuple belongs. This observation allows us to
easily extend the protocols to support more than one user
and handle updates.

Multiple Buyers. If there is more than one buyer, we
change the tuple identifiers to also incorporate the user id.
That is, the new tuple id is (id, uid) where id is the tuple’s
id (as in the single-buyer protocols) and uid is a unique id
assigned to each user. The coupons thus look as follows:

c = ((id, uid), τ,H(id⊕ uid⊕ τ ⊕ κ))

With the updated construction for the coupons, differ-
ent users will be assigned different tuple ids for the same

tuple, while identical tuples for a user will continue to be
assigned identical tuple ids. Thus, a buyer can not use re-
fund coupons from another buyer, but can continue to use
her own coupons as in the single-buyer setting.

Updates. We can also support updates by modifying the
tuple ids. This is applicable when updates to a tuple are
priced as if the update is a new tuple. Thus, if Alice pur-
chases tuple t1 in her first query, then purchases t1 again in
her second query, followed by an update to t1, denoted now
by t2, followed by another purchase of t2, then, she should
be charged for t1 in her first query, then refunded in the
second, and eventually charged only once more for t2.

To support updates, Bob maintains a version number, v,
for each tuple that is incremented after each update. This
version number is now included in the tuple id used for con-
structing the refund coupons:

c = ((id, uid, v), τ,H(id⊕ uid⊕ v⊕ τ ⊕ κ))

Thus, only identical versions of a tuple have the same tu-
ple id. Version numbers impose a storage overhead but they
are useful for other purposes and are maintained by many
systems by default. For example, the SDSS [21] adds ver-
sion numbers to their data releases and SciDB [1] provides
a no-overwrite storage system with versioning. So, in many
applications, versions already exist.

5.2 Group Coupons
MonotoneRefunds, described in Section 4, only computes

one coupon per tuple. This leads to a large number of refund
messages, each of which is an API call to Bob, when asking
for refunds. As Table 2 shows during experimental evalua-
tion, the overhead of processing refunds can be an order of
magnitude larger than the query time.

To reduce this overhead, we generalize coupons to allow
Bob to create group coupons that can be used to refund a
group of one or more purchased tuples with a single coupon.
With group refunds, Bob sends back the group coupons for
tuple groups of his choosing.

Example 5.1. Bob has a dataset with schema (key,

value), where key is an integer id. Bob provides an API
with two parameters, keys k1 and k2, and returns all val-
ues in [k1, k2]. Suppose, Alice queries [1, 3]. With group
coupons, Bob can compute coupons for keys {1}, {2}, {3},
{1, 2}, {2, 3}, {1, 3}, and {1, 2, 3}. If the next query by Alice
is again for [1, 3], Alice can either use the {1, 2, 3} coupon
for a group refund or only singleton coupons {{1}, {2}, {3}},
or a mixture {{1}, {2, 3}} or {{2}, {1, 3}} or {{3}, {1, 2}}.

We emphasize that Bob may compute coupons where the
same tuple may belong to multiple group coupons. But, in
the refund protocol, Alice can only request refunds using
one group coupon for each tuple for safety. In the example
above, if Alice could request refunds for {1, 2} and {2, 3}
simultaneously, she could refund 2 twice. Thus, more than
one group coupon that includes a common tuple can not be
used simultaneously in the same refund round. Further, a
refund coupon will reimburse all the tuples covered by the
coupon and can not be applied selectively to some tuples.

To construct group coupons, the key idea is to make a
unique group id (instead of a tuple id) such that no two
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groups with different tuples (and with possibly different ver-
sions) have the same group id and all groups with iden-
tical tuples have the same group id. Bob must provide a
way to compute such group ids and also provide a function,
contains : id, gid → {true, false}, that returns true if a
tuple with tuple id id belongs to the group with id gid. Bob
sends the contains function to Alice, who uses it to ensure
that no two group refund requests share any tuple. In the
worst case, using contains may require that she iterate over
both the tuple and coupon sets. However, as Example 5.2
shows below, much more efficient ways exist, when dealing
with common parameterized queries, to verify that a collec-
tion of group coupons have no common tuples. We show an
even more efficient approach in the specific, but common,
case of hierarchical coupons in Sections 5.3 and 5.4.

The group coupon is constructed as follows:

c = ((gid, uid, gv), τ,H(gid⊕ uid⊕ gv⊕ τ ⊕ κ))

Here gv is the group version number and is equal to the
sum of the version numbers of the tuples that belong to the
group. Another interpretation of gv is that it is the total
number of updates made to tuples in the group.

For group refunds, the amount Bob refunds to Alice is
the total cost of the tuples in the group. Let I(t, ρ) be an
indicator variable with value 1 if contains(t[tid], ρ[gid]) =
true (ρ is a valid group refund for a group containing tuple
t), and 0, otherwise. Then, for a workload W , the total
refunds, R(W ), is:

R(W ) =
∑
ρ∈W

∑
(t,n)∈T (W )

I(t, ρ) ∗ p(t[tid]) (6)

To use group refunds, we modify MonotoneRefunds to
GroupRefunds by changing the test to validate a refund mes-
sage ρ = 〈c1, c2〉 in Step 4 as:

Apart from checking that the digest of the mes-
sage is equal to the computed hash value as in
BasicRefunds, Bob also checks that (a) at most
one group coupon contains a tuple with tuple id
id (Example 5.2 provides an illustration), (b) as
with MonotoneRefunds, the query id of the sec-
ond coupon in each refund message pair, that is
c2[qid], is equal to τ in the 〈 BEGIN REFUND τ 〉
message, and (c) τ ≥ τexp.

Example 5.2. Continuing the example, Bob must
construct group coupons to check condition (a) in
GroupRefunds. How to accomplish this depends on the
kind of group coupon being constructed. For example, for
parameterized range queries that select contiguous ranges for
each column such as low <= col and col <= high where
low and high are values of column col and low <= high,
an efficient construction is to append the end points of the
range, low and high for the various columns, in the group
id. Given this construction, for any two group coupons, it
can be checked without investigating the individual tuples in
the group if the ranges for col overlap. For parameterized
queries containing only equality predicates col = val where
col is a column and val is a constant, appending (col,

val) to the group id allows constant time checks for whether
one coupon is contained in another.

Lemma 5.1. GroupRefunds is both optimal and safe.

We defer the proof to the technical report [25, §10.2].
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Figure 2: Group identifier assignment for tree-structured
group coupons. The tree is built for a database with 8 tuples.
It is a balanced binary tree where each node, including the
leaves, is assigned an identifier (height, id), where height

is the height of the node (leaves are at height 0), and id is
the node’s order amongst the nodes at its height, where the
leftmost node is assigned the id 0, the next node to the right
the id 1, and so on.

5.3 Tree-Structured Group Coupons
There are various ways to group tuples when generating

group coupons since any arbitrary subset of tuples in the
answer can be a valid candidate. In the remainder of this
paper, we discuss hierarchically-structured group coupons,
where for any two group coupons, either they represent dis-
joint groups or they represent groups where one group is a
subset of another. We call these tree-structured coupons.
We briefly explore hierarchically-structured group coupons
where the disjointedness condition does not hold in Section
5.4. We show a tree structured group coupon construction
scheme for general conjunctive queries. This structure can
be used for point queries and range queries.

In our construction of tree-structured coupons, we require
that tuple ids be integers. Figure 2 illustrates how the group
coupon identifiers are constructed and how the groups are
formed. We focus on binary trees since they minimize the
expected number of coupons per refund and are easy to im-
plement, but our technique and analysis generalize for group
coupons based on n-ary trees.

For binary trees, we start by treating all the tuples of the
relation D, order by id, as leaves. The group identifier of
the leaves is (0, id). The next level of the tree is constructed
by successively grouping nodes with ids 2n and 2n + 1 to
give a group identifier (1, n). Here, 1 represents the height
of the node. The higher levels of the tree are constructed
recursively, by combining the nodes at the lower levels. We
stop combining nodes when we only have one node, which
forms the root of the tree. Note that we pad the database
so that its cardinality is always a power of 2. With this
construction, a group node with group id (h, n) is a group
that includes all rows with ids in {2hn, . . . , 2h(n+ 1)− 1}.

Formally, the hash digest, treeHash(uid, height, id,

version, qid), for tree coupons is computed as follows:

H(uid⊕ height⊕ id⊕ version⊕ qid⊕ κ) (7)

While asking for a refund, and to reduce the number of
refund requests Alice makes, she asks for the largest valid
group refund, that is the group refund with the maximum
height such that all the tuples in that group are eligible for
a refund.
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Figure 3: Average number of refund coupons, required by
Alice, during the refund phase for range queries where each
range is equally likely, for varying database sizes. “Individ-
ual” refers to coupons required without group coupons while
other lines refer to fan-outs of 2, 4, 8, 16, and 32.

Analysis. For a binary tree, if we assume that each range
is equally probable, the expected number of coupons per
refund is approximately logn

2
+ 4. Further, the additional

coupons generated per request with result cardinality |T | is
|T |. For comparison, using only individual coupons requires
n
3

+ 1 coupons for each refund, on average, but with no ad-
ditional group coupons. We defer the proof to the technical
report [25, §10.3].

Figure 3 shows the expected number of coupons per refund
that Alice must send to Bob for trees with fan-outs of 2, 4,
8, 16, and 32. As the figure shows, with increasing fanout,
the expected number of coupons increases. This is to be
expected since there is a binary coupon, at more height,
that can be used in lieu of a coupon of a tree with a larger
fan-out. Further, binary coupons have more opportunities
to group small contiguous ranges.

On the other hand, the benefit of larger fan-outs is that
Bob can generate fewer coupons thus reducing the time it
takes to answer queries and compute the associated group
coupons. In situations where overheads during query run-
times are less desirable than during refund processing, a
larger fan-out might be a better choice. We leave the prob-
lem of choosing the optimal fan-out to future work.

Algorithms for Tree-Structured Coupons. As before, we
only consider full queries that are selections over a single
relation Given a query Q that requests a range of tuples
from the table, there are different ways to compute tree-
structured coupons, and we find that the specific algorithm
affects performance. We now describe two algorithms to
construct the tree-structured coupons given a query.

The seller can construct the coupon trees in two ways:
StreamTree (Algorithm 4) and BlockTree (Algorithm 3). In
the BlockTree algorithm, the entire set of certificates is com-
puted before the query’s answer is returned to the user; while
for the StreamTree algorithm, the certificates are computed
as the cursor moves forward through the query’s result set.

BlockTree, outlined in Algorithm 3, works by inserting
the leaves for the current query Q into the temporary table
tempTable. It then performs a series of group-by-having

aggregation SQL queries to construct the layer one level
above, and so on. The algorithm is blocking in nature, since
the ids of the query’s output tuples must be first inserted

Algorithm 3: BlockTree Coupon Construction

Input : Query id τ , query Q, user id u.
Output: Compute the coupons and the query.
begin

// tempTable: (height, id, version)
// refunds: (uid, height, id, version, qid, digest)
tempTable ← ∅; refunds ← ∅; shiftval ← 1;
height c ← 0;

1 INSERT INTO tempTable
2 SELECT 0, id, sum(ver) FROM Q AS t GROUP BY id;

while true do
INSERT INTO tempTable

SELECT height + 1, t.id � shiftval
FROM tempTable t
WHERE t.height = height c
GROUP BY height + 1, t.id � shiftval
HAVING COUNT(*) > 1;

// Below, in PostgreSQL, FOUND returns TRUE
// if previous SQL query returns a non-empty answer.
if NOT FOUND then

break
height c ← height c + 1

// treeHash computes the hash as described in Equation 7.
INSERT INTO refunds

SELECT u, height, id, τ, treeHash(u,height,id,ver,τ)
FROM tempTable t;

3 return (SELECT * FROM refunds), Q

Algorithm 4: StreamTree Coupon Construction

Input : Query id τ , version ver, user id u, tuple id idIn.
Output: Incrementally compute coupons in tempTable.
begin

// tempTable has schema (height, id, version).
height c ← 0; id c ← idIn;
while true do

INSERT INTO tempTable (height, id, version) VALUES
(height c, id c, ver);
if id c % 2 != 0 && EXISTS (SELECT 1 FROM tempTable
WHERE height = height c AND id = id c - 1) then

height c ← height c + 1
id c ← id c � 1
ver ← ver + (SELECT version FROM tempTable
WHERE height = height c AND id = id c - 1)

else
break

into tempTable before the query’s answer can be returned.
We can also define a modification to BlockTree that avoids

computing the query twice, once at Line 2 while populating
tempTable with the leaves and another at the end in Line 3.
We call this modification BlockTreeInt where the query Q

is evaluated once and stored in a relation result in mem-
ory. This is done before Line 1. Subsequently, references
to Q in Lines 2 and 3 are replaced by references to result.
This approach can be potentially useful when evaluating the
query is expensive.

The StreamTree algorithm works by ordering the results
of a query by the primary key id and making a single pass
over the data while adding an extra UDF that includes the
code described in Algorithm 4. As the buyer advances the
cursor, the temporary workspace, tempTable, is gradually
populated with the tree for the query. For example, in Fig-
ure 2, if a query selects all the nodes, the nodes that are
added to tempTable would be the order seen by a post-order
traversal of the tree.

5.4 Coupons for Multi-Dimensional Queries
We briefly discuss a heuristic to construct group coupons

for queries with multiple range and equality predicates.
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Although the optimal choice of group coupons varies with
the query workload, the preconditions for the safety of
GroupRefunds suggest that database indexes are a natural
way to structure the construction of the group coupons for
queries beyond single ranges or point queries. Database in-
dexes provide meaningful groupings of tuples that are fre-
quently accessed together. We consider the following cases:

• R trees: For spatial queries over spatial datasets with
R-tree indices (or variants such as R*-trees), we can
construct the group coupons by using the dimensions
of the minimum bounding rectilinear-rectangle (MBR)
represented by the leaves or non-leaf nodes of the in-
dex. Specifically, each MBR of dimension n is repre-
sented by I = ([l1, u1], . . . , [ln, un]), where li, ui are the
lower and the upper bound of the rectangle for dimen-
sion i, respectively. If a query returns all objects under
the non-leaf node with the rectangle I, Bob can con-
struct a group coupon with gid = I and hash digest,
as in Equation 7, as

H(uid⊕ l1 ⊕ u1 ⊕ · · · ⊕ ln ⊕ un ⊕ version⊕ qid⊕ κ)

While processing refunds, Bob can safely refund
coupons that have MBRs that are not contained within
each other. For refunds where one MBR is included in
another, Bob must traverse the larger MBR’s index in
the R-tree to ensure that smaller MBR’s index is not
present in the former’s subtree. This check is necessary
since R-trees permit overlapping MBRs and thus, con-
tainment in the dimensions does not imply that node
of the smaller MBR is a descendant of the larger MBR
in the R-tree.

• Range queries with additional point selection predi-
cates: In this case, the group coupon consists of the
group id of the corresponding range query (the tree-
structured coupons or R tree coupons) along with the
value of the selection predicates.

Mirroring coupons in the manner of indexing is not prov-
ably optimal. Further, the decision to generate group
coupons versus individual coupons depends on the relative
cost of generating the coupons and the cost of processing re-
funds. We experimentally (Section 6) explore this tradeoff
but leave a theoretical analysis to future work.

6. EVALUATION
We now experimentally evaluate the performance of the

various refund protocols and their implementations.
We answer the following questions:

1. How much can Alice benefit from paying only once for
tuples and what performance penalty, if any, should
she expect in lieu of this benefit?

2. How costly is it to compute group coupons versus com-
puting only per-tuple coupons? Further, how much
time do group coupons save when asking for refunds
compared to single-tuple coupons?

3. How do the näıve approaches (Sec. 3) to pricing,
i.e., CountBlock, CountStream, and History perform
compared to the refund-based approaches (Sec. 5.3),
i.e., MonotoneRefunds, BlockTree, BlockTreeInt, and
StreamTree?

1 2 4 8 64 512 4096

Agnostic 100 200 400 800 6.4K 51.2K 409.6K
H-A

Uniform 100 200 400 799.5 6.4K 48.9K 286.7K
Zip 1.7 9.6 12.2 16.4 24.4 111 559 4143
Zip 3 5.2 7.9 12.3 20.4 107 555 4139

Table 1: Amount paid for data with different distributions
for the parameters of pkey.simple and for different query
answer cardinalities (header row). “Agnostic” shows the to-
tal amount paid without history-aware pricing, while the
others, under heading “H-A”, show the total amount with
optimal history-aware pricing. “Uniform” denotes the case
when the query’s parameters are chosen uniformly at ran-
dom, while “Zipf” denotes the case(s) where the query pa-
rameter l is chosen by sampling from the given Zipf distri-
bution.

We run all experiments on a single server running Post-
greSQL 9.4 over OS X 10.11.5, equipped with a 2.7 GHz
Intel Core i7 processor and 16 GB DDR3 RAM. Coupon
generation and refund verification algorithms are PL/pgSQL
stored procedures and we use the SHA1 implementation of
the module pgcrypto for hashing. The client resides on the
same machine as the database.

The data setup for the experiments consists of a binary
relation with two integer columns, (tid, val) in a table,
test, with 524,288 (219) rows. Column tid is a primary key
starting with a value of 0, while val is an integer column
where the values are a random permutation of {0, . . . , N−1}
where N is the size of test.

The query workload consists of queries that ask for tu-
ples satisfying predicates within a randomly chosen range
of sizes in {1, 8, 64, 512, 4096}. We consider the following
classes of queries: pkey.simple performs a range selection
on the primary key, which is the key on which the data
is sorted on disk and has a clustered index; other.simple,
which performs a range query on the column val over which
no indices have been constructed; and join which performs
a join query where test is joined with itself.

The queries are:

pkey.simple: SELECT * FROM test WHERE tid >= l AND tid <= u
other.simple: SELECT * FROM test WHERE val >= l AND val <= u
join: SELECT * FROM test a, test b

WHERE a.val = b.tid AND a.tid >= l AND a.tid <= u

For identical values of l and u, the queries return answers
with identical cardinalities.

6.1 Overall Results
We now investigate the benefits of optimal history-aware

pricing and the associated performance penalty of ap-
proaches that can achieve such pricing.

In Table 1, we simulate the amount of money a buyer
must pay with different approaches. We construct a work-
load with 100 instances of pkey.simple with varying size of
the ranges, that is, u − l + 1, while using different distri-
butions for selecting the value of l: Uniform, which chooses
l uniformly at random, and Zipf(α), which samples l from
a heavy-tailed distribution where smaller values are chosen
significantly more frequently than others. We experiment
with α ∈ {1.7, 3}, which enables us to vary the degree of the
skew. We run 100 such simulations and take the average
amount of money that the buyer must pay. For reference,
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Cardinality Query Count History MonotoneRefunds BlockTree BlockTreeInt StreamTree
Stream Block Stream Block Stream Block Stream Block Stream Block

1
N 0.157 0.643 1.74 1.87 0.571 2.098 3.636 4.251 4.418 3.789 2.228 3.351
Y 1.33 2.963 4.254 4.743 4.924 4.24 2.656 3.781

8
N 0.153 0.717 1.756 2.162 0.749 1.81 2.835 3.915 4.192 3.843 2.613 3.614
Y 4.047 5.238 3.606 4.711 4.985 4.641 3.435 4.445

64
N 0.246 1.747 1.896 4.187 2.142 2.228 4.722 4.85 6.161 4.806 6.176 6.285
Y 25.67 25.486 6.676 6.798 8.181 6.782 8.227 8.344

512
N 0.779 13.081 3.277 19.452 15.042 5.371 23.349 12.857 24.768 12.609 39.273 29.157
Y 203.298 192.578 26.974 16.291 28.419 15.882 43.002 33.032

4096
N 5.339 288.107 13.188 135.121 307.839 29.791 348.191 72.799 354.568 72.867 476.158 194.947
Y 2011.425 1742.64 353.986 78.552 361.268 78.466 482.887 200.678

Table 2: Total time, in ms, taken to evaluate pkey.simple with random initialization for l and a range specified in the column
“Cardinality”. The second column indicates whether the experiment includes the time to ask for a refund (“Y”) or not (“N”).
“Query” represents the time to execute just the query. The time, additionally, includes the overhead of counting the cardinality
of answers for CountBlock and CountStream; updating the history bit vector for History; and, computing the coupons and
counting the cardinality of answers for the refund-based approaches, respectively. In the table, “Stream” represents the
CountStream strategy to compute price, “Batch” represents the CountBlock style. Best time for refund techniques is in bold.

“Agnostic” shows the cost of the data if no history-aware
pricing is employed such as with CountBlock.

With Uniform distribution, it is unlikely that Alice may
buy the same data across different queries, especially for
short ranges. Cost savings only occur at larger ranges:
refund-based pricing is 1.4× cheaper at range size of 4096.
But savings are dramatic for skewed distributions. With
α = 1.7, the history-aware pricing for point queries is 10×
cheaper than history-agnostic pricing, while for α = 3, it
is 19× cheaper. For longer ranges, history-aware pricing is
99× cheaper than a history-agnostic approach.

We now look at the overhead of obtaining these cost sav-
ings. In Table 2, we show the time taken to answer queries
by the näıve and refund-based techniques. It shows the to-
tal time that includes (a) the time to evaluate pkey.simple

with range lengths specified in column cardinality, and (b)
the overhead of the associated pricing technique, that is,

• Counting for CountStream and CountBlock.

• Updating the history bit vector for History. In
addition to HistoryStream and HistoryBlock, we
also use a blocking variant of HistoryBlock, called
HistoryInt, which stores the query’s result in a tem-
porary table, which is subsequently used to update the
history bit vector using HistoryBlock. HistoryBlock

runs the query twice, the first run updates the his-
tory bit vector while the second returns the answer.
HistoryStream and HistoryInt run the query once.
History in Table 2 refers to HistoryBlock which was
the best history algorithm for pkey.simple.

• Computing coupons for refund-based techniques along
with counting the price, once using CountStream and
once using CountBlock.

In the second column, a ‘N’ indicates the time without ask-
ing for refunds, while ‘Y’ indicates the time with refunds.

All techniques take more than 2× more time than the
query only runtime. With refunds, the best refund-based
technique becomes at least 6× more expensive than the
best count technique, CountStream at smaller cardinalities
and CountBlock at larger. All refund-based techniques are
slower than the best count technique, even without the over-
head of asking for refunds since they also count the price.

Compared to History, the best refund techniques with the
refund round is 1.5× slower for queries with short ranges (8
and 64); but for point queries and longer ranges, the best
refund technique are 1.4× to 1.7× faster.

In the best case, refund-based pricing provides re-
duced data costs compared to history-agnostic pricing
techniques and reduced query execution time compared
to history-based pricing methods. For large ranges,
BlockTreeInt.Block is 1.72× faster than History and also
protects privacy.

6.2 Overhead of Refunds
We now compare the time to compute group coupons

in GroupRefunds to the time for only per-tuple coupons in
MonotoneRefunds. Then, we compare the time saved in ask-
ing for refunds with GroupRefunds versus MonotoneRefunds.
We measure the overhead of using MonotoneRefunds versus
GroupRefunds on (a) the time to evaluate a query, its price,
and return the result and the coupons, and (b) the time to
ask for refunds of data previously purchased.

We assign random l and u values to pkey.simple to obtain
queries that are executed twice. Thus, all the tuples in the
second query are eligible for refunds. We compare the time
it takes to execute the query, compute its price, and compute
the coupons using MonotoneRefunds and BlockTree. Then,
for MonotoneRefunds, we ask for refunds one tuple at a time,
while for BlockTree, we ask for the group refunds for the
largest groups (while avoiding overlaps) until all the tuples
are covered.

Table 2 shows the results. When comparing only
the time to evaluate the query, price, and the coupons,
MonotoneRefunds is faster than BlockTree since BlockTree

must compute additional group coupons along with the sin-
gleton group coupons. For point queries, BlockTree is 6.4×
slower, while for larger ranges, such as 4096, it is 2.4×
slower. This is expected since MonotoneRefunds needs to
do just one pass over the table and computes the coupons
on the fly as the cursor is advanced. BlockTree must make
two passes of the data, once to select the leaves of the tree-
structured coupons and again to evaluate the query itself.
It must also suffer the additional cost of computing the tree.

But if we also include the overhead of asking for refunds,
this advantage quickly vanishes as range sizes are increased.
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While MonotoneRefunds is 3.2× faster for point queries, for
longer ranges, BlockTree is faster by 1.1×, 3.8×, 11.8×, and
22.2× for ranges of sizes 8, 64, 512, and 4096, respectively.

Thus, if a query is expected to return a small number of
tuples or if it is known that group refunds can not be con-
structed, say when the tuples selected do not have adjacent
tuple ids, MonotoneRefunds will outperform GroupRefunds.

One way to improve BlockTree and other tree structured
coupons is to explore an increase in the fanout of the internal
tree nodes. Then, fewer coupons would be computed during
the query. Further, in an actual deployment, refund requests
can be asked when the buyer has spare computation cycles
as opposed to being asked after each query. This does not
reduce the workload on the seller, though.

6.3 Naı̈ve versus Refund-Based Techniques
In these experiments, we assign random l and u values

to the test queries. These randomly parameterized queries
are executed once along with the additional processing of the
corresponding näıve or refund-based technique and counting
to compute the price. For refund-based techniques, we do
not show the overhead of asking for refunds because the
overhead is sensitive to the actual overlap in the queries.
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Figure 4: Total time, in ms, averaged over 100 executions
of the workloads, to evaluate the query and run the pricing
techniques. Subcaptions mention the parameterized query.
For refund-based techniques, only the time to run the query
and generate coupons is shown. CountStream not shown for
‘4096’ as it has a very large value.

pkey.simple. Figure 4a shows the average time per query
for pkey.simple. As expected, MonotoneRefunds outper-
forms the group-based coupons (note that we do not in-
clude the time to ask for refunds). MonotoneRefunds also
outperforms History, where HistoryBlock was the most
performant implementation since the cost of modifying bits
for each output tuple and writing those edits back to
disk become increasingly expensive. For large range size,
CountBlock performs better than CountStream. This is be-
cause CountBlock only uses two SQL statements to exe-
cute the query and compute the count whereas CountStream
must execute an UPDATE statement to update the running
count of tuples for the query every time the cursor is ad-
vanced. This overhead becomes significant as the cardinality
of the query increases.

pkey.other. Figure 4b shows the average time per query for
other.simple. Unlike for pkey.simple, MonotoneRefunds

does not significantly outperform the alternatives. This is
because the query itself is expensive: without indices, a
full scan of the table is needed to compute answers and
this cost dominates the total cost. As result sizes increase
though, the overheads become noticeable. For History, dif-
ferent implementations did best for different ranges. For
short ranges, HistoryStream was the best implementa-
tion, while for longer ranges, HistoryInt was the best.
HistoryBlock was never the best for other.simple since
it computes the query twice, which is expensive without
an index. HistoryStream was especially costly at large
ranges, since the column val is a random permutation and
thus the indices in the history bit vector, corresponding to
their tuples, are no longer clustered to adjacent bits in the
history bit vector and this increases the overhead of com-
mits. Finally, BlockTree is approximately 2× more expen-
sive than CountBlock and MonotoneRefunds since the query
is more expensive to compute and BlockTree must execute
the query twice.

join. To identify the distinct tids used by the query, its
output is stored in a temporary table, res, and the following
query is executed:

SELECT DISTINCT(id) AS tid FROM
(SELECT a.tid AS id FROM res UNION SELECT b.id AS tid FROM res)

These distinct tids are used to compute the price and
the coupons. Figure 4c shows that the trends are similar
as for pkey.simple. BlockTree has similar performance to
BlockTreeInt since the step of identifying distinct tids im-
plicitly stages the query as BlockTreeInt does. The im-
plicit staging also removes the advantage that CountStream
and StreamTree had over the blocking versions at smaller
cardinalities since all techniques touch the answer tuples
thrice: once while computing the answer tuples, once while
determining unique tids, and lastly to retrieve them from
the temporary table as answers. As with pkey.simple,
HistoryBlock was the best History implementation.

If we only consider the time to compute coupons and
the query, then MonotoneRefunds will always be the fastest
amongst the refund-based techniques. But in applications
with high overlap in the data purchased through differ-
ent queries, the cost of refunds can become significant.
In such cases, GroupRefunds might be more efficient than
MonotoneRefunds. Unfortunately, as can be seen from Fig-
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ures 4a, 4b, and 4c, different group refund techniques do
well in different settings. In Figures 4a and 4c, BlockTree
does uniformly well across many different ranges while in
Figure 4b, BlockTreeInt performs uniformly well. Also,
for both single-table queries, StreamTree outperforms other
group refunds for queries with small ranges while the reverse
is true for join.

7. RELATED WORK
Our solution relies on explicit support from the seller. In

the absence of such support, as shown in Example 1.1, it
may be impossible to provide optimal history-aware pricing
of data. But, buyers can still reduce their costs by caching
answers to queries they purchase. They can subsequently
use techniques from query answering using views [10] to only
acquire such that that is not present in their caches and in-
tegrate the new data with the cached data to determine
the answer to their queries. Systems that provide semantic
caching [3, 4, 19] and transactional caches [16,17] are exam-
ples of such systems.

Apart from pricing APIs by summing up the cost of the
tuples that are returned due to an API call, other forms of
pricing methods have also been proposed in the literature,
though they are not as widespread as tuple-based pricing.
The common idea in all the approaches is to directly price
queries as opposed to pricing individual tuples. Approaches
have been proposed that price data based on minimal why-
provenance [23], information and determinacy [11, 12, 15],
and statistical noise [13].

Optimal history-aware pricing, where prices are assigned
to views [12,14] instead of individual tuples, is not in PTIME
in general. For queries which can be priced in PTIME,
the history-bit-vector approach is equivalent to our previous
“view pricing” framework [12] if (a) each view corresponds
to exactly one tuple and (b) whenever a view is purchased,
instead of setting the view’s price to zero, the corresponding
bit is set. The “view pricing” implementation stores each
priced view as a row, which is less efficient than representing
all views using a single bit-vector.

To adapt coupons to query-pricing techniques such as
view pricing [12], coupons must be created per query in-
stead of per tuple. Our protocols, when applied to coupons
on queries, will be safe but not optimal. Intuitively, this is
because with tuple pricing, all refund requests can be de-
composed into individual requests with the same tuple id;
but for query pricing, it is possible that query set, P , is col-
lectively equivalent to query Q, while no strict subset of P
equals Q. Our protocol, where coupons must refer to the
same entity (tuple or query), can not handle such cases.

Our core idea, using coupons to achieve anonymous and
almost stateless query pricing, augments previous pricing
approaches. This paper demonstrates the feasibility for tu-
ple based pricing, but coupon and protocol design for other
pricing forms is a fruitful direction of future research.

8. CONCLUSION
We provide a novel, lightweight and fast method to sup-

port optimal, history-aware pricing of data APIs. With our
techniques, even if a buyer makes multiple API calls and
ends up purchasing the same data item more than once,
she is only charged once for the purchase. To enable this,
we propose a framework for pricing that allows buyers to

refund repeat purchases of data. We then provide a com-
pact, secure and tamper proof protocol that enables such
refunds and guarantees that if there is a repeat purchase,
it is always possible to get refunds. Subsequently, we gen-
eralize the protocol to handle updates and multiple users;
and provide performance improvements through the use of
group refunds. We experimentally evaluated our protocol
and compare it to current pricing techniques that do not
provide history-aware pricing.
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