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ABSTRACT
In-memory databases rely on pointer-intensive data struc-
tures to quickly locate data in memory. A single lookup op-
eration in such data structures often exhibits long-latency
memory stalls due to dependent pointer dereferences. Hid-
ing the memory latency by launching additional memory ac-
cesses for other lookups is an effective way of improving per-
formance of pointer-chasing codes (e.g., hash table probes,
tree traversals). The ability to exploit such inter-lookup par-
allelism is beyond the reach of modern out-of-order cores due
to the limited size of their instruction window. Instead, re-
cent work has proposed software prefetching techniques that
exploit inter-lookup parallelism by arranging a set of inde-
pendent lookups into a group or a pipeline, and navigate
their respective pointer chains in a synchronized fashion.
While these techniques work well for highly regular access
patterns, they break down in the face of irregularity across
lookups. Such irregularity includes variable-length pointer
chains, early exit, and read/write dependencies.

This work introduces Asynchronous Memory Access
Chaining (AMAC), a new approach for exploiting inter-
lookup parallelism to hide the memory access latency.
AMAC achieves high dynamism in dealing with irregular-
ity across lookups by maintaining the state of each lookup
separately from that of other lookups. This feature en-
ables AMAC to initiate a new lookup as soon as any of
the in-flight lookups complete. In contrast, the static ar-
rangement of lookups into a group or pipeline in existing
techniques precludes such adaptivity. Our results show that
AMAC matches or outperforms state-of-the-art prefetch-
ing techniques on regular access patterns, while delivering
up to 2.3x higher performance under irregular data struc-
ture lookups. AMAC fully utilizes the available micro-
architectural resources, generating the maximum number of
memory accesses allowed by hardware in both single- and
multi-threaded execution modes.
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1. INTRODUCTION
In recent years, server memory capacity has increased dra-

matically, reaching the point where database tables and sup-
porting auxiliary structures can reside completely in mem-
ory. Pointer-intensive data structures (e.g., hash tables,
trees) are essential for enabling sub-linear access time to in-
memory data. In this context, vast datasets overwhelm on-
chip caches and unpredictable access patterns due to depen-
dent pointer dereferences frequently leave the CPU waiting
on a long-latency memory access. Consequently, the perfor-
mance bottleneck for many database operations is accessing
main memory [2, 21].

A modern CPU employs multiple out-of-order cores,
which are designed to hide the memory access latency by
identifying and issuing multiple independent memory ac-
cesses. The number of in-flight memory accesses at a given
point in time is called memory-level parallelism (MLP). The
amount of MLP is dictated by the number of independent
memory operations within the instruction window of the
processor core. A lookup in a pointer-intensive data struc-
ture (e.g., a hash table) may require chasing pointers, re-
sulting in low MLP as the next pointer cannot be discovered
until the current access completes.

Fortunately, many database operations that leverage
pointer-intensive data structures (e.g., hash join, index join,
and group-by) have abundant inter-lookup parallelism that
can be exploited to increase the MLP extracted by each
core. Exploiting such inter-lookup parallelism within a
core is difficult due to the limits on instruction window
size imposed by technology [1]. As a result, recent pro-
posals have examined software prefetching techniques that
exploit inter-lookup parallelism through loop transforma-
tions. State-of-the-art software prefetching approaches for
database systems work by arranging a set of independent
lookups into a group (Group Prefetching [8]) or pipeline
(Software-Pipelined Prefetching [8, 16]), in effect synchro-
nizing their memory accesses into highly structured se-
quences.

These approaches work well whenever the number of
pointer dereferences is known ahead of time and is constant
across lookups, in which case the group size or the number of
pipeline stages can be provisioned to perfectly accommodate
the memory access pattern. Whenever such perfect knowl-
edge or regularity is not present, some lookups may exhibit
irregularity with respect to the expected or average case.
Examples of irregularity include variable number of nodes
per bucket in a hash table, early exit (e.g., on a match of
a unique key), and read/write dependencies that require se-
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rialization of subsequent accesses via a latch. When such
irregularities occur, existing software prefetching techniques
must execute expensive and complex cleanup or bailout code
sequences that greatly diminish their effectiveness.

We observe that many real-world execution scenarios in-
volving pointer chasing entail irregularity across lookups.
Achieving high MLP in these circumstances requires a de-
gree of dynamism that is beyond the capability of today’s
software prefetching techniques. To overcome the existing
capability gap, this work introduces Asynchronous Mem-
ory Access Chaining (AMAC), a new software prefetching
scheme that avoids the need for rigidly arranging indepen-
dent lookups into a group or a pipeline. By preserving
and exploiting the lack of inter-dependencies across lookups,
AMAC is able to attain high MLP even for highly irregular
access patterns.

AMAC achieves its dynamism by maintaining the state of
each in-flight lookup separately from that of other lookups.
State maintenance operations are explicit, meaning that
once a prefetch is launched, the state associated with that
lookup is saved into a dedicated slot in a software-managed
buffer, at which point a different lookup can be handled by
loading its respective state. By decoupling the state of all
in-flight lookups from each other, AMAC enables unprece-
dented flexibility in initiating, completing, and waiting on
lookups. Such flexibility directly translates into high MLP,
as potential memory access opportunities are not wasted due
to common issues such as variable-length pointer chains.

Our contributions are as follows:

• We corroborate prior work showing that Group Prefetch-
ing and Software-Pipelined Prefetching attain consider-
able single-thread speedups of 2.8x-3.8x over a baseline
of a highly optimized no-prefetching hash join of 227 uni-
formly distributed unique relation keys (2GB ./ 2GB).
However, in the presence of irregularity across lookups,
these techniques lose much of their performance advan-
tage. On the same no-prefetching hash join, when the
relation keys follow a skewed key distribution, the perfor-
mance difference between the best-performing technique
and a no-prefetch baseline is just 39%.

• AMAC is highly robust, achieving a competitive 4.3x
speedup over the no-prefetching baseline for uniform
lookups and maintaining its performance advantage in the
presence of irregular accesses. In the skewed scenario,
AMAC improves the performance by up to 2.8x over the
no-prefetch baseline and by up to 2.3x over the existing
techniques.

• AMAC is able to fully utilize the available hardware MLP
resources. For the single-thread case, the achieved MLP
is constrained by the number of L1 data cache misses that
can be in-flight at once; for the multi-thread/multi-core
case, the achieved MLP is bottlenecked by the number of
outstanding last-level cache misses.

2. MOTIVATION

2.1 Pointer-Intensive Data Structures
This section explains the use of common pointer-intensive

data structures – namely, hash tables and trees – in database
operations.
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Figure 1: Hash join.

2.1.1 Hash Tables
Hash tables are prevalent in modern databases for accel-

erating data-finding and grouping operations. We consider
the use of hash tables for two frequent database operators:
hash join and group-by.

Figure 1 depicts the use of hash tables in a hash join op-
erator, which locates the matching entries in a pair of rela-
tions. Hash table lookup throughput is the main bottleneck
of the join operation, and its performance strictly depends
on the number of dependent memory accesses (i.e., number
of pointers chased) required to locate an item. A lookup in
the hash table can result in an arbitrary number of mem-
ory accesses as state-of-the-art hash tables offer a tradeoff
between performance (i.e., number of chained memory ac-
cesses) and space efficiency [4, 6, 7]. Moreover, when the
build relation keys follow a skewed value distribution, hash
collisions are unavoidable as some build keys are identical
but carry different payloads. Probing such hash table buck-
ets requires as many memory accesses as the number of hash
table nodes present in that bucket. The bottom line is that
it is not possible to generalize a single type of hash table
layout or guarantee a constant number of memory accesses
for each probe.

Another use of hash tables in database systems is the
group-by operator, which collects payloads of an input re-
lation and groups them according to relation keys. Similar
to the hash-join build phase, each payload in the input re-
lation is added into a hash table. However, the difference
is that in the case of non-unique keys, the common case for
group-by, the matching hash table node is located first and
then either the payloads are added to a separate list pointed
to by the hash table node (i.e., late aggregation) or the nec-
essary aggregation function is applied immediately on the
payload of the matching node. As a result, depending on
the group-by scenario, hash table layout, and relation cardi-
nality, the number of memory accesses per tuple might differ
significantly.

2.1.2 Tree Search
Tree index search is a fundamental operation in database

systems to handle large datasets with low latency and high
throughput. The performance of a lookup in a search tree
is directly related to the number of nodes traversed before
finding a match. A single tree lookup is an inherently serial
operation as the next tree node (i.e., child) to be traversed
cannot be determined before the comparison in the current
(parent) node is resolved. The combination of branching
control flow and large datasets leads to frequent memory
stalls due to low cache and TLB locality. There are numer-
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Figure 2: Execution patterns of Group Prefetching (GP), Software-Pipelined Prefetching (SPP) and Asyn-
chronous Memory Access Chaining (AMAC). Gray boxes indicate no-operations due to traversal divergences.

ous proposals to optimize the layout of the index trees to
improve their locality characteristics [10, 16, 23]. However,
crossing the cache block and VM page boundary, which is
unavoidable, still incurs significant memory access latency
penalties.

2.2 Hiding Memory Access Latency

2.2.1 Software Prefetching Techniques for Pointer-
Chasing Database Operations

The state-of-the-art pointer-chasing prefetching tech-
niques – namely, Group Prefetching (GP) and Software-
Pipelined Prefetching (SPP) [8] – exploit inter-lookup paral-
lelism to improve the performance of hash table operations.
SPP has also been applied to balanced search trees [16].
Both GP and SPP are loop transformations that break down
a loop with N dependent memory accesses into a loop that
contains N + 1 code stages, where each stage consumes the
data from the previous stage and prefetches the data for the
next stage. To hide the memory access latency by doing use-
ful work, Group Prefetching executes each code stage for a
group of M lookups1, thereby performing a maximum of M
independent memory accesses at a time. Similarly, Software-
Pipelined Prefetching forms a pipeline of N + 1 stages; each
code stage in the pipeline belongs to a different lookup and
a single lookup completes after going through N +1 pipeline
stages. In the cases where N is too small to hide the mem-
ory access latency, the pipeline is initiated with a prefetch
distance so that M independent memory accesses (M ≥ N)
are performed in-flight.2

Obviously, neither of the techniques is parameter-free as
they require the number of stages, N , and the number of
in-flight lookups, M , to be determined ahead of time. Set-
ting M is relatively easy, as it is a function of the underly-
ing hardware’s MLP capabilities; specifically, the maximum
number of outstanding L1-D cache misses that can be in

1This parameter is referred to as G in the original work [8].
2This parameter is referred to as D in the original work [8].
Hence, M = N ∗D.

flight at once.3 In contrast, N is a data structure- and
algorithm-specific parameter, which makes both GP and
SPP vulnerable to irregularities in the execution because
N explicitly structures the execution pattern of all the M
lookups, which leads to three issues:

1. Lookups might require less than N stages, due to the
irregular data structure layout (e.g., probes i1 vs i2 in
Figure 1). A similar situation could also occur on a
regular structure when certain lookups terminate ear-
lier than others (i.e., early exit after finding a match).
Regardless of the reason, when the actual number of
stages is less than N , the remaining code stages must
be skipped (i.e., no-operation) for that lookup.

2. Lookups might require more than N stages as the data
structure is irregular (e.g., unbalanced trees or due to
bucket collisions in a hash table). These cases require
a bailout mechanism to complete the lookup sequen-
tially.

3. Lookups might have a read/write dependency on each
other (e.g., hash table build or update). When this
occurs, the actual code stage and the subsequent ones
should be executed later, when the dependency is re-
solved.

Whenever any of the above cases occurs, the maximum
M will not be reached, necessarily lowering MLP. Over-
provisioning M does not help, as it increases the number
of no-operations (as explained in #1 and #2 above) or the
likelihood of an inter-dependency (as in #3).

Figure 2a illustrates the GP execution of ten independent
lookups (i1−10), where the number of code stages required
and the maximum number of in-flight lookups are five (N =
4,M = 5). Each white box indicates a code stage and lines
connecting the boxes indicate a memory access (prefetch)
produced in the earlier code stage and consumed in the later

3In microarchitectural terms, MLP is constrained by the
number of L1 Miss Status Handling Registers (MSHRs).

254



!"

!#$"

!#%"

!#&"

!#'"

("

)*+,-./"

0.123.415"

6-*7)*+,-./"

0.123.415"

893:3;"

0.123.415"

6
-
./

1
5+
<3
;
"=
>
?5
3
4"
@
3
."
0
A
@
53
"

"

BC" 8CC" 0D+4":-.9"

Figure 3: Normalized cycles per lookup tuple on
Xeon x5670.

code stage. The dashed box depicts all the lookups within a
group (i1− i5) going through the same code stage. Once all
the stages complete for all the lookups in the group, a new
group of lookups is initiated (i6 − i10). Figure 2b depicts
the same example for SP; the main difference is that one
iteration (shown in a dashed box) contains different code
stages for different lookups.

The execution patterns of i1,3,4,8,9,10 for both GP and SPP
in Figure 2 perfectly match the parameter N as there are
four memory accesses (five code stages). In contrast, the
lookups i2,5,6,7 turn out to be irregular as they terminate at
different stages of the execution. To handle such complexi-
ties, GP and SPP maintain status information per lookup so
that code stages can be skipped (necessary for correctness),
resulting in a loss of extracted MLP and a waste of CPU
cycles checking and propagating the status of completed
lookups. The other irregularities, such as lookups that turn
out to require more than N accesses or have a read/write de-
pendency (not shown in the example), are more difficult to
handle and require special “clean-up” passes and/or bailout
mechanisms.

2.2.2 Performance Analysis of Software Prefetching
In order to understand the performance impact of the ir-

regularities, we implemented GP and SPP for hash table
probes. Our baseline implementation leverages a chained
hashed table with linked lists used in recent hash join stud-
ies [4, 5]. The first hash table node is clustered with the
bucket header as shown in Figure 1. We run the experi-
ments on a Xeon x5670 with uniformly distributed random
227 lookup tuples (8B key and 8B payload) corresponding to
2GB in total. We report cycles spent per tuple key lookup
normalized to baseline code with uniform lookups. In all ex-
periments, we pick the best performing configuration, which
is M = 15 for GP and M = 12 for SPP.

We perform three experiments, namely uniform, non-
uniform and skewed traversals by populating the hash table
with 227 build relation tuples. Throughout the experiments,
the average number of node traversals per lookup is almost
four, but the hash table bucket occupancy and the traversal
algorithm vary. In the uniform case, each hash table bucket
contains exactly four nodes and each lookup traverses all the
nodes in a bucket. In the non-uniform case, we relax the as-
sumption that each hash table should contain four nodes
and we terminate the key search upon a match by assuming
the build keys are unique. Finally, in the skewed traver-
sals build keys follow a Zipf-skewed distribution (Zipf factor
= .75). Therefore, some hash table buckets contain more
nodes than the others, and 1% of the hash table buckets,

which are the most populous, contain 19% of the total build
tuples. This situation may arise in hash joins when the join
key is a non-unique attribute in the build relation.

Figure 3 shows the results of the performance experi-
ment. On uniform traversals, GP and SPP achieve im-
pressive speedups of 3.1x and 3.7x, respectively, over the
no-prefetch baseline thanks to their ability to fully reach
their MLP potential. On non-uniform traversals, GP and
SPP are 1.6x and 1.8x worse in terms of cycles per lookup
compared to the uniform lookups, due to the wasted code
stages on lookups that terminated early. Finally, on skewed
traversals, we observe that GP and SPP perform 2.6x and
3.5x worse compared to the uniform lookup case, delivering
virtually no improvement over the uniform baseline.

Throughout the experiments, we also observe that the per-
formance of SPP compared to GP fluctuates by ± 20%. The
inconsistent performance of existing techniques thus under-
scores the need for a robust software prefetching solution.

3. ASYNCHRONOUS MEMORY ACCESS
CHAINING

The main drawback of Group Prefetching and Software-
Pipelined Prefetching is the static staging of all in-flight
memory accesses. In effect, the set of lookups comprising
these accesses are coupled within a group or pipeline, re-
sulting in artificial inter-dependencies across the otherwise
independent lookups. This coupling is the reason for the
lack of robustness in existing prefetching techniques in the
face of irregularity in the data structure (e.g., unbalanced
tree) or in the traversal path (e.g., early exit).

This work introduces Asynchronous Memory Access
Chaining (AMAC), a new prefetching scheme whose distin-
guishing feature is the ability to deal with irregular and di-
vergent memory access patterns. AMAC accomplishes this
by preserving the independence across lookups, thus avoid-
ing the coupling behavior that plagues existing techniques.
Figure 2 shows a cartoon comparison of AMAC to the ex-
isting prefetching techniques.

3.1 Design Overview
The core idea of AMAC is to keep the full state of each

in-flight memory access separate from that of other in-flight
accesses. Whenever an access completes for a lookup, a new
access for the same lookup can be initiated without any
knowledge of the state of other accesses. If the completed
memory access was the last one for a given lookup (e.g., in
the case of a key match), a new lookup sequence can be
started with similar ease and, again, without any regard to
the state of other lookups.

Figure 4 shows the key components of the proposed
scheme in the context of a hash table probe in a hash-join op-
eration. All in-flight requests are kept in a software-managed
circular buffer, whose total number of entries is sufficient to
cover the memory access latency. Once a lookup has been
initiated, its state is saved in one entry of the circular buffer.
This state, comprised of the five fields shown in Figure 4,
contains all the information necessary to continue or termi-
nate the lookup. The key field contains the lookup key and
used for node comparisons throughout the lookup. Upon
a key match, the rid(idx) and payload fields are used for
output materialization. The stage field indicates the appro-
priate code stage to execute. Finally, ptr points to the node
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while (i < input.num_lookups){
  k = k%SIZE;
  s = load_state(k);
  switch(s.stage) {

    case 0:
    // execute stage 0
    break;
    case 1:

    // execute stage 1
if (!done)
  save_state(k);
else {

      // initiate new lookup
  i++;

      // execute new lookup
        save_state(k); 

      }
    break;
  }
  k++;

}
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Figure 4: AMAC execution.

1 struct state_t {
2 int64_t idx;
3 int64_t key;
4 int64_t pload;
5 node_t * ptr;
6 int32_t stage;
7 };
8 /* Hash table probe loop */
9 void probe

10 (table_t *input , hashtable_t *ht, table_t *out) {
11 state_t s[SIZE];
12 node_t * n;
13 int32_t k, i;
14 /* Prologue */
15 // ...
16 /* Main loop */
17 while (i < input ->num_keys ){
18 k = (k == (SIZE -1)) ? 0 : k;
19 if (s[k].stage == 1){
20 n = s[k].ptr;
21 /* Code 1: Output matches or visit next node */
22 if (n->key == s[k].key){
23 out[s[k].idx] = n->pload;
24 s[k].stage = 0;
25 } else if (n->next){
26 prefetch(n->next);
27 s[k].ptr = n->next;
28 } else {
29 /* initiate new lookup (Code 0) */
30 }
31 } else if (s[k].stage == 0){
32 /* Code 0: Hash input key , calc. bucket addr. */
33 int64_t hashed = HASH(input ->tuple[i].key);
34 bucket_t * ptr = ht->buckets + hashed;
35 /* Prefetch for next stage */
36 prefetch(ptr);
37 /* Update the state */
38 s[k].idx = ++i;
39 s[k].key = input ->tuple[i].key;
40 s[k].ptr = ptr;
41 s[k]. stage = 1;
42 /* Optionally fetch payload to emit results */
43 s[k]. pload = input ->tuple[i].pload;
44 }
45 k++;
46 }
47 /* Epilogue */
48 // ...
49 }

Listing 1: AMAC hash table probe pseudo-code.

being prefetched but not yet visited. Using the combina-
tion of stage and ptr fields, the exact status of each in-flight
lookup is preserved.

To execute a code stage of a lookup, the first step is to
load a single in-flight request from the circular buffer. As
a single in-flight request is read from the circular buffer,
the state of the lookup is loaded into the local variables of
the software thread (step 1 in Figure 4). Once the state

is loaded, the execution starts by jumping to the necessary
code stage directed by the stage information in the state
entry. The execution stage retrieves the lookup key and the
key is compared against the ptr → key to determine the
outcome of the stage. If the lookup is not completed (step
2a in Figure 4), a new memory prefetch is issued to the next
data structure node and the state is updated with the ad-
dress of the node that will be visited in the next stage. If
the lookup is completed (step 2b in Figure 4), a new lookup
is initiated by incrementing the index of the input array and
the state is saved into the circular buffer entry (of the com-
pleted lookup) after executing the necessary code to initiate
a lookup. Then, the next buffer entry is read unless all the
entries in the input array are consumed.

The pseudo-code of AMAC , shown in Listing 1, depicts
a more realistic implementation of the scheme described
above. The differences between our example in Figure 4
and Listing 1 are minor. One difference is that the mod-
ulo operation to access the circular buffer is costly when
the number of in-flight accesses is not a power of two, as
a division instruction is required. Therefore, we implement
a rolling counter that is reset to zero when it reaches the
size of the buffer, which allows us to pick arbitrary number
of in-flight operations. We also use additional state entries,
wherever necessary, for boundary checking, code simplifica-
tion, and in certain cases for avoiding re-execution of the
same functionality.

Code Stages. The simplified code stages for hash join
probe, hash join build, group-by, binary search tree (BST)
search, and skip list insert are depicted in Table 1. To iden-
tify the code stages, we analyze the baseline implementa-
tions and create the stages based on the pointer accesses.
The entries in the table define the state transitions through-
out the execution of the algorithm. The NS (Next Stage)
field indicates which of the stages should be executed next
based on the outcome(s) of the present stage. For example,
the hash join probe stages depicted in Table 1 show that
stage 0 initiates a new lookup, while the access to the data
structure and key comparison happens in the next stage,
which is stage 1. For simplicity, we depict the hash join
probe stages for unique keys, therefore upon a match in
stage 1, a new lookup is initiated by transitioning to stage
0. Other algorithms have similar stages and actions; one
difference is the latch? action, which returns a true value
when the latch is acquired by another lookup.

While accurate, the states we show in the table are sim-
plified. For instance, two optimizations, not captured in the
table, are the following: (1) in order not to lose an opportu-
nity to initiate a new memory access, we merge the termi-
nating stages of each lookup with the initial stage (for the
next lookup) wherever it is applicable. Therefore, when one
lookup completes, a new lookup starts immediately (similar
to our example in Figure 4), thus guaranteeing a constant
number of memory accesses in flight at all times, (2) in the
data structures with latches, we might employ extra inter-
mediate stages to avoid deadlocks during the lookups. An
example of such an implementation is the stage 1 of group-
by, which is implemented as two different stages depending
on whether the latch was already acquired for a given lookup
or not (not shown in Table 1).

Output order. Even though the lookup sequence does
not follow the sequential order of row ids, the original order
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Table 1: AMAC simplified codes stages (S: Stage, NS: Next stage).

 

S    Hash Join Probe            NS Hash Join Build              NS  Group-by                               NS BST Search                  NS Skip List Insert                       NS  

0 

Get new tuple 

Compute bucket 

address 

 

 1 

Get new tuple 

Compute bucket  

address 

 

1 

Get new tuple 

Compute bucket  

address 

 

1 

Get new tuple 

Access root  

node 

 

1 

Get new tuple 

Access highest head  

node’s successor 

 

1 

1 

Compare (==) keys? 

   T: Output result 

   F: Next node? 

      T: Move to next  

      F: No match 

 

 0 

 

 1 

 0 

Latch? 

   T: Retry 

   F: Node empty? 

      T: Insert tuple 

      F: Next node? 

         T: Move to next  

         F: Get new node 

 

1 

 

0 

 

2 

3 

Latch? 

   T: Retry 

   F: Compare (==) keys? 

      T: Update node 

      F: Next node? 

         T: Move to next  

         F: Get new node 

 

1 

 

3 

 

1 

2 

Compare (==) keys? 

   T: Output result 

   F: Move to next 

 

 

 

 

 

0 

1 

 

 

 

 

Compare (<) keys? 

   T: Move to next 

   F: Compare (==) keys? 

      T: Key exists 

      F: Lowest lvl? 

         T: Insert key  

         F: Collect pred. node 

              Move one lvl down 

 

1 

 

0 

 

2 

 

1 

2   

Node empty? 

   T: Insert tuple 

   F: Get new node 

 

0 

3 

Insert tuple 

 

 

3 

 

 

  

Generate rand. lvl 

Get new node 

 

 

3 

 

3   Insert tuple 0 Update the aggr. field 0   
Initialize new node 

Splice w/ collected nodes 
0 

 

 

is preserved through the rid(idx) field of the state. This
ensures that results are materialized in the input order.

3.2 Handling Read/Write Dependencies
The baseline implementation of the hash join build and

group-by contains a latch per node for updating the contents
of the data structure. When a latch cannot be acquired (i.e.,
the latch is acquired by another thread), the thread spins on
the latch until it becomes available. Obviously, in AMAC, if
one lookup cannot acquire the latch, there are still in-flight
lookups pending. When an AMAC thread executes a code
stage with latch acquire (e.g., stage 1 of group-by and hash
join build), we try to acquire the latch but if the attempt
fails, we move on to the next lookup in the circular buffer
and retry when the same lookup is performed later. As a
result, we still spin on the latch but at a coarser granularity.
In the cases where there is a probability of acquiring a latch
but failing to complete the stage (i.e., group-by stage1), we
employ an extra intermediate stage to avoid any deadlocks
(not shown in Table 1) as described in the previous subsec-
tion.

In summary, if one wants to run AMAC in a multi-
threaded fashion, the latch acquire should be implemented
with an atomic swap instruction only and if the attempt
fails, the thread moves on to the next lookup (i.e., no spin-
ning on a single lookup). For single-threaded runs, the same
ideas apply but there is no need for an atomic instruction
to acquire the latch.

4. METHODOLOGY
Workloads. For all the workloads evaluated in this work,

we use 16-byte tuples containing an 8-byte integer key and
an 8-byte integer payload, representative of an in-memory
columnar database storage representation. In all the cases,
the data structure nodes are aligned to 64-byte cache block
boundary with the aligned attribute.

For the hash join workload, we adopt the highly optimized
chained hash table implementation of Balkesen et al. [4,
5], including the execution profiling functionality based on
hardware performance counters. Each hash table bucket
contains a 1-byte latch for synchronization, two 16-byte tu-
ples and an 8-byte pointer to the next hash table node to be
used in the case of collisions. For the uniform hash join work-
load, we again use the no-partitioning hash join workload of
Balkesen et al. [4, 5] with uniformly distributed random R

and S relation keys following a foreign key relationship. In
the uniform workload, the key value ranges are dense and
when the sizes of R and S are equal both relations contain
unique values given the foreign key relationship. In the case
where the relation sizes are not equal, the S relation key
range is restricted to the keys in the R relation. As our
study stresses the robustness of algorithms, we also relax
the foreign key relationship and evaluate the case where R
and S keys follow various Zipfian distributions, similar to
prior studies [3, 17].

For the group-by workload, we extend the hash table used
in hash join with an additional aggregation field. The in-
put relation contains uniformly distributed random keys,
where each key appears three times. We also evaluate the
Zipf-skewed key distributions of 0.5 and 1 [27]. The values
(payloads) in the input relations are uniformly distributed
random unique values. We aggregate the values with six
aggregation functions (avg, count, min, max, sum and sum
squared), which are applied upon a match in the hash table.

We use a canonical implementation of a binary search tree.
We build the tree by using an input relation with uniformly
distributed random keys and payloads. Each binary tree
node contains an 8-byte key, an 8-byte payload and two 8-
byte child pointers (i.e., left and right). The probe relation
contains uniformly distributed random unique keys. The
probe relation size is always equal to the number of tree
nodes, each of which finds a single match in the tree, resem-
bling a join scenario with using an index.

For the skip list workload, we adopt the concurrent pugh
skip list implementation from ASYCLIB [11]. We create an
insert workload by building a skip list from scratch. For the
search workload we perform lookups to the built skip list and
each lookup finds exactly one match in the skip list. Both
the build and probe relation contain uniformly distributed
random unique keys and payloads. Because the skip list ele-
ments occupy larger memory space than the other evaluated
data structures, we limit the number of input relation keys
to 225 (as opposed to 227) to avoid the memory footprint
of the workload exceeding the physical memory capacity of
our server.

Experimental Setup. The server machines used in our
experiments are listed in Table 2. The Intel Xeon x5670
server features a two-socket CPU with 6 cores per socket.
We use just one socket in our experiments except for the
bottleneck analysis, which uses both. The server runs Red
Hat Linux (kernel version 2.6.32). On x86, we compile our
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Table 2: Architectural parameters.

Processor Xeon x5670 SPARC T4

Technology 32nm @ 2.93GHz 40nm @ 3GHz

ISA x86 SPARC v9

CMP Cores/Threads 6/12 8/64

Core Types 4-wide OoO 2-wide OoO

L1 I/D Cache (per core) 32KB 16KB

L2 Cache (per core) 256KB 128KB

L3 Cache 12MB 4MB

TLB entries (L1/L2) 64/512 128/-

Main Memory 24GB, DDR3 1TB, DDR3

code with gcc 4.7.2 using the -O3 flag. On Oracle SPARC
T4, we use a single 8-core CMP. The server runs Sun OS 5.11
and we compile our code with the C compiler 5.13 found
in Oracle Solaris Studio 12.4. In addition to the Oracle
Solaris Studio compiler flags recommended by prior work [5],
we use the -xprefetch=no%auto option to disable the auto-
matic generation of prefetch instructions by the compiler,
which leads to overall performance improvements for all of
the evaluated techniques including the baseline code.

In all measurements, we use large VM pages, 2 MB on
x86 and 4 MB on SPARC. For all the evaluated techniques,
we parameterize the code and perform a sensitivity anal-
ysis to pick the best performing parameters for each ex-
periment. For prefetching data blocks, on x86 we use the
PREFETCHNTA instruction via the built-in gcc functions. On
SPARC, we use the strong prefetch variant [24]. In both
platforms, prefetch instructions complete as long as a TLB
miss does not cause a fault, which is rare with in-memory
execution.

5. EVALUATION

5.1 Hash Join
In order to analyze the performance of various techniques

on hash join with various dataset sizes, we keep the size of
the probe relation constant at 2GB (|S| = 227). We evaluate
two different build relation sizes, 2MB (|R| = 217), referred
to as small, and 2GB (|R| = 227), referred to as large. In
addition, we evaluate skewed datasets, where the keys of R
and S follow a Zipfian data distribution. The Zipf factor of
each relation is denoted by [ZR, ZS ]. We pick the best tuning
parameter for all the techniques for each experiment.

Figure 5 depicts the cycles per output tuple for build and
probe in hash join. We observe that for the join of the differ-
ently sized columns (2MB ./ 2GB), shown in Figure 5a, the
build time is negligible and all the cycles are spent on prob-
ing the hash table, which fits in the last-level cache (LLC)
of the Xeon processor. For the same reason, the skew in
the build and probe relation keys does not have a significant
impact on the execution cycles. In contrast, in the hash join
with equally sized relations (2GB ./ 2GB), shown in Fig-
ure 5b, the build cycles constitute half of the join cycles as
the size of the build relation is beyond the LLC capacity.
At the same time, increasing the Zipf parameter in the re-
lation R (from ZR = .5 to ZR = 1) increases the number of
probe cycles for GP and SPP by 1.8x and 2.4x, respectively.
In contrast, the probe cycles for AMAC only increases by
5% on average underscoring the robustness of AMAC under
irregular data structure accesses. The build phase overall

Table 3: Execution profile of uniform join with un-
equal table sizes (2MB ./ 2GB) on Xeon x5670.

Baseline GP SPP AMAC
Instructions per Tuple 36 90 67 55
Cycles per Tuple 27 37 28 22

is not sensitive to skew because the link list insertions are
uniform operations regardless of the data distribution.

Figure 5a shows the performance of the small relation join
(2MB ./ 2GB). We observe that the baseline is faster than
both GP and SPP by 32% on average, while AMAC out-
performs the baseline by 21%. The hash table built with
the small relation fits in the LLC of Xeon, therefore the
core partially hides the LLC latency in the baseline case.
To investigate the cause of the GP and SPP slowdown, we
perform a profiling analysis. Table 3 shows the number of in-
structions executed per tuple and the performance obtained
for the uniform join ([0, 0]). We find that GP and SPP have
a 2.5x and 1.9x overhead in the number of instructions per
tuple over the baseline code, therefore offset the prefetch-
ing benefits. In contrast, AMAC has only a 1.5x instruction
overhead, which explains the relatively better performance.

Figure 5b shows that, with equally sized relations (2GB ./
2GB), all three techniques (GP, SPP, AMAC) achieve signif-
icant speedups (2.8x, 3.8x, 4.3x, respectively) under uniform
input ([0, 0]) as they all effectively hide the memory latency.
It is important to note that the 27% performance gap be-
tween AMAC and SPP in the previous unequally sized join
is bridged as both techniques simply hit the limit of the
MLP provided by the hardware. However, for the skewed R
([.5, 0], [1, 0]), GP and SPP lose their effectiveness at gener-
ating memory-level parallelism due to the irregular traversal
paths in the hash table and deliver average speedups ranging
from 1.4x to 2x and 1.2x to 2.2x, respectively. As expected,
AMAC gracefully handles the divergence in the hash table
walk and achieves a robust performance of 3x on average
for all the skewed cases. Moreover, adding skew to the rela-
tion S ([.5, .5], [1, 1]), which can help with the locality of the
hash table buckets, has a minor impact on the performance
as the workloads’ working set is too large to be captured in
the LLC even when both relations are skewed.

Figure 6 depicts the execution cycle sensitivity to the tun-
ing parameters of GP, SPP, and AMAC. For all the tech-
niques, we vary the parameters that increase the number of
parallel lookups performed within a thread. For the uni-
form probes ([0, 0]), we observe that increasing the number
of parallel lookups lowers the cycles-per-tuple due to the
increase in memory-level parallelism and, in general, ten in-
flight lookups deliver the best performance except for GP.
Further increasing the number of in-flight requests does not
improve the performance of SPP and AMAC as the limit of
L1-D outstanding misses (i.e., 10 L1-D MSHRs) is reached
on the Xeon core [14]. For GP, (Figure 6a), the best perfor-
mance is achieved with a group size of 15 due to the fact that
GP is limited by the instruction-count overhead, instead of
the number of MSHRs, and larger group sizes yield fewer
outer-loop iterations slightly improving core’s performance.

For the skewed data distributions, we observe that GP
(Figure 6a) and SPP (Figure 6b) have limited benefits from
multiple parallel lookups as the skewed key distribution
leads to buckets with long pointer chains, which cannot
be handled by GP and SPP. Especially in the cases where
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Figure 5: Hash join cycles breakdown under different data distributions on Xeon x5670.
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Figure 6: Probe performance sensitivity to GP, SPP, AMAC tuning parameters on Xeon x5670 (2GB ./ 2GB).

ZR = 1, the performance difference between a single in-flight
lookup and the best case is only 16%. In contrast, AMAC
(Figure 6c) is robust to various data distributions and han-
dles the non-uniform cases without incurring any additional
performance overhead.

Scalability analysis. We next study the scalability
of AMAC and focus on the read-only hash join probe
phase to mitigate any algorithm-related scalability issues.
We report the probe throughput, which is calculated as
|S|/probeExecutionT ime on the Xeon and T4 machines.
On both platforms, we perform the experiment by assign-
ing software threads first to physical cores (six on Xeon and
eight on T4) and we start using SMT threads upon running
out of physical cores.

The results on Xeon with uniform data, shown in Fig-
ure 7a, indicate that GP, SPP, and AMAC throughputs
scale well up to four threads. However, the throughputs
start leveling off after four cores and increasing the num-
ber of contexts does not result in any significant improve-
ment. Meanwhile, the baseline algorithm achieves better
scalability and brings the initial 2.5x throughput gap down
to 80% by taking advantage of all the hardware contexts on
Xeon. In contrast, the same experiment on T4, shown in
Figure 8a, shows that GP, SPP, and AMAC scale well with
the available physical cores (eight) and even benefit from
SMT threads moderately.

5.1.1 Bottleneck Analysis
The results presented in Figure 8 clearly indicate that

the AMAC approach does not affect the inherently scal-
able nature of the hash table probe algorithm. While the

T4 machine offers almost linear scalability with the number
of physical cores (i.e., eight), increasing the number of the
SMT threads has diminishing returns as the threads start
competing for physical core cycles. However, the results on
Xeon (Figure 7) signal a more significant problem as the
algorithms do not even scale with the number of physical
cores (i.e., six cores), indicating that there is a hardware
bottleneck on Xeon. Moreover, our results corroborate re-
cent work by Balkesen et al. [5], which also reports relatively
low benefits for prefetch-based hash joins on a fully loaded
Xeon (Nehalem) core.

We further investigate the source of the bottleneck on
Xeon by using hardware performance counters. Table 4 de-
picts the performance counter measurements while increas-
ing the number of threads for the probe phase of the large
join. We measure the instructions per cycle (IPC) and L1-D
MSHR hits per kilo-instruction, which are the memory ref-
erences that miss in the L1-D but hit in the L1-D MSHRs,
meaning that the memory access (e.g., prefetch) was already
issued by the core but the data has not arrived yet (i.e.,
outstanding miss). We observe that the average IPC of
six threads is 2x worse than the single-threaded execution,
which verifies the drop in the speedups explained above.
Similarly, L1-D MSHR hits show an almost 4x increase in
the six-thread experiment vs. single-thread experiment as
the prefetches do not arrive in a timely manner in the six-
thread experiment.

While the cause of this problem can be off-chip accesses,
our additional performance counter measurements indicate
that increasing the thread count has a marginal impact on
the number of off-chip accesses. Therefore, our last hypoth-
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Figure 7: Hash table probe scalability with uniform and Zipf-skewed keys (2GB ./ 2GB) on Xeon x5670.
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Figure 8: Hash join probe scalability with uniform and Zipf-skewed keys (2GB ./ 2GB) on SPARC T4.

Table 4: Hash join probe scalability profiling on
Xeon x5670.

Threads 1 2 4 6 2+2

IPC 1.4 1.4 1.0 0.7 1.3
L1-D MSHR Hits (per k-inst.) 1.8 2.5 5.5 6.9 3.7

esis is that there is a resource contention in the LLC. This
assumption is sensible given that the number of LLC MSHRs
provisioned for off-chip load requests (referred to as Global
Queue) in the Xeon (Nehalem) processor is limited to 32
entries (for loads) [22], while the aggregate number of out-
standing load misses generated by six cores can reach up to
sixty (i.e., 10 L1-D MSHR entries per core).

To verify our hypothesis, we re-run the experiments with
four threads, but this time we distribute the four threads
to two sockets (i.e., two physical CPUs each with an LLC)
with two threads per socket (Table 4, “2+2” column). Our
results for four threads on two sockets indicate 50% lower L1-
D MSHR hits compared to four threads on a single socket.
Furthermore, the IPC and the L1-D MSHR hit behavior of
the two-socket experiment is almost identical to two threads
on a single socket showing that the contention in the LLC
is resolved.

As a result, we conclude that utilizing the upper levels
of the hierarchy causes severe contention in the LLC when
all threads issue random off-chip memory accesses. There-
fore, the throughput on Xeon saturates with four threads,
explaining why prefetch-based techniques do not deliver the
expected performance on fully loaded multi-core Xeon (Ne-
halem) processors.

5.2 Group-by
Figure 9 shows the group-by performance for two input

relation sizes. We observe that for the skewed small inputs
(217), the performance of GP and SPP is similar to or worse
than the baseline, while AMAC provides 1.6x speedup on
average. Under heavier data skew (z=1), read/write depen-
dencies within the SPP pipeline force frequent serialization
of the conflicting lookups and cause a severe performance
degradation. Although GP suffers from the same problem,
the group boundaries allow for relatively cheaper cleanup
passes. In contrast, AMAC’s performance is robust, as the
conflicts do not require any additional serialization code.

For the big relation, the average speedups of GP, SPP,
and AMAC are 2.1x, 2.2x, 2.6x, respectively. In this case,
the performance impact of the extra work due to conflicts
is relatively minor as the execution hits the memory-level
parallelism limit of the underlying hardware.

5.3 Tree Search
Figure 10 depicts our results for binary search tree (BST)

search. In general, the benefit of all prefetching techniques
compared to the baseline increases with the height of the
tree, as the baseline code fails to expose memory-level par-
allelism on long pointer chains. We observe that AMAC
achieves a maximum speedup of 4.45x (2.8x geomean) over
the baseline, compared to speedups of 3.4x (2.1x geomean)
and 2.7x (1.8x geomean) for GP and SPP, respectively.

We also note that in contrast to the group-by case, where
SPP and GPP perform almost identical, in BST search GP
performs 20% better than SPP. The reason for the poor per-
formance of SPP in tree search is the loss of memory-level
parallelism in case of bailouts, which occur for the longest
traversals. While SPP’s pipeline can be stretched to match
the height of the tree, we found that the average memory-
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Figure 9: Group-by on Xeon x5670.
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Figure 10: BST search on Xeon x5670.

level parallelism (and performance) attained in this configu-
ration can be inferior to that with a slightly shorter pipeline
that favors the common-case traversal length but incurs an
occasional bailout.

5.4 Skip List Search and Insert
Although the algorithmic complexity of skip list search

and insert is the same as the BST operations, skip list oper-
ations contain the most complex functionality we evaluate
in this work. Especially the insert operation, which consists
of a skip list search followed by the splice operation, itera-
tively constructs a vector that points to the correct insertion
locations for each insertion. This vector occupies 0.5KB per
lookup and is maintained in AMAC’s circular buffer for each
in-flight lookup.

The splice code also includes several function calls. Some
function calls, such as allocating a new node and determin-
ing random numbers, possibly result in additional function
calls during the insertion operation. In addition, the splice
code contains loops that acquire and release the latches in
appropriate skip list nodes via function calls. Overall, these
operations result in CPU-intensive execution phases, while
the rest of the execution is memory-intensive.

Figure 11 shows our results for skip list search and insert
operations. During a search, the traversal at each skip list
level terminates after an arbitrary number of node traver-
sals, and this irregularity hurts the performance of GP and
SPP. As a result, GP, SPP, and AMAC achieve average
speedups of 1.15x (1.5x max), 1.2x (1.3x max), and 1.9x
(2.6x max), respectively.

For the insert operations, GP, SPP, and AMAC deliver
average speedups of 1.1x (1.5x max), 1.2x (1.3x max), and
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Figure 11: Skip list on Xeon x5670.
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Figure 13: BST and skip list on SPARC T4.

1.4x (2.1x max), respectively. The reason for the more
modest performance improvements is due to the additional
and complex operations during inserts. As explained above,
while these operations take extra CPU cycles, they are not
memory-bound, and hence are not targeted by the prefetch-
ing instructions.

5.5 SPARC T4 Experiments
We run our workloads on SPARC T4 by using a single

hardware context (the effect of SMT threads are discussed in
Section 5.1). We also note that, unlike the Xeon processor,
the T4 processor discards the demanded prefetch requests
that hit in the on-chip caches, therefore we only perform ex-
periments with large relation and do not study the behavior
of the small relation used in the Xeon experiments.

Figure 12 depicts our results on the T4 machine for hash
join and group-by workloads. For the hash join workload,
GP, SPP, and AMAC improve the performance by an av-
erage of 1.9x, 1.5x, and 2.1x, respectively. Interestingly, in
the uniform case, the GP build phase performs exception-
ally well by outperforming both SPP and AMAC. However,
in the rest of the experiments, GP and SPP deliver inconsis-
tent performance with respect to each other, while AMAC,
with a single exception we pointed out, delivers the highest
performance. The trend for the group-by workload (shown
in Figure 12b) is also similar. GP, SPP, and AMAC deliver
average speedups of 2.2x, 2x, and 2.3x, respectively.

Figure 13 plots the tree search and skip list results on T4.
Given the simple nature of the tree search, GP, SPP, and
AMAC achieve impressive speedups of 5.6x, 4.5x, and 6.2x
over the baseline, respectively. For the skip list operations,
GP, SPP, and AMAC deliver average speedups of 1.4x, 1.6x,
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Figure 12: Performance of hash join and group-by with 227 input relation keys on SPARC T4.

and 1.8x. Overall, these results follow a similar trend, with
AMAC delivering the best and the most consistent perfor-
mance, while the benefits of GP and SPP with respect to
each other fluctuate.

The overall gains over a single T4 thread is lower com-
pared to Xeon due to the relatively weak micro-architecture
of a single T4 core. We conclude that regardless of the
micro-architecture, AMAC delivers a robust performance in
the face of irregularities across lookups, while the perfor-
mance of other prefetching techniques is inconsistent.

6. DISCUSSION
Setting the number of in-flight lookups. The goal

of AMAC is to extract peak memory-level parallelism avail-
able in a processor core. As seen in Figure 6c, AMAC’s
performance shows little sensitivity to the exact number of
memory lookups beyond eight or so. We observed a very
similar trend for SMT execution and did not perform any
special tuning for it. Nevertheless, our experience shows
that picking an extremely large number of in-flight mem-
ory accesses initiated by AMAC (e.g., greater than 32 on
the Xeon) can be harmful due to TLB thrashing on large
datasets with low TLB locality.

AMAC automation. In this work, we manually cre-
ate AMAC stages, implement state save/restore functional-
ity, and tune performance. Ideally this process should be
automated and hidden from the software developer. We
believe that portable performance tuning techniques [26]
and event-driven programming language concepts such as
coroutines that allow for cooperative multitasking within a
thread (e.g., escape-and-reenter loops) can help creating a
generalized software model and framework for AMAC-style
execution. The benefits of such framework include mini-
mal modifications to baseline code, easier programmability,
and portability across platforms. The disadvantages can be
the user-land threads’ state maintenance and space over-
head, which is an overkill as the thread state carries a lot
of redundancy across the threads of the same data structure
lookup.

7. RELATED WORK
Software prefetching instructions are effective in hiding

the memory access latency when the required cache blocks
can be demanded early enough. Unfortunately, prefetching
within the traversal of single pointer chain is not possible

due to dependent address calculations. To solve this prob-
lem, prior work has proposed data-linearization prefetch-
ing [19] to calculate the addresses without needing pointers
so that the prefetches can be issued ahead of time. Similarly,
history-based prefetching techniques [9] maintain an array
of jump pointers containing the pointers from recent traver-
sals. However, these techniques either assume that the data
structure is traversed in a similar order more than once or
incur both space and time overhead to increase the prefetch
accuracy.

To take advantage of the extra hardware contexts on the
processor cores, Zhou et al. [28] divide a single software
thread into producer/consumer threads, which communicate
through shared memory via software queues. Ideally, the
two contexts can work cooperatively to overlap long-latency
memory misses with useful work. However, the synchro-
nization overhead in the software queue negates the bene-
fits of overlapping, as the producer and consumer threads
have read/write dependencies on the queue. To mitigate
such synchronization overheads, speculative decoupled soft-
ware pipelining [25] splits recursive data structure traver-
sals into two hardware contexts and performs synchroniza-
tion via specialized hardware arrays with support for re-
solving dependencies. As of now, such hardware support
is not found in off-the-shelf processors. However, given the
server efficiency constraints and reviving interest in special-
ized database hardware [12, 18], these techniques are in-
sightful.

Hardware conscious algorithms and data structures have
gained importance in the last decade [7, 15, 20, 21, 27, 29].
Tuning the data structure to the underlying hardware is
an effective approach for reducing the number of cache and
TLB misses. In addition, minimizing the number of indi-
vidual memory accesses is possible by leveraging the SIMD
instructions [16]. Our work is orthogonal and can be used in
conjunction with these techniques. Moreover, our approach
is a step towards robust performance and tuning [13] for
hardware conscious algorithms.

8. CONCLUSION
This work introduced Asynchronous Memory Access

Chaining, a new approach for achieving high MLP on
pointer-intensive operations with irregular behavior across
lookups. AMAC is effective in managing irregularity by
maintaining the state of each lookup separately from other
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in-flight lookups. This separation allows AMAC to react to
the needs of each individual lookup, such as executing more
or fewer memory accesses than the common case, without
affecting the execution of other lookups.

While our evaluation focused on pointer-intensive opera-
tions in the context of relational databases, we believe that
AMAC’s applicability goes beyond that. Our future work
will examine the efficacy of AMAC on graph workloads and
operations over unstructured data. Our results also identi-
fied important bottlenecks in modern server processors that
limit the amount of MLP that software can leverage. Given
the growing importance of analytics in today’s business and
society, and the futility of caching the ever-growing datasets
on-chip, it is imperative that processor designs evolve not to
limit software’s ability to exploit MLP.
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