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ABSTRACT
Data is continuously being generated from sources such as ma-
chines, network traffic, application logs, etc. Timely and accu-
rate detection of anomalies in massive data streams has impor-
tant applications such as in preventing machine failures, intru-
sion detection, and dynamic load balancing. In this paper, we
introduce a novel (unsupervised) anomaly detection framework
which can be used to detect anomalies in a streaming fashion
by making only one pass over the data while utilizing limited
storage. We adapt ideas from matrix sketching to maintain, in
a streaming model, a set of few orthogonal vectors that form a
good approximate basis for all the observed data. Using this con-
structed orthogonal basis, anomalies in new incoming data are
detected based on a simple reconstruction error test. We the-
oretically prove that our algorithm compares favorably with an
offline approach based on expensive global singular value decom-
position (SVD) updates. Additionally, we apply ideas from ran-
domized low-rank matrix approximations to further speedup the
algorithm. The experimental results show the effectiveness and
efficiency of our approach over other popular scalable anomaly
detection approaches.

1. INTRODUCTION
Detecting anomalies in huge volumes of data has many impor-

tant real-life applications in areas such as machine health mon-
itoring, intrusion detection systems, financial fraud detection,
and medical diagnosis [9, 1]. However, it is also a challenging
problem because in many modern applications the data arrives
in a streaming fashion. The streaming data could be infinite,
so offline algorithms that attempt to store the entire stream for
analysis will not scale. Also in these situations, there is usual-
ly a lack of a complete (labeled) training set as new anomalous
and non-anomalous patterns arise over time (this is sometimes
referred to as concept drift). Another common requirement in
many mission-critical applications is to detect anomalies in near
real-time, as new data values are encountered. In this paper, we
introduce novel approaches to anomaly detection in an unsuper-
vised setting based on ideas from matrix sketching.

Although a lot of recent research has been focused on stream-
ing anomaly detection [9, 1], there is still lack of theoretically
sound and practically effective algorithms that operate efficiently
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by making just one pass over the data, which is an essential re-
quirement for any “true” streaming algorithm. In practice, how-
ever, because of inherent correlations in the data, it is possible to
reduce a large sized numerical stream into just a handful of hid-
den basis that can compactly describe the key patterns [35], and
thereby dramatically reducing the complexity of further analy-
sis. We exploit this observation in our proposed algorithms by
maintaining a set of few orthogonal vectors that conceptually
constitute up-to-date normal patterns.

A class of popular techniques for unsupervised anomaly detec-
tion, which can be referred to as subspace-based anomaly detec-
tion, operate by first constructing some sort of low-rank (e.g.
principal component) matrix approximation of the input and
then the projection of a new datapoint onto this low-rank matrix
is used for deciding whether the point is anomalous or not [25, 23,
22]. Now this general idea can be utilized to construct a simple
anomaly detection framework in a streaming setting: At time t,
let us assume that we have a low-rank matrix U that can linear-
ly represent well all the identified non-anomalous datapoints till
time t − 1. For a new datapoint y arriving at time t, if there
does not exist a “good” representation1 of y using U , then y
does not lie close to the space of non-anomalous datapoints, and
y could be an anomaly. After identifying the non-anomalous
points, the low-rank matrix is updated to capture the insight-
s from these non-anomalous points. Standard spectral theory
informs that a straightforward way of maintaining such a low-
rank matrix is to use repeated singular value decompositions on
the whole observed dataset, as new non-anomalous data are i-
dentified. However, this is both computationally and storage
intensive. Ideally, we want to maintain this low-rank matrix
within a steaming setup (i.e., at any timepoint only the current
non-anomalous datapoints are used to update the old low-rank
matrix).

In this paper, we use streaming matrix sketching, to efficiently
store and update a low-rank matrix (with orthogonal column-
s) that can linearly represent well over time the identified non-
anomalous datapoints. Informally, a sketch of a matrix Z is
another matrix Z′ that is of smaller size than Z, but still ap-
proximates it well. For matrix sketching, we build upon and
improve an elegant idea which was recently proposed by Liber-
ty [28]. The matrix sketching algorithm in [28] (referred to as
Frequent Directions) operates in a streaming model, accepts one
datapoint at a time, and constructs a sketch matrix using a (sur-
prisingly) simple idea of “shrinking” a few orthogonal vectors.

Our Contributions. We propose two streaming anomaly de-
tection approaches operating in the above discussed framework.
The approaches differ in the techniques used for matrix sketch-
ing. Since in our problem setting, more than one point could
arrive at each timestep, our first approach is based on extending

1This can be equivalently stated as that projection of y onto the
residual space of U is “big”.
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Frequent Directions [28] to efficiently deal with this scenario. Our
algorithm for matrix sketching achieves a speedup over Frequent
Directions that is almost linear in the number of datapoints han-
dled at each timestep. Our second approach further improves
this computational efficiency, by combining sketching with ideas
from the theory of randomized low-rank matrix approximations.
The computational efficiency gains of the (second) randomized
approach over the (first) deterministic approach come at a cost
of a small loss in the sketching performance.

We present a theoretical analysis of both our approaches to
show that, under some reasonable assumptions, our approaches
attain almost the same performance as a global approach that
uses the entire data history at every timestep. The latter requires
repeated and costly singular value decompositions over an ever
increasing sized data matrix, while our proposed algorithms op-
erate in a true streaming setting utilizing limited storage. We
obtain these results by generalizing the analysis of Frequent Di-
rections from [28, 14, 13] and by carefully combining it with
recent spectral results in matrix perturbation and randomized
low-rank matrix approximation theories. Our proposed anomaly
detection algorithms have the following salient features:

(1) They can identify anomalies in close to real time, ensuring
that the detection keeps up with the rate of data collection.

(2) They are pass-efficient, in that only one pass is required
for each datapoint.

(3) They are space-efficient and require only a small amount
of bookkeeping space.

(4) They operate in an unsupervised setting, but regular model
updates allow them to still easily adapt to unseen normal
patterns (concept drift) in the data.

Our experimental results corroborate the excellent performance
of our approaches on datasets drawn from diverse domains such
as biomedical, network security, and broadcast news, even in p-
resence of concept drifts. Additionally, our algorithms are signif-
icantly more time and space efficient, compared to other popular
scalable anomaly detection algorithms.

2. RELATED WORK
Anomaly detection is a well-studied topic and we refer the

reader to the excellent surveys by Chandola et al. [9] and Aggar-
wal [1] for an introduction. We mention a few relevant researches
here.

Many anomaly detection approaches have been suggested based
on approximating the sample density. This includes the distance-
based methods [5] and the manifold based methods [19, 20, 21].
However, these methods do not work well on large datasets s-
ince they require either computing all pair-wise distances or the
complete affinity matrix, both of which are time and space con-
suming. Recently, inlier-based outlier detection methods were
proposed in [18]. However, their training and computational
complexity requirements render them unsuitable for real-time
streaming applications.

There are many (semi-)supervised techniques that have been
proposed for anomaly detection (refer to the surveys [1, 9]). They
typically operate by finding a normal region containing a cer-
tain fraction of non-anomalous training samples; points outside
the normal region are regarded as anomalies. These methods
are faster than classic density measurement methods but their
training requirements make them also unsuitable for real-time
streaming applications.

Some other, more efficient techniques such as IForest [30] and
Mass [36] are based on attribute-wise analysis. But they tend
to fail when data has high dimensions or the distribution for

anomalous points becomes less discriminative, e.g., if the anoma-
lous and non-anomalous points share similar attribute range or
distribution [21].

In streaming setup the training set is usually never perfect,
and the detection model needs to be updated as new data comes
in. The ideal scenario is to detect the arrival of a new normal
pattern, and then improve the model suitably. Some methods
achieve this by relying on probabilistic modeling of the data dis-
tributions and monitoring the likelihood for new-coming observa-
tions; see the survey by [33]. But they usually require accessing
the whole of the past historical data at each timestep. Hence,
these approaches are not practical for big data applications.

Kernel-based online anomaly detection algorithm proposed by [2]
uses a dictionary learned over normal data to detect anomalies,
but the high computation cost because of its growing dictionary
strategy renders it unsuitable for large datasets.

Several techniques have been specifically designed for detecting
outliers in time-series based data (see [31] and references there-
in). However, the techniques proposed in these studies, seem
quite different to ideas presented here.

Most relevant to our work are the anomaly detection algo-
rithms which are roughly based on identifying and tracking the
dominant low-rank subspace of the data [25, 23, 22]. In Huang et
al. [23, 22] anomaly detection decisions are made using a slid-
ing time window. However, their algorithm requires costly PCA
computation at each timestep, and is not practical for large win-
dow sizes. Even though we also use low-rank subspace tracking
ideas, because of efficient sketching, our algorithms are highly
scalable even while utilizing the entire data history.

Gabel et al. [11] recently proposed an anomaly detection scheme
that uses a Johnson-Lindenstrauss style random subspace em-
bedding to project each point to a lower dimensional space. Our
algorithms, on the other hand, operate in the original feature s-
pace thereby avoiding the instability issues arising from random
subspace embedding.

Our algorithms maintain (over time) a low-rank approxima-
tion to the input using matrix sketching. This is related to a
line of work, referred to as Incremental Principal Componen-
t Analysis [17, 26, 8, 3, 4], where the goal is also to maintain
a low-rank approximation of a matrix (using SVD and a smal-
l amount of bookkeeping) as rows/columns of a matrix arrive
in a stream. However, most of these approaches lack rigorous
theoretical guarantees on the quality of the maintained low-rank
approximation. In fact, it has been shown that they can have
arbitrarily bad matrix approximation error on adversarial da-
ta [14] and could suffer from practically poor performances [12].
Comparably, our algorithms have strong worst-case theoretical
bounds and also have good empirical performance.

3. PRELIMINARIES
Notation. We denote [n] = 1 : n. Vectors are always in column-
wise fashion and are denoted by boldface letters. For a vector v,
v> denotes its transpose and ‖v‖ denotes its Euclidean norm.
For a matrix Z ∈ Rm×n = {zij}, its Frobenius norm ‖Z‖2F =∑
ij z

2
ij , and its spectral norm ‖Z‖ = sup {‖Zv‖ : ‖v‖ = 1}.

We use rank(Z) to denote the rank and tr(Z) to denote the
trace of Z. We use Z � 0 to denote that if Z is a positive
semidefinite matrix, and if Z−Y � 0, then we write Z � Y . For
a vector (z1, . . . , zm) ∈ Rm, let diag(z1, . . . , zm) ∈ Rm×m denote
a diagonal matrix with z1,. . . , zm as its diagonal entries. Given
a matrix Z, we abuse notation and use y ∈ Z to represent that y
is a column in Z. Let Im denote an identity matrix of dimension
m × m. Given a set of matrices, Z1, . . . , Zt ∈ Rm×ni , we use
the notation Z[t] ∈ Rm×n[t] where n[t] =

∑t
i=1 ni to denote the

matrix obtained by horizontally concatenating Z1, . . . , Zt, i.e.,
Z[t] = [Z1, . . . , Zt].
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We use Svd(Z) to denote the singular value decomposition of
Z, i.e., Svd(Z) = UΣV >. Here U is an m×m orthogonal matrix,
Σ is an m × n diagonal matrix, and V is an n × n orthogonal
matrix. The diagonal entries of Σ are known as the singular
values of Z. Let σi(Z) denote the ith singular value of Z. We
follow the common convention to list the singular values in non-
increasing order. For a symmetric matrix S ∈ Rm×m, we use
Eig(S) to denote its eigenvalue decomposition, i.e., UΛU> =
Eig(S). Here U is an m×m orthogonal matrix and Λ is an m×m
diagonal matrix whose (real) entries, λ1, . . . , λm, are known as
the eigenvalues of S (again listed in non-increasing order).

The best rank-k approximation (in both the spectral and Frobe-

nius norm) to a matrix Z ∈ Rm×n is Zk =
∑k
i=1 σiuiv

>
i , where

σ1 ≥ σ2 ≥ · · · ≥ σk are the top-k singular values of Z, with
associated left and right singular vectors ui ∈ Rm and vi ∈
Rn, respectively. We use Svdk(Z) to denote the singular val-
ue decomposition of Zk, i.e., Zk = Svdk(Z) = UkΣkV

>
k . Here

Σk = diag(σ1, . . . , σk) ∈ Rk×k, Uk = [u1, . . . ,uk] ∈ Rm×k, and
Vk = [v1, . . . ,vk] ∈ Rn×k. The following celebrated theorem
bounds the approximation error.

Theorem 1. [15] Let Z ∈ Rm×n with n > m, and let σ1 ≥
· · · ≥ σm be the singular values of Z. Let UkΣkV

>
k = Svdk(Z).

Then

min
rank(X)≤k

‖Z −X‖2 = ‖Z − UkΣkV
>
k ‖2 = σk+1 ,

min
rank(X)≤k

‖Z −X‖F = ‖Z − UkΣkV
>
k ‖F =

√√√√ m∑
j=k+1

σ2
k+1.

In this paper, Zk always denotes the rank-k approximation of a
matrix Z according to Theorem 1.

Definition 1. Define the k-condition number of a matrix Z ∈
Rm×n with n > m as κk(Z) = σ1/σk ≥ 1 where σ1 ≥ · · · ≥ σm
are the singular values of Z.

Our analysis uses the following simple (well-known) claim.

Claim 2. Let Z ∈ Rm×n, and let Zk be a rank-k approxi-
mation of Z according to Theorem 1. For any vector x ∈ Rm,
κk(Z)‖Z>k x‖ ≥ ‖Z>x‖.

4. STREAMING ANOMALY DETECTION
In this section, we propose an anomaly detection scheme for

streaming data based on matrix sketching, and also provide the-
oretical guarantees for its efficacy. We start by describing the
problem of streaming anomaly detection.

4.1 Problem Setting and Framework Overview
Streaming Anomaly Detection Task. We assume that the
data arrives in streams and each datapoint has a timestamp that
indicates when it arrives. The timestamp could be at any gran-
ularity, e.g., it could be the day or the exact time the datapoint
arrives. Let {Yt ∈ Rm×nt , t = 1, 2, . . . } denote a sequence of
streaming data matrices, where Yt represents the datapoints ar-
riving at time t. Here m is the size of the feature space, and
nt ≥ 12 is the number of datapoints arriving at time t. We nor-
malize Yt such that each column (point) in Yt has a unit L2-norm.
Under this setup, the goal of streaming anomaly detection is to
identify “anomalous datapoints” in Yt at every time t.

Our Anomaly Detection Framework. Our idea is based on
maintaining, at every time t, a low-rank matrix with orthogonal

2In many social media, industrial applications, etc., many data-
points are generated simultaneously, therefore nt � 1. Also not
restricting nt adds to the flexibility of our proposed framework.

columns that can linearly reconstruct “well” the entire prior (till
time t− 1) non-anomalous datapoints that the algorithm has i-
dentified. In other words, we identify a small set of (orthogonal)
basis vectors that can represent well all the prior non-anomalous
datapoints. At time t, a new point yi ∈ Yt is marked as anoma-
lous if it cannot be well linearly reconstructed using these basis
vectors (i.e., yi does not lie “close” to the space of non-anomalous
points).

LetN[t−1] = [N1, . . . , Nt−1] be the set of all datapoints (column-
s) in Y[t−1] = [Y1, . . . , Yt−1] that the algorithm has identified as
non-anomalous, with Ni denoting the set of datapoints in Yi i-
dentified as non-anomalous. Consider the rank-k approximation
of N[t−1] (for an appropriately chosen parameter k).3

N[t−1]k = Svdk(N[t−1]) = U(t−1)k
ΣU(t−1)k

V >U(t−1)k
.

First observation is that U(t−1)k
is a “good” rank-k matrix to

linearly represent all the points in N[t−1].
4 This follows from the

observation that by setting X = ΣU(t−1)k
V >U(t−1)k

:∑
yj∈N[t−1]

min
xj

‖yj − U(t−1)k
xj‖2 = min

X
‖N[t−1] − U(t−1)k

X‖2F

≤ ‖N[t−1] −N[t−1]k‖
2
F .

The bound on ‖N[t−1] − N[t−1]k‖
2
F follows from Theorem 1. In

many practical scenarios, most of the mass from N[t−1] would be
in its top k singular values (components), resulting in ‖N[t−1] −
N[t−1]k‖F being small.

We can now use U(t−1)k
to detect anomalies in Yt by following

a simple approach. Since U(t−1)k
is a good basis to linearly

reconstruct all the observed non-anomalous points in Y[t−1], we
can use it to test whether a point yi ∈ Yt is “close” to space
of non-anomalous points or not. This can be easily achieved by
solving the following simple least-squares problem:

min
x
‖yi − U(t−1)k

x‖. (1)

As the columns of U(t−1)k
are orthogonal to each other, this

least-squares problem has a simple closed-form solution

x∗ = (U>(t−1)k
U(t−1)k

)−1U>(t−1)k
yi = U>(t−1)k

yi.

The objective value of (1) at x∗ is used as the anomaly score
to decide if yi is anomalous or not, with larger objective value
denoting anomalies. In other words, the anomaly score for yi
is ‖(Im − U(t−1)k

U>(t−1)k
)yi‖. Note that this anomaly score is

exactly the length of the orthogonal projection of yi onto the
orthogonal complement U(t−1)k

. This idea of using the projec-
tion of the data onto a residual subspace as means for detecting
anomalies is quite popular and is also known to empirically work
well [25, 23, 22].5

At time t = 1, to bootstrap the above anomaly detection
framework, we gather a small training set of non-anomalous da-
ta (which is typically much easier to obtain than the anomalous
data) and construct N1 from it. Alternatively, if this is not pos-
sible, then we could collect a small set of data, apply any good
unsupervised anomaly detection scheme to label the data, and
then construct N1 through it. Since this is just a onetime step, it

3We defer the discussion on setting of k to later. Readers could
think of k as a small number, much smaller than m.
4It is possible to use other (non-SVD) matrix factorization ap-
proaches to construct a basis matrix that can linearly represent
N[t−1], however, using a low-rank SVD is attractive because it
naturally comes with guarantees of Theorem 1.
5The prior works typically use residual of the principal com-
ponent representation. Note that if the datapoints in Y[t−1] are
centered, then U(t−1)k

directly relates to the top-k principal com-
ponents.
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Algorithm 1: AnomDetect (prototype algorithm for de-
tecting anomalies at time t)

Input: Yt ∈ Rm×nt (new observations),
U(t−1)k

∈ Rm×k (matrix with orthogonal columns),
ζ ∈ R (threshold parameter)

Anomaly score construction step:

1 Nt ← [ ] , N̄t ← [ ]
2 for each point (column) yi ∈ Yt do
3 Solve the following least-squares problem:

4 x∗i ← argminx ‖yi − U(t−1)k
x‖ (=⇒ x∗i = U>(t−1)k

yi)

5 Define anomaly score: ai ← ‖yi − U(t−1)k
x∗i ‖

(=⇒ ai = ‖(Im − U(t−1)k
U>(t−1)k

)yi‖)
6 if ai ≤ ζ then
7 Nt ← [Nt,yi]
8 end
9 else

10 N̄t ← [N̄t,yi] (=⇒ yi is marked as anomaly)
11 end

12 end
13 N[t] ← [N[t−1], Nt]

Updating the singular vectors:

14 Construct Utk ∈ Rm×k such that:

• it has orthogonal columns and

• it equals/approximates the top-k left singular vectors of N[t].

Algorithms 2, 3, or 4 could be used for this purpose

Return: Y
(g)
t , N̄t, and Utk

does not heavily influence the overall scalability of our proposed
streaming approach.

Prototype Algorithm. In Algorithm AnomDetect, we present
a simple prototype procedure for anomaly detection based on
maintaining the left singular vectors (corresponding to the top-k
singular values) of the streaming data. Since we have normal-
ized all input points (yi’s) to have unit L2-length, the objective
values in (1) for all points are in the same scale. The Algorith-
m AnomDetect alternates between an anomaly detection and
singular vector updating step. In the anomaly detection step,
we use the past basis matrix to detect anomalies among the new
incoming points by thresholding on the objective value of the
least-squares problem (1). There are various ways for construct-
ing the thresholds, which we will briefly discuss in Section 5. Nt
is set of non-anomalous points in Yt identified by the algorithm
at time t.

We note here that our above framework is reminiscent to that
used in dictionary learning where the goal is to estimate a col-
lection of basis vectors over which a given data collection can
be accurately reconstructed [32, 24]. In that context, U(t−1)k

is
referred to as the dictionary matrix.

The main challenge is in updating the singular vectors. To
start off, we first present an inefficient (baseline) approach based
on global SVD updates, and later show how ideas from matrix
sketching and randomized low-rank matrix approximations could
be used to speedup the updating without any significant loss in
quality of anomaly detection.

4.2 Global Algorithm (Baseline)
The simplest way of correctly updating the singular vectors is

to simply (re)generate them from the globally collected sample
set N[t] = [N[t−1], Nt]. A more mature approach for incremen-
tally and correctly generating the singular vectors of a matrix

(with addition of new columns) based on the following lemma is
outlined in Algorithm GlobalUpdate.

Lemma 3 ( [6]). Let R = [P,Q], Svd(R) = URΣRV
>
R , and

Svd(P ) = UPΣPV
>
P . Then UR = UPUF , ΣR = ΣF , and where

F = [ΣP , U
>
P Q] and Svd(F ) = UFΣFV

>
F .

Algorithm 2: GlobalUpdate (global update of the left
singular vectors at time t)

Input: Ût−1, Σ̂t−1, k, and Nt ∈ Rm×nt

1 F ← [Σ̂t−1, Û
>
t−1Nt]

2 UFΣFV
>
F ← Svd(F )

3 Ût ← Ût−1UF

4 Σ̂t ← ΣF

5 Ûtk ← [u1, . . .uk] (where Ût = [u1, . . . ,um])

Return: Ût, Σ̂t, and Ûtk

At time t, Algorithm GlobalUpdate takes O(mn[t]) space

and O(min{m2n[t],mn
2
[t]}) time, where n[t] denotes the number

of columns (datapoints) in the matrix N[t]. It is obvious that
a significant disadvantage of Algorithm GlobalUpdate is that
both its computational and memory requirement increases with
time. We overcome this problem by using matrix sketching. Our
goal will be to show that while gaining in computational efficien-
cy, the sketching approach still produces a good approximation
to the top-k left singular vectors of N[t] at every time t.

4.3 Sketching-based Algorithms
In this section, we present two unsupervised streaming anoma-

ly detection algorithms based on deterministic and randomized
matrix sketching. Our algorithms build upon and improve Fre-
quent Directions, a deterministic matrix sketching algorithm of
Liberty [28]. The Frequent Directions algorithm operates in a
streaming setting, and could be viewed as an extension of Mis-
ra and Gries approach for approximating frequency counts in a
stream [34]. For completeness, we present the Frequent Direc-
tions algorithm in Appendix A (Algorithm 5). The inputs to the
algorithm are an input data matrix Z ∈ Rm×n and a sketch ma-
trix S ∈ Rm×` (which could be set to all zeros initially).6 In each
iteration, one column of Z is processed by the algorithm and the
algorithm iteratively updates the matrix S such that for any unit
vector x ∈ Rm, ‖Z>x‖2 − ‖S>x‖2 ≤ 2‖Z‖2F /`. In other word-
s, the sketched matrix has the guarantee that for any direction
it is “close” to the input matrix. Practically too, the Frequent
Directions algorithm seems to greatly outperform other common-
ly used sketching algorithms based on projection, hashing, and
column sampling techniques [28, 14, 13, 12]. The computation
time for this algorithm is dominated by a SVD computation in
each iteration, which gives it a total running time of O(mn`2)
(assuming m ≥ `).

Recently, Ghashami et al. [14, 13], reanalyzed the Frequen-
t Directions algorithm, to show that it provides relative error
bounds for low-rank matrix approximation. Instead of S, their
algorithm returns Sk (the rank-k approximation of S) and their
main result shows that ‖Zk‖2F −‖Sk‖2F ≤ k/(`− k) · ‖Z −Zk‖2F ,
where Zk is the rank-k approximation of Z.

In contrast to [28, 14, 13], where the sketch is updated after
addition of every new column, we desire the sketch to be up-
dated after addition of nt ≥ 1 columns. In our problem setup,
at timestep t with nt ≥ 1 new columns, using Algorithm 5 for
sketching would take O(mnt`

2) time. However, we show that an
elegant trick of adding all the nt columns simultaneously (instead

6The parameter ` > k, but is generally much smaller than m.
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of one at a time) and performing a low-rank SVD reduces the
running time to O(max{mnt`,m`2}) (again assuming m ≥ `),
without any loss in the sketching performance. Note that this re-
sultant running time is O(min{nt, `}) times better than the run-
ning time (O(mnt`

2)) of Frequent Directions. These ideas form
the basis of our first sketching procedure described in Algorith-
m DetUpdate. The overall space complexity of Algorithm De-
tUpdate is O(m·maxt{nt}+m`), therefore the additional space
overhead for the algorithm is only O(m`) (as O(m · maxt{nt})
space is needed to just read and store the input matrices).

Algorithm 3: DetUpdate (deterministic streaming update
of the left singular vectors at time t)

Input: Nt ∈ Rm×nt , k ≤ `, and Bt−1 ∈ Rm×` (the matrix
sketch computed at time t− 1)

1 Dt ← [Bt−1, Nt]

2 Ũt`Σ̃t` Ṽ
>
t` ← Svd`(Dt) (where Σ̃t` = diag(σ̃t1 , . . . , σ̃t`))

3 Σ̃
(trunc)
t`

← diag
(√

σ̃2
t1
− σ̃2

t`
, . . . ,

√
σ̃2
t`−1
− σ̃2

t`
, 0
)

4 Bt ← Ũt`Σ̃
(trunc)
t`

5 Ũtk ← [u1, . . .uk] (where Ũt` = [u1, . . . ,u`])

Return: Bt and Ũtk

In Algorithm DetUpdate, the matrix Bt is a sketch of the
matrix N[t] = [N1, . . . , Nt]. Let Btk be the rank-k approximation
of Bt. In the next section, we establish:

‖N[t]k‖
2
F − ‖Btk‖

2
F ≤ k/(`− k) · ‖N[t] −N[t]k‖

2
F .

This proves that, while being computationally more efficient, the
sketch matrices generated by Algorithm DetUpdate have the
same guarantees as that generated by Frequent Directions [14].

Our second algorithm for matrix sketching is randomized, and
stems from the observation that the low-rank SVD (Step 2) in Al-
gorithm DetUpdate can be replaced by a randomized low-rank
matrix approximation. This leads to even greater computation-
al savings, however, as we note in the next section this efficien-
cy gain comes at a cost of slightly higher error in sketching as
compared to Algorithm DetUpdate (and Frequent Directions).
Randomized low-rank matrix approximation has been a subject
of lot of recent research with approaches based on sparsification,
column selection, dimensionality reduction, etc., been devised for
solving many matrix problems (see [16] and references therein).
Here we adapt a technique suggested by Halko et al. [16] that
is based on combining a randomized pre-processing step (multi-
plying by a random matrix and QR decomposition) along with
a simple post-processing step (eigenvalue decomposition of a s-
mall matrix). The complete sketching procedure is described in
Algorithm RandUpdate.

At timestep t, Algorithm RandUpdate takes O(`Tmult +(m+
nt)`

2) time (assuming m ≥ `), where Tmult denotes the cost of
a matrix-vector multiplication with the input matrix Mt. The
matrix-vector multiplication is a well-studied topic with numer-
ous known efficient sequential/parallel algorithms. Note that
this running time is smaller than that of Algorithm DetUp-
date. which at timestep t takes O(max{mnt`,m`2}) time. The
overall space complexity of Algorithm RandUpdate is O(m ·
maxt{nt}+mr), therefore the additional space overhead for the
algorithm is again only O(mr) = O(m`).

Dealing with Concept Drift. An important feature of many
real-world data streams is “concept drift”, which means that the
characteristics of the data can change over time. Algorithms for
handling concept drift need to employ regular model updates
as new data arrives. We refer the reader to the survey of [37]

Algorithm 4: RandUpdate (randomized streaming update
of the left singular vectors at time t)

Input: Nt ∈ Rm×nt , k ≤ `, and Et−1 ∈ Rm×` (the
randomized matrix sketch computed at time t− 1)

1 Mt ← [Et−1, Nt]
2 r ← 100`
3 Generate an m× r random Gaussian matrix Ω

4 Y ←MtM
>
t Ω

5 QR← Qr(Y ) (QR factorization for Y )

6 AtΣ̆
2
tA
>
t ← Eig(Q>MtM

>
t Q)

(where Σ̆2
t = diag(σ̆2

t1 , . . . , σ̆
2
tr ))

7 Ŭt ← QAt (QQ>MtM
>
t QQ

> approximates MtM
>
t )

8 Ŭt` ← [u1, . . . ,u`] (where Ŭtr = [u1, . . . ,ur] and ` ≤ r)
9 Σ̆

(trunc)
t`

← diag
(√

σ̆2
t1
− σ̆2

t`
, . . . ,

√
σ̆2
t`−1
− σ̆2

t`
, 0
)

10 Et ← Ŭt`Σ̆
(trunc)
t`

11 Ŭtk ← [u1, . . .uk] (where Ŭt` = [u1, . . . ,u`])

Return: Et and Ŭtk

and the references therein for further motivation and background
information on concept drift.

In our formulation above concept-drift is well captured, as the
underlying model is updated at each time t with all the identi-
fied non-anomalous points till time t− 1 (related experiments in
Section 5.3). Note that some applications might require anoma-
lies to be detected based on a sliding window of inputs. Our
algorithm could be easily adapted to these scenarios by modi-
fying the matrix sketch construction. A simple idea, in case of
the sliding window of length w, is to at every time t maintain
a separate sketch of the non-anomalous data identified over the
time interval [t − w + j, t − 1] (i.e., Nt−w+j , . . . , Nt−1) for each
j ∈ {11, . . . , w − 1}, and update all these (w − 1) different s-
ketches with Nt. This ensures that at every time t+ 1, we have
the desired sketch from [Nt−w+1, . . . , Nt]. This only requires a
small amount of additional bookkeeping, and this idea can be ef-
ficiently implemented. Due to space limitations, we defer further
details to the full version of this paper.

4.4 Anomaly Detection Performance
Analysis of Algorithm RandUpdate. In this section, we the-
oretically compare the anomaly detection performance obtained
by using the matrix Ŭtk (output of Algorithm RandUpdate)
in Algorithm AnomDetect to that of using the true singular
vector matrix Ûtk (output of Algorithm GlobalUpdate). The
analysis of Algorithm DetUpdate is a special subcase of this
analysis, and we present that later.

Overall, the analysis can be split into two main parts: 1)
we show that Algorithm RandUpdate produces good matrix
sketches (Lemma 9) at every time t, and 2) we combine the
guarantee on the sketches plus techniques from matrix pertur-
bation theory to compare the anomaly detection performance
of using Ŭtk in Algorithm AnomDetect as compared to Ûtk
(Theorem 14).

If Ŭtk is used in Algorithm AnomDetect, then the anomaly
score for any input point y ∈ Rm arriving at time t+ 1 is

‖y − Ŭtkx∗s‖, where x∗s = argminx‖y − Ŭtkx‖.

Similarly if Ûtk is used in Algorithm AnomDetect, then the
anomaly score for y is

‖y − Ûtkx∗g‖, where x∗g = argminx‖y − Ûtkx‖.
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We start with a simple observation (proof omitted here), that a

bound on ‖Ûtk − Ŭtk‖F directly translates into a bound on the
difference between these two anomaly scores.

Lemma 4. Let x∗g = argminx‖y − Ûtkx‖, x∗s = argminx‖y −
Ŭtkx‖. Then,∣∣∣‖y − Ûtkx∗g‖ − ‖y − Ŭtkx∗s‖

∣∣∣ ≤ ‖Ûtk − Ŭtk‖F .
We now concentrate on bounding ‖Ûtk − Ŭtk‖F . To do so, we

first construct a bound on ‖N[t]kN
>
[t]k
−EtkE

>
tk‖F . We then plug

this bound into a recent matrix perturbation result to show that
Ûtk (the eigenvectors of N[t]kN

>
[t]k

) and Ŭtk (the eigenvectors of

EtkE
>
tk ) are close. Our analysis relies on the following result from

Halko et al. [16] that bounds the error due to the randomized
low-rank approximation.

Theorem 5. (Restated from Corollary 10.9 of [16]) Consider
Algorithm RandUpdate at time t. Let diag(σ̄t1 , . . . , σ̄tm) be the
eigenvalues of MtM

>
t , then with probability at least 1 − 6e−99`,

‖MtM
>
t − ŬtΣ̆2

t Ŭt‖ ≤ 38σ̄t`+1 + 2(
∑m
i=`+1 σ̄

2
ti)

1/2/
√
`.

We will need a few additional notations:

(a) Etk = Ŭtk Σ̆
(trunc)
tk

(rank-k approximation of Et),

(b) ∆̆t =
∑t
j=1 σ̆

2
j`

,

(c) υj = 38σ̄j`+1 + 2
(∑m

i=`+1 σ̄
2
ji

)1/2
/
√
` (error bound from The-

orem 5, at time j),

(d) Υt =
∑t
j=1 υj

(e) κ = σ1(N[t])/σk(N[t]), where σ1(N[t]) ≥ · · · ≥ σm(N[t]) are the
singular values of N[t],

(f) Rt = QQ>Mt,

(g) Pt = QAtΣ̆t = ŬtΣ̆t (by construction in Algorithm RandUp-
date, RtR

>
t = PtP

>
t ).

As columns ofQ are orthogonal to each other, QQ> is a projec-
tion matrix, and therefore by standard properties of projection
matrices and noting that (QQ>)> = QQ>,

‖Mt‖2F ≥ ‖QQ>Mt‖2F = ‖Rt‖2F = ‖Pt‖2F . (2)

Similarly for all unit vectors x ∈ Rm,

‖M>t x‖2 ≥ ‖(QQ>Mt)
>x‖2 = ‖R>t x‖2 = ‖P>t x‖2. (3)

For ease of presentation, in the following, we are going to as-
sume, that t ·6e−99` � 1.7 Note that e−99` is a very tiny number.

Lemma 6. At time t, Algorithm RandUpdate maintains that:
‖N[t]‖2F − ‖Et‖2F ≥ `∆̆t.

Proof. At time t, ‖Mt‖2F = ‖Et−1‖2F + ‖Nt‖2F . We also have
‖Pt‖2F ≥ ‖Et‖2F + `σ̆2

t` . Since, ‖Mt‖2F ≥ ‖Pt‖2F (from (2)), we

have ‖Mt‖2F ≥ ‖Et‖2F + `σ̆2
t` . Solving for ‖Nt‖2F from these

inequalities and summing over j ≤ t, we get,

‖N[t]‖2F =

t∑
j=1

‖Nj‖2F

≥
t∑

j=1

(‖Ej‖2F − ‖Ej−1‖2F + `σ̆2
j`) ≥ ‖Et‖2F + `∆̆t.

The last line follows as E0 is all zeros matrix. �

7If this inequality is violated, then one could use a slightly larger
r in Step 2 of Algorithm RandUpdate.

The following lemma shows that for any direction x, N[t] and
Et are with high probability not too far apart.

Lemma 7. For any unit vector x ∈ Rm, at any time t, 0 ≤
‖N>[t]x‖2 − ‖E>t x‖2, and with probability at least 1− t · 6e−99`,

‖N>[t]x‖2 − ‖E>t x‖2 ≤ ∆̆t + Υt.

Proof. To show |N>[t]x‖2 − ‖E>t x‖2 > 0, observe that

‖E>t−1x‖2 + ‖N>t x‖2 = ‖M>t x‖2.

Since ‖P>t x‖2 ≥ ‖E>t x‖2 (by construction) and ‖M>t x‖2 ≥
‖P>t x‖2 (from (3)), we have,

‖N>[t]x‖2 =

t∑
j=1

‖N>j x‖2 ≥
t∑

j=1

(‖E>j x‖2 − ‖E>j−1x‖2) ≥ ‖E>t x‖2.

Here we used that E0 is an all zeros matrix. Now let us concen-
trate on showing

‖N>[t]x‖2 − ‖E>t x‖2 ≤ Υt + ∆̆t.

Let ui be the ith column in Ŭt. σ̆
2
ti− σ̆

2
t` is the ith singular value

of Et. Let Rp = rank(Pt).

‖P>t x‖2 =

Rp∑
i=1

σ̆2
ti〈ui,x〉

2 =

Rp∑
i=1

(σ̆2
ti + σ̆2

t` − σ̆
2
t`)〈ui,x〉2

=

Rp∑
i=1

(σ̆2
ti − σ̆

2
t`)〈ui,x〉2 +

Rp∑
i=1

σ̆2
t`〈ui,x〉

2

≤
∑̀
i=1

(σ̆2
ti − σ̆

2
t`)〈ui,x〉2 + σ̆2

t`

Rp∑
i=1

〈ui,x〉2 ≤ ‖E>t x‖2 + σ̆2
t` .

For the first inequality we used that for i > `, σ̆2
ti ≤ σ̆

2
t` . For the

second inequality, we use that
∑Rp

i=1〈ui,x〉
2 ≤ ‖x‖2 = 1 (as x is

a unit vector).
Since for all unit vectors x ∈ Rm, ‖M>t x‖2 − ‖P>t x‖2 ≤
‖MtM

>
t − PtP>t ‖, we get with probability at least 1− 6e−99`,

‖M>t x‖2 ≤ ‖P>t x‖2 + ‖MtM
>
t − PtP>t ‖ = ‖P>t x‖2 + υt.

Since ‖M>t x‖2 = ‖E>t−1x‖2 + ‖N>t x‖2, we get with probability
at least 1− 6e−99`,

‖E>t−1x‖2 + ‖N>t x‖2 ≤ υt + ‖E>t x‖2 + σ̆2
t` .

Subtracting ‖E>t−1x‖2 from both sides and summing over j ≤ t
with a union bound for probabilities, we get that with probability
at least 1− t · 6e−99`,

‖N>[t]x‖2 =

t∑
j=1

‖N>j x‖2

≤
t∑

j=1

(‖E>j x‖2 − ‖E>j−1x‖2 + σ̆2
j` + υj) = ‖E>t x‖2 + ∆̆t + Υt.

Again we used that E0 is an all zeros matrix. �

Since for all unit vectors x ∈ Rm,

‖N>[t]x‖2 − ‖E>t x‖2 ≥ 0 =⇒ N[t]N
>
[t] � EtE>t .

From Claim 2, for all unit vectors x ∈ Rm, κ‖N>[t]kx‖ ≥ ‖N>[t]x‖.
Therefore,

κ2N[t]kN
>
[t]k
� N[t]N

>
[t] � EtE>t � EtkE

>
tk .

Lemma 8. Let N[t]k be the best rank-k approximation to N[t].

Then with probability at least 1− t · 6e−99`,

∆̆t ≤
‖N[t] −N[t]k‖

2
F + kΥt

`− k .
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Proof. From Lemma 6, ‖N[t]‖2F − ‖Et‖2F ≥ `∆̆t. Let Ry =
rank(N[t]) and v1, . . . ,vRy be the left singular vectors of N[t]

corresponding to the non-zero singular values of N[t], we have

with probability at least 1− t · 6e−99`,

`∆̆t ≤ ‖N[t]‖2F − ‖Et‖2F

=

k∑
i=1

‖N>[t]vi‖2 +

Ry∑
i=k+1

‖N>[t]vi‖2 − ‖Et‖2F

=

k∑
i=1

‖N>[t]vi‖2 + ‖N[t] −N[t]k‖
2
F − ‖Et‖2F

≤
k∑
i=1

‖N>[t]vi‖2 + ‖N[t] −N[t]k‖
2
F −

k∑
i=1

‖E>t vi‖2

= ‖N[t] −N[t]k‖
2
F +

k∑
i=1

(‖N>[t]vi‖2 − ‖E>t vi‖2)

≤ ‖N[t] −N[t]k‖
2
F + k(Υt + ∆̆t).

First inequality uses that
∑k
i=1 ‖E

>
t vi‖2 ≤ ‖Et‖2F , and the last

inequality is based on Lemma 7. Solving for ∆̆t in the above
inequality gives the claimed result. �

Using Lemma 8, we can relate ‖N[t]k‖
2
F to ‖Etk |‖

2
F to show

that Etk is a “good” sketch of N[t]k .

Lemma 9. At any time t, 0 ≤ ‖N[t]k‖
2
F − ‖Etk‖

2
F , and with

probability at least 1− t · 6e−99`,

‖N[t]k‖
2
F − ‖Etk‖

2
F ≤ kΥt +

k(‖N[t] −N[t]k‖
2
F + kΥt)

`− k .

Proof. Let v1, . . . ,vk and u1, . . . ,uk be the left singular vec-
tors of N[t] and Et corresponding to their top-k singular values.
We have

‖N[t]k‖
2
F =

k∑
i=1

‖N>[t]vi‖2 ≥
k∑
i=1

‖N>[t]ui‖2

≥
k∑
i=1

‖E>t ui‖2 = ‖Etk‖
2
F .

This proves that 0 ≤ ‖N[t]k‖
2
F − ‖Etk‖

2
F . The upper bound can

be established by noticing that with probability at least 1 − t ·
6e−99`,

‖Etk‖
2
F ≥

k∑
i=1

‖E>tkvi‖2 ≥
k∑
i=1

(‖N>[t]vi‖2 −Υt − ∆̆t)

= ‖N[t]k‖
2
F − kΥt − k∆̆t,

where the second inequality follows from Lemma 7. Now substi-
tuting for ∆̆t from Lemma 8 gives the result. �

Using this above lemma and the fact that κ2N[t]kN
>
[t]k
� EtkE

>
tk ,

we can prove the following proposition.

Proposition 10. At time t, Etk (rank-k approximation of Et
generated by Algorithm RandUpdate) satisfies,

‖κ2N[t]kN
>
[t]k
− EtkE

>
tk‖F ≤ κ

2‖N[t]k‖
2
F − ‖Etk‖

2
F .

Proof. For a positive semidefinite matrix, the trace is greater
than or equal to the Frobenius norm. Since, we have established
that κ2N[t]kN

>
[t]k
− EtkE

>
tk is a positive semidefinite matrix.

‖κ2N[t]kN
>
[t]k
− EtkE

>
tk‖F ≤ tr(κ2N[t]kN

>
[t] − EtkE

>
tk )

= κ2tr
(
N[t]kN

>
[t]k

)
− tr(EtkE

>
tk ) = κ2‖N[t]k‖

2
F − ‖Etk‖

2
F .

The first inequality follows from the trace-Frobenius inequality
of positive semidefinite matrices. �

We need couple of more definitions. Define Φa as,

Φa =
κ2‖N[t]k‖

2
F − ‖Etk‖

2
F

‖N[t]k‖2F − ‖Etk‖2F
. (4)

Note that Φa ≥ 1 as ‖N[t]k‖
2
F ≥ ‖Etk‖

2
F (from Lemma 9). In fac-

t, for small k’s (as in our setting), typically κ (the ratio between
the largest and kth largest singular value of N[t]) is bounded,
yielding Φa = O(1).

Define Φb as,

Φb =
‖κ2N[t]N

>
[t] − EtE>t ‖

‖κ2N[t]kN
>
[t]k
− EtkE>tk‖

. (5)

Claim 11.

Φb ≤ 1 + 2/(κ2 − ‖Et‖2/‖N[t]‖2).

Proof. A straightforward manipulation shows that the nu-
merator of Φb,

‖κ2N[t]N
>
[t] − EtE>t ‖ ≤ κ2‖N[t]N

>
[t] −N[t]kN

>
[t]k
‖

+ ‖EtE>t − EtkE
>
tk‖+ ‖κ2N[t]kN

>
[t]k
− EtkE

>
tk‖. (6)

Note that using Theorem 1,

‖N[t]N
>
[t] −N[t]kN

>
[t]k
‖ = σ2

k+1,

where σk+1 is the (k + 1)st singular value of N[t]. Similarly by

using Theorem 1, ‖EtE>t −EtkE
>
tk‖ is equal to the square of the

(k+ 1)st singular value of Et. Since we have already established
N[t]N

>
[t]−EtE>t � 0, this implies that ‖EtE>t −EtkE

>
tk‖ ≤ σ

2
k+1.

Let ‖N[t]‖ = σ1. Substituting these observations into Φb:

Φb ≤ 1 +
(κ2 + 1)σ2

k+1

‖κ2N[t]kN
>
[t]k
− EtkE>tk‖

≤ 1 +
(κ2 + 1)σ2

k+1

κ2σ2
1 − ‖Et‖2

.

The last inequality follows as by Weyl’s inequality [15] the largest
eigenvalue of ‖κ2N[t]kN

>
[t]k
− EtkE

>
tk‖ is greater than equal to

κ2‖N[t]k‖
2 − ‖Etk‖

2. We also used that ‖N[t]k‖
2 = ‖N[t]‖2 and

‖Et‖2 = ‖Etk‖
2. Since, κ ≤ σ1/σk+1, bound on Φb can be

re-expressed as,

Φb ≤ 1 +
(κ2 + 1)

σ2
1
κ2

κ2σ2
1 − ‖Et‖2

≤ 1 +
2

κ2 − ‖Et‖2/σ2
1

.

Here we used that (κ2 + 1)/κ2 ≤ 2 as κ ≥ 1. �

Note that ‖Et‖2 ≤ ‖N[t]‖2 (as N[t]N
>
[t] � EtE>t ) . Typically κ is

also bounded away from 1, yielding Φb = O(1).

We now use the theory of matrix perturbation to relate Ŭtk
(from Algorithm RandUpdate) to Ûtk (true left singular vec-
tors corresponding to top-k singular values of N[t]). There is
lot of prior work in matrix perturbation theory that relates the
eigenvalues, singular values, eigenspaces, and singular subspaces,
etc., of the matrix Z + Z′ to the corresponding quantity in Z,
under various conditions on the matrices Z and Z′. Here we use
a recent result from Chen et al. [10] that studies behavior of the
eigenvector matrix of a Hermitian (symmetric) matrix under a
small perturbation.

Theorem 12. (Restated from Theorem 2.1 [10]) Let A ∈ Rm×m
be a symmetric matrix with distinct eigenvalues with Eig(A) =
UΛU> where Λ = diag(λ1, . . . , λm). Let Aper = A + Φ be
a symmetric matrix. Let L = L(Λ) = mini6=j |λi − λj | > 0,
β = ‖Φ‖F /L, and α = 2‖A‖/L, with β satisfying: β ≤ 1/(1 +
4α). Then Eig(Aper) = UperΛperU

>
per such that ‖U − Uper‖F ≤√

2β/(1 + 4α2)1/4.
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We now can apply Proposition 10 and Theorem 12 to bound
‖Ûtk−Ŭtk‖F . We do so by constructing matrices: A = κ2N[t]N

>
[t]

and Aper = EtE
>
t . Let ` be such that:

√
mΦbΦakΥt

L
+

√
mΦbΦak(‖N[t] −N[t]k‖

2
F + kΥt)

(`− k)L

≤ L

L+ 4κ2‖N[t]‖2
. (7)

An important point to note in the above equation (7) is that
both terms in the left-hand side are monotonically decreasing
functions in ` (for the first term, Υt decreases with `).

Lemma 13. Let λi be the ith eigenvalue of N[t]N
>
[t] and L =

mini 6=j |λi − λj | > 0. If ` satisfies (7) for Υt,Φa,Φb defined
in (4), (4), (5) respectively, then with probability at least 1− t ·
6e−99`,

‖Ûtk − Ŭtk‖F ≤
√

2L(√
L+ 8κ2‖N[t]‖2 4

√
L2 + 16κ4‖N[t]‖4

) .
Proof. Set A = κ2N[t]N

>
[t] and Aper = EtE

>
t . Now α =

2‖A‖/L. Concentrating on β, with probability at least 1 − t ·
6e−99`,

β =
‖A−Aper‖F

L
≤
√
mΦb‖κ2N[t]kN

>
[t]k
− EtkE

>
tk‖F

L

≤
√
mΦb(κ

2‖N[t]k‖
2
F − ‖Etk‖

2
F )

L

=

√
mΦbΦa(‖N[t]k‖

2
F − ‖Etk‖

2
F )

L

≤
√
mΦbΦakΥt

L
+

√
mΦbΦak(‖N[t] −N[t]k‖

2
F + kΥt)

(`− k)L
.

The last inequality follows from Lemma 9. To apply Theo-
rem 12, we need to satisfy the condition of β ≤ 1/(1 + 4α).
This translates to setting ` to satisfy (7) (assuming k <

√
m

and the Lemma 9 holds), The eigendecomposition of N[t]N
>
[t] is:

N[t]N
>
[t] = ÛtΣ̂tÛ

>
t . Similarly the eigendecomposition of EtE

>
t

is:

EtE
>
t = [Ŭt|or+1, . . . ,om]×

diag(σ̆2
t1 − σ̆

2
t` , . . . , σ̆

2
t`−1
− σ̆2

t` , 0, . . . , 0)× [Ŭt|or+1, . . . ,om]>,

where [Ŭt|or+1, . . . ,om] is an m × m orthogonal matrix. Note

that Ŭt is an m× r matrix. The choice of or+1, . . . ,om does not
matter here.

Substituting the values of β ≤ 1/(1 + 4α) and α, we have by
the bound of Theorem 12,

‖Ût − [Ŭt|or+1, . . . ,om]‖F

≤
√

2L√
L+ 8κ2‖N[t]‖2 4

√
L2 + 16κ4‖N[t]‖4

.

Noting that

‖Ûtk − Ŭtk‖F ≤ ‖Ût − [Ŭt|or+1, . . . ,om]‖F

as Ûtk − Ŭtk is a submatrix of Ût− [Ŭt|or+1, . . . ,om] (remember
k ≤ ` ≤ r) completes the proof. �

Neither the numerical constants nor the precise form of the
bound on ` in (7) are optimal because of the slackness in The-
orem 12. The bound on ` in (7) could be simplified a bit for
some interesting cases, e.g., when k is small and 1 < κ ≤ O(1)
then Γa = O(1) and Γb = O(1). The assumption of L > 0 is
something that is commonly satisfied in practice, especially if m
is reasonably smaller than the number of datapoints in N[t].

We can now compare the anomaly scores generated by using
either Ûtk or Ŭtk in Algorithm AnomDetect. The theorem fol-
lows from Lemmas 4 and 13. Informally, the theorem shows that
under some reasonable assumptions and settings of parameter-
s, we can use the efficient Algorithm RandUpdate for singu-
lar value updating in Algorithm AnomDetect and still obtain
anomaly scores that are close to that obtained using the true
(actual) singular vectors. The theorem relies on the following
two assumptions:

(A1) L = mini 6=j |λi − λj | > 0 where λi be the ith eigenvalue of
N[t]N

>
[t].

(A2) ` satisfies the bound from (7).

Theorem 14 (Main Theorem). Let N1, . . . , Nt be a sequence

of matrices with N[t] = [N1, . . . , Nt]. Let N[t]k = Ûtk Σ̂tk V̂
>
tk be

the best rank-k approximation to N[t]. Then for any unit vector

y ∈ Rm, Ŭtk (generated by the Algorithm RandUpdate), under
assumptions (A1) and (A2), with probability at least 1−t·6e−99`,
satisfies: ∣∣∣∣min

x∈Rk
‖y − Ûtkx‖ − min

x∈Rk
‖y − Ŭtkx‖

∣∣∣∣
≤

√
2L

(
√
L+ 8κ2‖N[t]‖2 4

√
L2 + 16κ4‖N[t]‖4)

.

The above bound on the difference in anomaly scores is an in-
creasing function in L.

Remark 15. Note that in Theorem 14, we have assumed that
the set of matrices N1, . . . , Nt given to both algorithms are the
same. This assumption is important for any theoretical compar-
ison between the algorithms. The foundation for this assumption
comes from the following inductive observation: by Theorem 14,
at time t + 1, for each point in Yt+1, the anomaly scores con-
structed by using either matrices Ûtk or Ũtk are “almost” the

same, therefore, Nt+1 generated by using either Ûtk or Ũtk in
Algorithm AnomDetect are also almost the same.

Analysis of Algorithm DetUpdate. The analysis is identical
to that of Algorithm RandUpdate. Since the SVD in Step 2 of
Algorithm DetUpdate is exact, the error due to randomization
(Υt) is zero. Let Btk be the rank-k approximation of Bt. Define
Γa and Γb by replacing Et with Bt and Etk with Btk in the
definitions of Φa (4) and Φb (5), respectively.

Γa =
κ2‖N[t]k‖

2
F − ‖Btk‖

2
F

‖N[t]k‖2F − ‖Btk‖2F
and Γb = 1 +

2

κ2 − ‖Bt‖2/‖N[t]‖2
.

For Algorithm DetUpdate, the requirement on ` needed for
the application of the matrix perturbation bound of Theorem 12
simplifies to:

` = Ω

(√
mκ2‖N[t]‖2ΓaΓbk‖N[t] −N[t]k‖

2
F

L2

)
. (8)

With these changes, the following theorem follows as Theorem 14.

Theorem 16. Let N1, . . . , Nt be a sequence of matrices with
N[t] = [N1, . . . , Nt]. Let N[t]k = Ûtk Σ̂tk V̂

>
tk be the best rank-k

approximation to N[t]. Let λi be the ith eigenvalue of N[t]N
>
[t]

and L = mini 6=j |λi−λj | > 0. Then for any unit vector y ∈ Rm,

Ũtk (generated by the Algorithm DetUpdate), under condition
on ` from (8), satisfies:∣∣∣∣min

x∈Rk
‖y − Ûtkx‖ − min

x∈Rk
‖y − Ũtkx‖

∣∣∣∣
≤

√
2L√

L+ 8κ2‖N[t]‖2 4
√
L2 + 16κ4‖N[t]‖4

.
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Dataset #Datapoints #Features % of Anomalies

Cod-RNA 488,565 8 33.33%
Protein-homology 145,751 74 0.89%

RCV1AD 100,274 1000 18.12%
Poker 1,025,010 10 7.63%

User-activity 129,328 83 10.69%

Table 1: Statistics of the experimental datasets.

The above theorem has an interpretation similar to that of Theo-
rem 14. However, compared to Theorem 14 the requirement on `
is slightly weaker here.8 This is because Algorithm DetUpdate
computes the exact low-rank matrix at each timestep.

Remark 17. The bounds on ` in (7) and (8) should be treated
as existential results, as setting ` using these bounds are tricky.
Practically, we noticed that setting ` ≈

√
m suffices to get good

results for both Algorithms DetUpdate and RandUpdate. An-
other important point to remember is that both these algorithms
can be used with any ` within k ≤ ` ≤ m, the above bounds
on ` are only to show theoretically that their performances are
similar to using global singular value decomposition updates in
Algorithm AnomDetect.

5. EXPERIMENTAL ANALYSIS
In this section, we experimentally demonstrate that our pro-

posed streaming approaches for anomaly detection easily adapt
to unseen patterns arising in the stream and scale efficiently to
big datasets. From now on, we refer to Algorithm AnomDe-
tect with its singular vectors updated using either Algorithm-
s GlobalUpdate, DetUpdate, or RandUpdate as Global ,
ADeMS , and RandADeMS respectively. As discussed earli-
er, Global is a baseline approach based on a standard idea. All
our experimental evaluation were run on a machine with 2.5GHz
Intel Core i7 processor and 16GB DDR3 SDRAM.

5.1 Experimental Setup
Datasets. We conducted experiments on datasets drawn from
a diverse set of domains to demonstrate the wide applicabili-
ty of our anomaly detection approach (see Table 1). Cod-RNA
dataset consists of sequenced genomes, and the task here is to
detect novel non-coding RNAs (ncRNAs) [38], which are labeled
as anomalies. Protein-homology dataset is from the protein ho-
mology prediction task of the KDD Cup 2004 [7], and the task
here is to predict which proteins in the database are homolo-
gous to a native (query) sequence. Non-homologous sequences
are labeled as anomalies. RCV1 dataset consists of a corpus of
newswire stories (documents with only one label), grouped in-
to categories [27]. In our evaluation, from all the categories, we
used documents belonging to the 10 largest categories and the 30
smallest categories (labeled as anomalies). For features, we use a
vocabulary of 1000 terms selected based on frequency. We refer
to this modified RCV1 dataset as RCV1AD. Poker dataset [29]
consists of over 1, 000, 000 instances and 10 attributes. Each
record of this dataset is an example of a hand consisting of five
playing cards drawn from a standard deck of 52. We labeled
the largest two clusters as normal instances and all the else as
anomalies. The User-activity is a non-public dataset that comes

8In fact, for small k’s, and assuming 1 < κ ≤ O(1) (implying
Γa = O(1) and Γb = O(1)), the bound on ` in (8) could be
simplified to,

` = Ω

(√
m‖N[t]‖2‖N[t] −N[t]k‖

2
F

L2

)
.
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Figure 3: Scalability comparison of various algorithms.

from an application that monitors employee network activity log
for an enterprise. The goal here is to identify malicious employee
actions (anomalies) that result in loss of intellectual property.

Baselines. There are plenty of approaches for anomaly detec-
tion (as discussed in Section 2). We compared against seven pop-
ular algorithms (in addition to Global) for anomaly detection.
These algorithms were chosen taking into account their scala-
bility on large datasets. 1SVM-linear and 1SVM-RBF are
one-class support vector machine classifiers with linear/radial-
basis as kernel function. The output probability value of be-
longing to the anomalous class is treated as the anomaly score.
We also compared against IForest [30], Mass [36], and Un-
constrained Least-Squares Importance Fitting (uLSIF) [18] al-
gorithms, which are all described in Section 2. These above
five algorithms were chosen as our non-incremental baselines.
As streaming and incremental competitors, we implemented t-
wo popular incremental Principal Component Analysis based
schemes. One is the low-rank incremental approach (called Inc-
Pack) of Baker et al. [3] which unifies many previous approaches
in this area. The other is an online subspace tracking algorithm
(called GROUSE) of Balzano et al. [4] which is based on ap-
plying an incremental gradient descent technique on the Grass-
mannian manifold subspace. GROUSE is an online incremental
algorithm that applies only simple updates at every timestep,
therefore is also highly computationally efficient.

Parameter Settings. Except for IForest and Mass, all oth-
er competitors, including our proposed approaches, require an
(initial) training set to bootstrap the process. As mentioned in
Section 4, there are different ways this could be achieved. In our
experiments, we assumed that there exists a small training set
of non-anomalous samples. We set the size of the training set
as 2000, and we draw these training samples randomly from the
set of non-anomalous datapoints. Note that the training set size
is much smaller compared to the actual dataset size. We also
observed that our results are stable to variations in the training
set (see results in Section 5.3).

After training, the number of datapoints (nt’s) given as input
at each timestep is set to 5000 and as suggested in Remark 17
we set ` =

√
m where m is the feature size. We report effect-

s of varying ` and nt in Section 5.3. We set k = m/5. All
non-incremental algorithms (1SVM-linear, 1SVM-RBF, IForest,
Mass, and uLSIF) are considered to receive all the samples at
once. The relevant parameters of these algorithms were tuned
to obtain the best possible result.

We used the standard evaluation metrics of True Positive rate
(TP) and False Positive rate (FP). To generate these ROC curves,
we use seven different threshold (ζ) numbers chosen based on the
distribution of the anomaly scores.

5.2 Comparison between Different Algorithms
Figures 1 and 2 plot the ROC curves of the selected algorithm-

s. Each point represents the average (TP and FP) of a 30-fold
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Figure 1: ROC curves for few compared approaches on various datasets.
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Figure 2: ROC curves for RandADeMS, ADeMS, and Global on various datasets.

cross-validation result, each time the training set was randomly
selected from the normal samples and the order of samples was
also randomly shuffled. We make the following observations:

1. From Figures 1(a), 1(b), 1(c), 1(d), and 1(e), it is evident
that RandADeMS outperforms (dominates) other compared
algorithms on most of the datasets, except on the Protein-
homology dataset where GROUSE performs slightly better
and on the User-activity dataset where there is a partial over-
lap between RandADeMS, 1SVM-RBF, and uLSIF. Note
that the performance of RandADeMS is good, both when
the fraction of anomalies is very high (such as in the Cod-RNA
dataset, Figure 1(a)) or very small (such as in the Protein-
homology dataset, Figure 1(b)). Other competitors demon-
strate inconsistent performance across these datasets.

2. ADeMS, RandADeMS, and Global have very similar per-
formances (Figures 2(a), 2(b), 2(c), 2(d), and 2(e)). It con-
firms our theoretical analysis (Theorems 14 and 16) that the
Algorithms DetUpdate and RandUpdate provide a desired
approximation to Algorithm GlobalUpdate. These figures
also suggest that using a randomized low-rank SVD (as in
RandADeMS), instead of the exact low-rank SVD (as in

ADeMS) has little effect on the anomaly detection perfor-
mance.

3. Figure 3 shows the scalability comparison (training + test-
ing time) between the compared approaches. The datasets for
this test were created by uniform down- and up-sampling the
Protein-homology dataset, with feature size increased 5 times.
RandADeMS is on average about 10+ times faster than
ADeMS and on average about 100 times faster than IncPack.
Its running time is almost identical to that of GROUSE, which
as we mentioned earlier is a highly efficient online method
for subspace tracking but with worse effectiveness (Figure 1).
Compared with non-incremental competitors, RandADeM-
S is also faster than the efficient IForest and Mass anomaly
detection algorithms, and is at least on average about 100 or
more times faster than any of the other methods. In particu-
lar, RandADeMS and ADeMS, finish in couple of minutes,
even when the dataset has few million instances.
Specifically, Table 5.2 lists the actual running comparison be-
tween ADeMS and RandADeMS on all the datasets. Notice
that RandADeMS is notably more efficient than ADeM-
S (even ≈ 10 times more efficient on the Protein-homology
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Dataset ADeMS RandADeMS

Cod-RNA 0.8221 0.2513
Protein-homology 3.1172 0.3384

RCV1AD 3.6559 3.2002
Poker 1.8791 0.4233

User-activity 0.2058 0.1593

Table 2: Actual running time comparison (in seconds)
between ADeMS and RandADeMS.

dataset). The running times of both these algorithms are al-
most comparable for the RCV1AD and User-activity datasets,
we believe that it is probably because both these datasets are
sparse, i.e., percentage of non-zero entries in the input is s-
mall.

5.3 Stability Tests against Concept Drift and Pa-
rameters

Streaming algorithms are known to be sensitive to the order of
data, or concept drift. To test the performance of our proposed
RandADeMS in different concept drift scenarios, we used as in-
put the RCV1AD dataset with its datapoints sorted by their ac-
tual timestamps and topic sizes (increasing and decreasing). The
timestamp ordered data captures a realistic concept drift scenari-
o where topics (news stories) arrive/fade over time, whereas by
grouping by topics we simulate the scenarios where major con-
cept drifts happen between topic transitions (when datapoints
from one topic finish and next one starts). In Figure 4, we com-
pared RandADeMS against a scheme (called Non-Update),
where we use the same training setup as RandADeMS, but
there are no updates to the U matrix over time (during test-
ing). This captures a baseline algorithm which does not update
for concept drift. Figure 4 shows that due to the singular vec-
tor updates, RandADeMS performs well even in the presence
of major concept drifts (something that the Non-Update fails to
do).

Figure 5(a) shows the performance of RandADeMS against
different `’s on the Protein-homology dataset. The ` here ranges
from 10 to 70 with increments of 10. The results show that even
small values of ` get good anomaly detection performance. In
Figure 5(b), we show the performance of RandADeMS on the
Poker dataset across different batch sizes (nt’s). We ran the
algorithm with batch sizes ranging from 1000 to 10, 000 with in-
crements of 1000. These results indicate a very stable behavior
of RandADeMS across different batch sizes. In Figure 5(c),
we plot 30 different ROC curves for RandADeMS for different
training initializations on the RCV1AD dataset. Each train-
ing set has 2000 samples randomly drawn from the set of non-
anomalous datapoints. The points on the curves are within 5%
of the averaged curve plotted in Figure 2(c), which demonstrates
that the performance of RandADeMS holds independent of the
training set used for bootstrapping.

Similar stable behavior was also observed for ADeMS (omitted
here).

6. CONCLUSION
We proposed new deterministic and randomized sketching-

based approaches to efficiently and effectively detect anomalies
in large data streams. The resulting algorithms consume limited
memory and require just one pass over the data. Our theoretical
results show that these algorithms perform comparably with a
global approach while being significantly faster and more memo-
ry efficient. Empirical evaluations on a variety of datasets illus-
trate the effectiveness and efficiency of the proposed approaches.
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Figure 4: Concept drift tests on different ordered RCV1AD data streams. The results show that RandADeMS
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APPENDIX
A. FREQUENT DIRECTIONS ALGORITHM

Algorithm 5 presents the Frequent Directions algorithm [28,
13]. The algorithm operates in the column update model where
the columns of the input matrix are added incrementally. The
main idea behind the algorithm is that it periodically shrinks the
` orthogonal vectors by roughly the same amount. This is remi-
niscent to the counter shrinking idea used by Misra and Gries [34]
for the problem of maintaining accurate frequency counts over a
stream.

Algorithm 5: FrequentDirections

Input: Z ∈ Rm×n, S ∈ Rm×`
1 for each column zi ∈ Z do
2 T ← [s1, . . . , s`−1, zi] (where S = [s1, . . . , s`])

3 UΣV > ← Svd(T ) (where Σ = diag(σ̃t1 , . . . , σ̃t`))

4 Σ
(trunc)
t ← diag

(√
σ̃2
t1
− σ̃2

t`
, . . . ,

√
σ̃2
t`−1
− σ̃2

t`
, 0
)

5 S ← UΣ
(trunc)
t

6 end
Return: S and U

The matrix S is the matrix sketch. In our problem setup, at
time t, if we have a sketch for N[t−1] and we want to create a
sketch for N[t] = [N[t−1], Nt], then we could do so by passing Nt
(as Z) and the sketch for N[t−1] (as S) in Algorithm Frequent-
Directions. However, as explained in Section 4.3, Algorithm-
s DetUpdate and RandUpdate achieve the same (or similar)
result in a much more efficient manner.
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