
Temporal Rules Discovery for Web Data Cleaning

Ziawasch Abedjan§ Cuneyt G. Akcora] Mourad Ouzzani]
Paolo Papotti] Michael Stonebraker§

] Qatar Computing Research Institute, HBKU § MIT CSAIL

{cakcora,mouzzani,ppapotti@qf.org.qa} {abedjan,stonebraker@csail.mit.edu}

ABSTRACT
Declarative rules, such as functional dependencies, are
widely used for cleaning data. Several systems take them as
input for detecting errors and computing a “clean” version
of the data. To support domain experts,in specifying these
rules, several tools have been proposed to profile the data
and mine rules. However, existing discovery techniques have
traditionally ignored the time dimension. Recurrent events,
such as persons reported in locations, have a duration in
which they are valid, and this duration should be part of
the rules or the cleaning process would simply fail.

In this work, we study the rule discovery problem for tem-
poral web data. Such a discovery process is challenging be-
cause of the nature of web data; extracted facts are (i) sparse
over time, (ii) reported with delays, and (iii) often reported
with errors over the values because of inaccurate sources or
non robust extractors. We handle these challenges with a
new discovery approach that is more robust to noise. Our
solution uses machine learning methods, such as association
measures and outlier detection, for the discovery of the rules,
together with an aggressive repair of the data in the min-
ing step itself. Our experimental evaluation over real-world
data from Recorded Future, an intelligence company that
monitors over 700K Web sources, shows that temporal rules
improve the quality of the data with an increase of the aver-
age precision in the cleaning process from 0.37 to 0.84, and
a 40% relative increase in the average F-measure.

1. INTRODUCTION
With the increasing availability of web data, we are wit-

nessing the proliferation of businesses engaged in automatic
data extraction from thousands of web sources with the goal
of gleaning useful information and intelligence about people,
companies, countries, products, and organizations [30]. It is
well recognized that the data cannot be used as-is because
of errors that are in the sources themselves [15, 28, 29, 33]
or that arise with automatic extractors [7, 13].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 4
Copyright 2015 VLDB Endowment 2150-8097/15/12.

Obama	
 will	

arrive	
 in	
 Italy	

12	
 Nov	
 8pm	

Apple	

released	
 new	

iPhone	
 on	
 19	

Sept…	

tomorrow	

new	
 iPhone	

3G/4G/LTE	

(09.18)	

Obama	
 in	
 S.	

Africa	
 8.30pm	

12	
 Nov	

CNN Twitter MacFan Times

ExtracLon	
 Layer	

person	
 des)n.	
)me	

Obama	
 Italy	
 8.00pm	
 11/12/2014	

Obama	
 S.	
 Africa	
 8.30pm	
 11/12/2014	

Obama	
 France	
 11am	
 11/13/2014	

product	
 company	
 weight	
 releaseDate	

iPhone	
 Google	
 137g	
 6/24/2013	

iPhone	
 Apple	
 3g	
 9/18/2014	

iPhone	
 Apple	
 129g	
 9/19/2014	

person	
 des)na)on	
)me	

Obama	
 Italy	
 8pm	
 12	
 Nov	

Obama	
 France	
 11am	
 13	
 Nov	

product	
 company	
 weight	
 releaseDate	

iPhone	
 4	
 Apple	
 137g	
 24	
 June	
 2013	

iPhone	
 6	
 Apple	
 129g	
 19	
 Sept	
 2014	

Figure 1: From top to bottom: real facts, their rep-
resentation on the Web, and the extracted data.

Consider the example depicted on the left hand side of
Figure 1. Obama attended a dinner in Italy, on Nov 12th

2014 at 8 pm; this is a real event and is represented as a tuple
in the relation at the top of the Figure. The information
is correctly reported on a web page from CNN and a web
data extractor identifies that a person (“Obama”) was in
a location (“Italy”) at a certain time; this is an extracted
event (relation at the bottom). However real events can be
reported by multiple sources that may or may not agree on
the details. In fact, another source reports Obama in South
Africa on the same day. As it is unlikely that a person is
reported in two different countries within 30 minutes, such a
contradiction highlights a problem in the data. In this case,
the event was extracted from a social media outlet that did
not have a faithful knowledge about the real event. This
happens in practice and is studied as the problems of truth
discovery [33, 15, 28] or fact-checking [29]. By enforcing a
rule over information from multiple sources, it is possible
to gain understanding about the trustability of the sources
and, ultimately, about the correct value of interest.

Consider another example for releases of products in the
right hand side of Figure 1. The information reported by the
source Times is a real event, but an error in the extractor led
to an incorrect weight, namely 3g, which in fact is a type of
network supported by the phone. Detecting such problems
can help identify faulty extractors [7, 13].

The two above examples highlight that identifying qual-
ity problems enables analysis over the sources, the data val-

336

ues, and the extractors. These analytics tasks usually rely
on declarative rules (such as key constraints) for detecting
problems in the data. For example, the fact that a product
is always released by a company can be expressed with a
functional dependency (Fd), i.e., product → company. In
the above example, the company releasing the phone can-
not be both Google and Apple. Heuristics exploiting the
redundancy are usually used to determine the correct value
(the truth) [28]. However, there are other errors that can
be identified only through temporal functional dependencies,
which are Fds that restrict the rule on the temporal dimen-
sion [21]. For example, a domain expert may come up with
a rule stating that a person cannot be reported arriving in
two countries at the same time (person → destination in
a 1-hour window), or that the same product cannot have
different weights reported at the release date (product →
weight in a 6-month window).

Coming up with these rules with the correct duration
value for “same time” is not trivial. A conservative choice
for this duration in a rule, such as “within a minute”, leads
to undetected errors in the Obama example. On the con-
trary, a high value for duration, such as “two days”, does
capture the problem, but would mark as errors all the tu-
ples in the example, including the correct ones with Italy
and France. Similar challenges arise for product release, a
time window of one day for the weight would not capture
the problem with 3g. Moreover, durations depend on the en-
tity at hand. For instance, Obama travels more frequently
and faster than most people, so he should have a different
temporal rule with a smaller time window.

Discovering constraints has been well studied in the lit-
erature [32, 1, 23, 8, 19]. However, a recurring assumption
in these existing techniques is that data is either clean or,
at worst, has a small amount of noise. Obviously, such as-
sumptions do not hold for data extracted from the web due
to the compounded effects of noise coming from the sources
and errors made by the extractors. Moreover, even when it
is possible to mine approximate dependencies over such dirty
data, there is no algorithm to discover useful time-windows,
or durations, to identify errors for the different events, e.g.,
a person is not reported traveling to two countries in a 1-
hour window. Without such a time dimension, rules are not
usable, as discussed above.

In this paper, we present Aetas1, our solution to over-
come the above challenges by relying on two basic concepts:
(i) the notion of approximation for the discovery of func-
tional dependencies that hold for most of the data, and
(ii) outlier detection techniques for the discovery of the du-
rations. In a nutshell, we first create a set of approximate
Fds that are valid in the smallest meaningful time inter-
val. The dependencies are then ranked with an association
measure, and validated by human experts. For each vali-
dated rule, we create a distribution of durations for all the
objects in the data, e.g., how much time is observed within
two consecutive destinations for every person, and mine it
to compute the duration that identifies the lowest extreme
values. This duration is then used as the time window for
the rule to identify temporal outliers.

Our contributions are as follows:

1) We formulate the problem of discovering temporal func-
tional dependencies for data cleaning (Section 2), and

1From “Omnia fert aetas”, Time cancels everything.

present techniques to discover approximate Fds based on
statistical properties of the data (Section 3).

2) Given a rule, we mine the duration that lead to identifying
temporal outliers. We tackle the problem of the sparseness
of the data with value imputation, and reduce the noise by
enforcing the rule in the smallest meaningful time bucket
(Section 4). We also mine rules with constants (akin to
conditional functional dependencies) such that specific du-
rations can be used for specific entities.

3) We show over real and synthetic datasets that our tech-
niques for approximate dependencies and duration discovery
outperform alternative approaches in terms of quality. In
particular, our durations lead to improvement in the data
cleaning process compared to Fds, with an increase of the
average precision in the repair of the temporal data from
0.37 to 0.84, and a 40% relative increase in the average
F-measure (Section 5). Moreover, our technique discovers
durations that lead to higher F-measure than the baselines,
including the durations collected from a group of users.

We discuss related work in Section 6, and in Section 7 we
draw some conclusions and list directions for future work.

2. RULE DISCOVERY FOR WEB DATA
CLEANING

We first describe the kind of web data we are dealing
with. We then define the syntax and semantics of temporal
dependencies, give a definition of data cleaning, and define
the problem of the rule discovery for web data cleaning.

From web pages to structured data. We are interested
in event data collected from the Web by monitoring news
media. Examples of such data include GDELT (gdeltpro-
ject.org) and Recorded Future (www.recordedfuture.com).
Given a web page, the organization in charge of the event
database runs extractors to produce structured data for dif-
ferent events. Examples of events include people travel-
ing to destinations, company acquisitions, and occurrences
of armed attacks. Figure 1 exemplifies data extracted
from text in six web pages: three occurrences for event
PersonTravel with person Obama as the only entity, and
three occurrences for ProductRelease with product being the
entity iPhone. In general, an entity may be an instance of
a person, a location, a company, and so on. In the follow-
ing, we assume that entity recognition from the text has
been already performed. In addition to the event type spe-
cific attributes, e.g., company, destination, all events have
a timestamp attribute, such as time and releaseDate. We
assume that all of these attributes may contain errors.

Temporal Functional Dependencies. We focus on a
specific form of temporal functional dependencies similar to
those described in [21]. We assume a total ordering on the
time attribute t, and that there is a mapping f() that lin-
earizes the different time values into integers. For example,
the value r[t] = (h,m,s) could be mapped to seconds via
f(h,m,s) = 3600h + 60m + s. A time interval ∆ is a pair
with a minimum and a maximum value (for examples in
hours), m and M , respectively, with m ≤M .

Given the pair < U, t > with a fixed set U = {A1, . . . , An}
of event type attributes and the time attribute t, a tuple over
< U, t > is a set of < r = {A1 : c1, . . . , An : cn}, t : ct >,
where ci is a constant. A relation I is a finite set of tuples
over < U, t >.

337

Definition 1. Let X,Y be two subsets of attributes from
U , ∆ a time interval, and π the permutation of rows of I
increasing on the time value. A temporal functional de-
pendency (Tfd) over U is an expression X ∧ ∆ → Y
that is satisfied if for all pairs of tuples rπ, rπ+1 ∈ I, s.t.
rπ+1[t] − rπ[t] ∈ ∆, when rπ[X] = rπ+1 [X], it is the case
that rπ[Y] = rπ+1 [Y].

The subsets of attributes X and Y are referred to as left-
hand side (LHS) and right-hand side attributes (RHS), re-
spectively. When referring to values of X and Y attributes,
we shall use the terms reference value and attribute value,
respectively.

Example 1: The rule “a product cannot be released with
two different weights in a time window of a year” defined
over event ProductRelease can be stated as follows: product∧
(0, 1 year) → weight, where ∆ is the pair m = 0 and M =
1 year. In Figure 1, ProductRelease events show conflicting
weight values 3g and 129g on release dates 09/18/2014 and
09/19/2014 for product iPhone. 2

While most of the entities for a given event abide by the
same duration in a rule, some entities may require specific
duration values. For example, in the case of ProductRelease
events, new iPhone models are sometimes released with an
interval of time shorter than a year, while for cars the in-
terval is much longer (e.g., BMW X5 car model is renewed
every 6 years). Thus, in the same spirit of conditional func-
tion dependencies (CFDs) [5], we are also interested in Tfds
that apply on subsets of tuples. We therefore extend the lan-
guage to consider constant selections in the left-hand side,
such as product[“iPhone”]∧ (0, 8 months)→ weight. This is
equivalent to having views for specific entities and applying
the Tfd on the view induced by the selection.

Data Repairing. While Tfds can be used in multiple
applications, such as database design, our focus is on data
quality scenarios. Data repairing is the application we will
use in the following to evaluate the quality of the discovered
dependencies. Given a database instance I of schema R and
a dependency ϕ, if I satisfies ϕ, we write I |= ϕ. If we have
a set of dependencies Σ, I |= Σ if and only if ∀ϕ ∈ Σ, I |= ϕ.
A repair I ′ of an inconsistent instance I is an instance that
satisfies Σ. A repair solution is not unique, as discussed in
the following example.

Example 2: Consider a different instance D for
ProductRelease and the Fd d1 : product → company. Value
errors are reported in bold.

D product company weight releaseDate
t1 : iPhone Apple 137g 10am 6/24/2014
t2 : iPhone Google 129g 3pm 9/18/2014
t3 : iPhone Apple 129g 4pm 9/19/2014

If we check the dependency over the data, we get the
following pairs of violating tuples: (t1,t2),(t2,t3).
Two possible, alternative repairs are R1 −R2, as follows:

R1 product company weight releaseDate
t1 : iPhone Apple 137g 10am 6/24/2014
t2 : iPhone Apple 129g 3pm 9/18/2014
t3 : iPhone Apple 129g 4pm 9/19/2014

R2 product company weight releaseDate
t1 : iPhone Google 137g 10am 6/24/2014
t2 : iPhone Google 129g 3pm 9/18/2014
t3 : iPhone Google 129g 4pm 9/19/2014

Updates (in italic) in R1 and R2 make the new instance

Dirty data

Approximate
FDs discovery

Minimum duration
discovery

Candidate
approx FDs

Approximate
temporal FD

Data Cleaning
System

Aetas

Clean data

Figure 2: Architecture of the Aetas system.

valid for d1. An alternative repair strategy deletes tuple t2
in R1 or tuple t1, t3 in R2.

Consider also a Tfd d2: product[“iPhone”] ∧
(0, 8months) → weight. A possible repair for violating
tuples (t1,t2), (t1,t3) is by updating the value of weight for
t1 to 129g, or to delete t1. 2

Since the number of possible repairs is usually large and
possibly infinite, a minimality principle is oftentimes used to
identify desirable repairs for the data cleaning problem [22]:
given a database I and a set of dependencies Σ, compute
a repair Ir of I such that Ir |= Σ (consistency) and their
distance cost(Ir, I) is minimal (accuracy). Depending on
the distance function, the desired repair is the one with the
minimal number of cell updates, or the one with minimal
number of tuple deletions. Computing minimal repairs is
NP-hard to be solved exactly for Fds [4, 24] which led to
several heuristics-based methods [10, 12, 16, 24].

Discovering temporal dependencies. Given a relational
schema R and an instance I, the discovery problem for Tfds
is to find all valid Tfds that hold on I. Since web data is
noisy in nature, we are interested in the approximate version
of the problem, i.e., find all valid Tfds, where a rule r is
valid if its support has a value higher than a given threshold
δ. To solve this problem, we developed Aetas, a system to
discover Tfds from web data.

Figure 2 shows the architecture of the system and the
main steps in our solution. Given a noisy dataset, we first
discover approximate functional dependencies, i.e., tradi-
tional Fds that hold on most of the relation within a given
atomic duration tα. The use of the atomic duration removes
the temporal aspect of the relation so that dependencies can
be discovered purely in terms of record attributes.

Given a set of approximate Fds, we rank them according
to their support to assist the user in their validation. A user
can either reject a suggested approximate Fd, or validate
it as being a simple Fd or a Tfd. For a validated Tfd,
we then discover its corresponding time interval, including
values that only hold for specific entities as we discussed
previously. Since the data is dirty, we cannot just examine
consecutive occurrences for each entity and collect the min-
imum duration. Therefore, we compute the distribution of
the durations and mine it to identify the minimum duration
that would eventually cut-off the outlying values, i.e., data
that is invalid. This minimum duration is then assigned
to M and, together with default m = 0, define ∆ for the
approximate Fd at hand.

Finally, Fds and Tfds are fed to a constraint based data
cleaning system, which takes the rules and the noisy data as
input and outputs a consistent updated dataset.

338

3. FD DISCOVERY OVER DIRTY DATA
Two main characteristics of web data prevent us from

using traditional dependency discovery algorithms. First,
most of these algorithms assume that the data is clean.
As we work with dirty web data from multiple indepen-
dent sources, this assumption does not hold. There have
been some work to tolerate some dirtiness up to a certain
threshold on the percentage of not conforming tuples [8,
19]. However, dirtiness in real (web) data is so high that
the corresponding threshold leads to the discovery of very
general rules that are not valid in practice. For example,
our test dataset has noise up to 26% wrt the number of tu-
ples (Table 1 in Section 5). A threshold of 26% leads to the
discovery of several key constraints and multiple functional
dependencies that do not hold semantically.

Second, temporal data contains reference values that
change over time, such as Obama with correct values “Italy”
and “France” at two different timestamps. Because of this
temporal nature, traditional Fds do not apply over the re-
lations with extracted data for many events.

We introduce next how we model the data and then how
we tackle the above problems with our approach for discov-
ering approximate Fds.

Time
w0 w1 w2 w3

CNN

Twitter

NYT

B. Obama

C. Ronaldo

Italy Italy France

Italy S.Africa Italy

France France

S
ou

rc
es

Entitie
s

G. Clooney

Figure 3: A dependency cube: w0 is a 1-day time
bucket, s0 is source CNN, a0 is entity B. Obama,
{Italy, S. Africa, France} are attribute values.

Dependency cube. We start by considering all the pos-
sible dependencies with one attribute in the LHS and one
attribute in the RHS. For each potential dependency X→ Y,
we make the time dimension (attribute t) discrete by creat-
ing time buckets with the size of an atomic time duration.
Given these time buckets, we define a dependency cube over
four data dimensions: data sources S, time buckets W , ref-
erence values X, and attribute values Y. Figure 3 shows a
dependency cube for the Obama example:

- The x axis is divided into homogeneous time buckets wi ∈
W (e.g., 1 hour).

- The z axis reports different reference values x ∈ X (e.g.,
B. Obama, iPhone).

- The y axis reports different sources si ∈ S (e.g., CNN).

- The reported cell values for a certain time bucket, source,
and entity are attributes values y ∈ Y (e.g., Italy, Apple).

The size of each dimension in this cube can be large. For
example, Recorded Future continuously collects data from
more than 0.7 Million web sources. However, due to how
events are reported on the web, the data is very sparse and
the size of the dependency cube is manageable in practice.

For a reference value x ∈ X, the sequence of values of Y
reported by one source over time constitutes a stripe. For

example, in Figure 3, source NYT reports two Y values for
reference value B.Obama in time buckets w2 and w3. For a
reference value x ∈ X, the union of stripes from all sources
constitutes a plate. For a time bucket wi of a given depen-
dency over R, we define the time slice Ri as the list of Y
values for all X values reported within the time bucket wi.

A potential dependency holds for the cube if, for each
plate and for each stripe, it is true that X → Y. If the
dependency holds only for a specific plate for reference value
xi (i.e., a specific entity), then it is a constant dependency
X[xi]→ Y.

Implication discovery. Considering the aforementioned
noise and temporal problems, we devise an algorithm that
works with dirty, temporal data for the discovery of Tfds.
We discover implications by first fixing an atomic time du-
ration tα such that we can mine the dependencies that hold
within a time bucket. We observe that if a Tfd holds for a
certain duration ∆, it also holds for durations ∆′ ≤ ∆. The
best bucket size is the smallest one that contains enough ev-
idence to do the mining. Moreover, the value of the atomic
duration cannot be more fine grained than the time gran-
ularity of the timestamps in the data. In our datasets,
the granularity is up to milliseconds, but the data is too
sparse to mine in such a small granularity, we therefore
use tα = 1 hour. The atomic duration tα is application-
dependent and is an input parameter for the algorithm.

Given a tα value, we partition the data and create time
slices R = {R1, R2, ..., RN}. Given a time slice Ri, we em-
ploy an association rule based method to detect 1-to-1 and
many-to-1 implications. More specifically, we use normal-
ized pointwise mutual information (NPMI) [6], a standard
association measure in collocation extraction, for implica-
tion discovery. In a time slice, NPMI of a pair of reference-
attribute values x ∈ X and y ∈ Y is defined as:

i(x, y) = ln(
P (x, y)

P (x)× P (y)
)/− lnP (x, y)

where P (x, y) is the joint probability of reference value x
and attribute value y, and P (x) is the marginal probability
of reference value x. Intuitively, given a pair of outcomes
x and y that belong to discrete random variables X and Y
(assumed independent), the PMI quantifies the discrepancy
between the probability of their coincidence given their joint
distribution and their individual distributions. Its normal-
ized version, NPMI, can have the following values: if x and
y only occur together i(x, y) = 1.0, if x and y occur indepen-
dently i(x, y) = 0, and -1 if they never co-occur. We use this
score as an indicator of their correlation in the following.

We learn the implication x→ y for a pair of values in the
given time slice. In order to find the X → Y implication,
we need to generalize the NPMI value over all value pairs of
the two attributes. If the implication holds, we expect the
NPMI value of each pair to be positive (i.e., the sign of the
1-to-1 implication) and, overall, i(X,Y) close to 1.0. In fact,
three factors can decrease NPMI values even in presence of
real implications. First, multiple reference values can have
the same attribute value in a given time slice (i.e., many-
to-1 implication). For example, two persons can be in the
same city at the same time. Second, because of a small
bucket size, time slices may contain few instances about the
same reference values. For example, in a bucket all events
might be about Obama traveling to France. We employ a
decision rule to overcome single reference value by assigning

339

i(X,Y) = 1.0 when |X| = 1. Third, dirty data can introduce
different attribute values for the same reference value (i.e.,
1-to-many occurrences), as in the example with Italy and
S. Africa for Obama. As we assume dirtiness in the data,
we need to tolerate this noise. Given these three possible
causes, some value pairs have low NPMI values, thereby
reducing the NPMI value of attributes, i.e., i(X,Y) < 1.0.
This is a strong signal for the discovery of correlations and
we exploit it in our algorithm.

From implications to dependencies. Given a list of
NPMI values of multiple time slices, our next task is to de-
cide whether the implication X → Y holds on enough time
slices to be considered a dependency. Hence, we aggregate
the expected value of NPMI values over time slices and com-
pute a score. The score is then used to rank the output for
user validation. Aggregation of NPMI values by expected
value is weighted wrt the number of event instances (i.e.,
tuples) in time slices, such that an implication is penalized
if it does not hold over time slices with large numbers of
event instances.

To prune the number of results in the output, we also allow
as input an optional user-defined significance threshold δ. In
this case, we declare an implication to be a dependency if
its aggregated score is higher than the threshold.

Example 3: Consider the case where an event R has in-
stances distributed over a 36 hour period. Given tα =
12 hours, we create three time slices R1, R2 and R3, and
compute their NPMI values to be 0.95, 0.3 and 0.5. Proba-
bilities of event instances belonging to these time slices are
P (R1) = 0.8, P (R2) = 0.15, and P (R3) = 0.05. The ex-
pected NPMI value E = 0.95×0.8+0.3×0.15+0.5×0.05 =
0.83. For δ = 0.7, we assert that the implication X → Y
holds. A value of 0.7 is usually used in practice [17]. 2

Early Termination. If a threshold δ is defined, an implica-
tion can be declared to hold or to be pruned by considering
a smaller number of slices. We thus stop NPMI compu-
tations if the remaining slices will not carry the expected
score below or above the significance threshold δ. Consider
the case when NPMI values of x out of n slices have been
computed. In the best and worst cases, all the remaining
slices can have NPMI values 1 or 0, respectively. If an im-
plication does not hold even in the best case, or holds even in
the worst case, we do not need to compute the NPMI values
of the remaining slices. Otherwise we continue our compu-
tation. Formally, given a total of n slices for the implication
A→ B, we terminate computations at the xth slice with



A 6→ B if δ >∑
j=1:x

ij(A,B)× P (j)+∑
k=x+1:n

ik(A,B)× P (k)

A→ B if δ ≤
∑
j=1:x

ij(A,B)× P (j)

where δ is the significance threshold, P (k) is the probability
of an event instance being in the time slice k, and ik(A,B)
is the NPMI value of the kth slice.

Example 4: Consider the scenario of three time slices in
Example 3. After computing the NPMI value of R1 as 0.95,
we can terminate computations for a significance threshold
of δ = 0.7 because the expected value E = 0.95×0.80 = 0.76
is already above δ. 2

Data: A relation R of attributes A, B; atomic time
length tα; (threshold δ)

Result: A score for the dependency
1 npmi = 0, current := 0;
2 Create time buckets R = {R1, ..., Rn} of R with tα;
// Iterate on each slice;

3 foreach R′ ∈ R do
4 current← current+ |R′|;
5 v = 0;

// Decision rule;
6 if |R′.B| = 1 then

// Add an NPMI value of 1.0;
7 v = 1.0;

8 else
9 foreach a ∈ R′.A do

10 foreach b ∈ R′.B do

11 i(a, b) = ln(P (a,b)/(P (a)∗P (b)))
−ln(P (a,b))

;

12 v = v + P (a, b)× i(a, b);
// Add expected value of the slice

13 npmi = npmi+ v × |R
′|
|R| ;

// Termination;
// 1. Dependency will not hold;

14 if δ 6= null ∧ δ > npmi+ |R|−current
|R| then

15 return 0;
// 2. Dependency will hold;

16 if δ 6= null ∧ δ ≤ npmi then
17 return 1;

18 return npmi;

Algorithm 1: Implication detection with NPMI.

Algorithm. We now give a description of our approximate
dependency discovery algorithm. Given two attributes A
and B from an event R, we use Algorithm 1 to compute their
NPMI score, or to find whether a dependency holds over the
two attributes, if a threshold is given. The algorithm takes
as input an atomic duration tα, two attributes A, B from
a relation R, and an optional significance threshold δ. The
algorithm is called twice for each direction, namely A→ B
and B → A. If an implication is found for the attributes,
only one, or both of these dependencies may hold.

The algorithm starts by time bucketing the relation into
smaller relations (Line 2). From Line 3, we find the strength
of the implication within the slice. If the sub-relation con-
tains a single attribute value, the decision rule in Line 2
assigns a NPMI value of 1.0 to the slice. Otherwise, we
compute NPMI values of each (a,b) pair in Line 11. Line 12
adds the NPMI value to the expected value of the slice.

Once NPMI values of all pairs have been computed, the
NPMI value of the slice is added to the expected value of the
whole dependency in Line 13. If δ is defined, we check the
termination conditions in Lines 14 and 16. In Line 14, we
compute the NPMI value for the ideal case where all the re-
maining slices will be 1.0. Similarly, Line 16 checks whether
the expected value is already above the threshold. In both
cases, we stop the computations early if the condition holds
and return 0 or 1 accordingly. If δ is not defined, we return
the NPMI value for the dependency to be used for rank-
ing and user’s consumption. Once the user has selected the
dependencies that are Tfds, we process then for duration
discovery, as described in the next Section.

340

4. TIME DURATION DISCOVERY
Given an approximate FD X ∧ ∆ → Y with ∆t=(0,tα)

for an event, the goal of duration discovery is to expand the
atomic duration tα to the correct minimum duration M in
∆. In the ideal case, there exists one and only one ∆ such
that no reference value x ∈ X can change its attribute value
y ∈ Y within a time interval (ty, ty + m), where ty is the
reported time of value y.

Time
w0 w1 w2 w3

CNN

Twitter

NYT

B. Obama

Italy Italy France

Italy S.Africa Italy

France France

(a) Baseline durations

B. Obama

Italy France

Time
w0 w1 w2 w3

Integrated

(b) Projected durations

Figure 4: Stripes integration for duration discovery.

A naive approach for duration discovery is to take each
stripe of a dependency cube, and find the time it takes for
an attribute value to change from y1 ∈ Y to y2 ∈ Y , i.e.,
ty2 − ty1 . This results in a list of time difference values.
Then, the minimum value among all the time differences
can be chosen as the M in ∆. This approach is shown in
Figure 4(a) for a single plate, where value changes in stripes
are highlighted.

A major assumption in the naive approach is that web
sources correctly report attribute values. When the data
comes from non-authoritative web sources, this assumption
can easily be broken. A more robust approach is to exploit
the evidence coming from multiple sources such that the
accuracy of an attribute value can be “verified”. The idea
is to first repair the data within a time bucket with the
evidence coming from multiple sources. We then compute
durations on a “clean” integrated stripe, as in Figure 4(b).
Below, we first describe how to repair data in the buckets
and then give the full discovery algorithm.

Repair step. Given an approximate FD A→ B, we create
a plate p for each reference value a ∈ A, and the plate is
partitioned into time buckets of size tα. Each bucket wn ∈ p
has a time slice of attribute values Rn reported by sources
where |Rn| ≥ |distinct(Rn)| ≥ 1. A new stripe I is created,
where the results of the integration will be reported. In a
bucket, if there exists a b′ such that mode(Rn) = b′, then
the corresponding wn bucket for I is updated with b′. If
there is no majority, the value in bucket wn−1 is assigned to
wn for I.

Dirty w2

CNN

Twitter

NYT

France

Italy

France

Resolved w2

France

Figure 5: Repair step.

Figure 5 shows a window
repair for three sources. In
the figure, the value Italy
from source Twitter is less
frequent than France, so it
is not in the result. Al-
though our repair approach
uses a simple majority vot-
ing scheme, any repair algo-
rithm can be plugged into
the system, for example by

using truth discovery algo-
rithms [15, 28, 29, 33] or by involving domain experts.

Time durations. Given the integrated plate, we compute
a distribution of time durations between consecutive, dis-
tinct attribute values for every reference value. Figure 4(b)
shows time durations on I, the stripe with the outcome of
the repair step. Even with repaired values in time buckets,
reference values have varying durations for the same tempo-
ral dependency. Two factors impact the observed durations:

- Dirty data. Sources can report conflicting values in two
consecutive buckets that cannot be detected by local repairs.
This problem raises many short durations. For example, the
Twitter stripe in Figure 4(a).

- Reporting frequency. Although a reference value
changes its value in the real world, sources may not report
it. In our dataset, only a small set of entities, such as po-
litical leaders, have their changes reported frequently. This
leads to some durations that are longer than the real time
windows between two occurrences of an event.

As a result of these factors, time durations constitute a
non-uniform distribution D(x, y), with a range of [tα, |W |].
Our goal is to mine a duration that would remove the out-
lying values from this distribution.

Data: A dependency cube C for A→ B, a cut-off
value c with 1 ≤ c ≤ 100

Result: A time duration M
1 Define D(A,B) to be an empty duration list;
2 foreach plate p ∈ C do
3 Define I to be an empty stripe with |I| equals to

the # of buckets in p;
4 foreach non-empty bucket wi ∈ p with time slice Ri

do
5 b′ ←Mode(Ri);
6 if b′ is not null then
7 update bucket wi ∈ I with b′;
8 else
9 update bucket wi ∈ I with value in wi−1;

10 l = 0;
11 for i=0:length(I) do
12 if value(wi) 6= value(wl) then
13 add i− l to D(A,B);
14 l = i;

15 return percentile(D(A,B), c);

Algorithm 2: Duration discovery for a temporal rule.

Algorithm. Taking into account the above factors, we pro-
pose an approach for time duration discovery in Algorithm 2.
A dependency cube C for an approximate functional de-
pendency A → B is given as input as well as a cut-point
1 ≤ c ≤ 100 for the identification of the duration that re-
moves outliers. We use as default value of 10 for the cut-
point, as this is a common value used for trimming of outliers
(e.g., interdecile range). We also show in the experimental
study how this parameter affects the results.

In a nutshell, the algorithm first corrects the erroneous
attribute values reported by the sources for each plate in
an integrated stripe I (Lines 3-10), and then adds the dura-
tions over I to a duration list (Lines 11-15). The output is
the minimum time duration value M that removes outlying
durations for the time dependency A→ B.

341

The algorithm iterates over each plate (entity) in the cube
(Line 2). For each plate, we create a new, empty integrated
stripe (Line 3). In the time slice for each bucket in the plate,
depending on the source quality, sources can agree or dis-
agree on the attribute value. To alleviate the problem of
sources with poor quality, we employ a repair step (Line 5).
In a simple analysis, if there is a single most frequent value,
this is assigned to the integrated stripe (Line 7). If a ma-
jority cannot be determined, the values are ignored and the
value imputation is done with the previous values in the
strip (from the Occam’s razor principle) (Line 9).

After the repair process, the algorithm works on the inte-
grated stripe I and extracts time durations between differ-
ent consecutive attribute values (Lines 11-16). Parameter
l in Line 11 records the first point in time when the stripe
reports an attribute value. In the following windows, the
source may report the same value, or change it. If the value
changes, the l parameter is used to compute the time differ-
ence between the two different attribute values.

1 10 100 1000 1.E+04

1.0

.8

.6

.4

.2

0

Percentile Plot

X

Pe
rc

en
til

e

Durations

Pe
rc
en
til
e

Durations

Figure 6: Duration discovery with percentile plot.

With multiple time durations from multiple integrated
stripes, we use a trimming (truncation) function, namely the
cth percentile, to compute the duration M . The intuition is
that trimming identifies outlying values (trimmed minima),
and we are after the duration that identifies such outliers.
For example, in the probability distribution of time dura-
tions, the 10th percentile specifies the time duration value
at which the probability of the time durations is less than or
equal to 0.1. We report an example of a minimum duration
of six hours (x axis) discovered with the 10th percentile (y
axis) in Figure 6.

Timestamps or Values? It is worth observing that the
algorithm above aligns the timestamps and then compares
values to perform the analysis. An alternative approach is
to align the values, after they have been ordered, and then
perform the counting of the durations. We will show in the
experimental section that an algorithm that relies on values
for alignment performs worse than the one we propose based
on time alignment. In particular, we implemented a variant
of sequence alignment from the bioinformatics domain [26].
Taking all stripes from a plate, we align attribute values
of each pair of stripes. The alignment process creates two
temporary stripes that are the aligned versions of the input
pair; the temporary stripes both report the same value at a
given time, or one of them reports nothing (i.e., reports a
null value) whereas the other reports an attribute value. The
alignment approach mines durations between value changes
only when the change is reported by both stripes.

Conditional Durations. As we mentioned earlier, some
Tfds may only apply to a subset of entities because
some, usually popular, entities have more frequent attribute
changes at smaller time frames. To discover the correspond-
ing durations, we track the duration sequences of a specific
entity and compute its duration by mining M only with
values from their plate. As the minimum duration is com-
puted based on only the sequences that refer to a specific
entity, this entity has to be popular, i.e., there must be at
least some observations to compute a distribution. As it
is common in statistics, we require 30 observations for the
computation of the percentile. Therefore, we compute con-
stant rules only for entities with at least 30 durations in
their plate. For instance, while 24 hours is the minimum
duration that removes outliers for the majority of persons
in our person travel dataset, persons such as Vladimir Putin
or Ban Ki Moon should have smaller minimum durations,
and this is reflected with their constant rules.

5. EXPERIMENTS
In the following, we first study the performance of our

solutions and compare them to baseline alternatives using a
real dataset provided by Recorded Future. We then study
our algorithms in depth with synthetic data.2

We measure the effectiveness of both implication and du-
ration discoveries. We also measure the execution time
needed by the algorithms. Experiments were conducted on
a Linux machine with 24 1.5GHz Intel CPUs and 48GB of
RAM. All algorithms have been implemented in Java with
Heap size set to 12GB.

Algorithms. For the implication discovery, we compare
our proposal (Section 3) to CORDS [20], a state of the art
algorithm for the discovery of approximate dependencies.
We test both methods for time slices, therefore they do not
have to deal with the time dimension. For the duration
discovery, we test the following algorithms:

- Repair-Outliers (RO), our method reported in Section 4
where the durations collection is performed over a unified
view of every plate. These “clean” durations are then used
for mining the minimum duration M that isolates outliers.

- No Repair-Outliers (NR), a variant of our algorithm
where we do not perform repair; we collect all durations
over the stripes to mine M . This method shows the role of
the repair.

- Alignment-Outliers (AL), a variant of sequence align-
ment in genomics [26] (Section 4). This is an alternative
method that trusts values more than time, as the former
are used for alignment.

- No Repair-Probability (NP), an adaptation of the
disagreement decay from the duration discovery algorithm
in [27]. Disagreement decay is the probability that an entity
changes its value within time ∆t. For an increasing ∆t, the
probability of decay 0 ≤ p ≤ 1 also increases. The authors
use a probability distribution D for various ∆t values [27].
We use a probability cut-point δc, such that we select the
smallest ∆t′ that satisfies the condition D(t′) ≥ δc as the
duration for our temporal dependency.

2The annotated real-world data and the program to generate
synthetic data can be downloaded at https://github.com/
Qatar-Computing-Research-Institute/AETAS_Dataset

342

Event # # Ground Rules Rule Annotated # Annotated %
Atts Rules Coverage Over Data Tuples Errors

Acquisition 3 4 1.00 acquired company → acquirer company 217 26
Company Employees # 2 2 0.50 company → employees number 198 26

Company Meeting 5 6 0.80 company → meeting type 179 17
Company Ticker 3 2 0.67 ticker → company 1,906 4

Credit Rating 4 6 1.00 company → new rank 150 8
Employment Change 7 11 0.86 person → company 186 14
Insider Transaction 22 210 0.95 insider → company 150 0

Natural Disaster 2 1 0.50 location → natural disaster 250 10
Person Travel 6 2 0.67 person → destination 372 21

Political Endorsement 2 1 0.50 endorser → endorsee 199 11
Product Recall 5 12 0.67 product → company 216 5
Voting Result 2 2 1.00 location → winner 215 10

Table 1: Events, correct rules, and annotated rule used in the real data evaluation.

5.1 Real Data
Dataset. We obtained a 3-month snapshot of data ex-
tracted by Recorded Future, a leading web data analytics
company. The dataset has about 188M JSON documents
with a total size of about 3.9 TB. Each JSON document
contains extracted events defined over entities and their at-
tributes. An entity can be an instance of a person, a lo-
cation, a company, and so on. Events have also attributes.
In total, there are 150M unique event instances excluding
meta-events such as co-occurrence.

●

●

●

●●●

●

●●

●

● ●

●

●●●

● ●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●
●

● ● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●
●●

● ● ●● ●
●

●

●

● ●

●

●

●● ●

●

●●

●
●●

●●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●
●
●

●●

●

● ●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
● ●●

●●

●

●

●

●
●

●
●

●●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●

●●

●

●●

●

●

●● ●

●

●
●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●●

●●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●
●●●

●

●

●

●

●●

● ●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●
●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●●

● ●●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●
● ●

●

●

●

●
●

●● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●● ●

●
●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●
●

●

●

● ●

●

●

●

●
●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●●
●

●

●

●●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●
●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●●
●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

● ●●●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●●●●

●●

●

● ●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●●

●
●

●●● ● ●

●
●

● ● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●
●

●

●
●

●
●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

● ●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●●

●

●

●

● ●● ●●

●

●● ●

●●

●●

●

●

●

●
●

●

●

●●

●
●●
●

●

●●●

●●●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●●

●

●

●

●
●

●
●●

●

●
●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●
●

●●
●

●

●

●

● ●

●●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●
●

●

● ●
●

● ● ●●●
●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●●

●● ●● ●● ●

●

●●●

●

●●

●

●●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●●●

● ●

●

●

●

●●●●●●

●●

●

●

●

●

●● ●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●●

●●

●●

●

● ●

●

●
●

●

●●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●● ●

●

●

●

●

●

●

●●●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

● ●

●●

●

●

●

●
●

● ●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

● ●

●●

●

●

●
●

●●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

● ●●●

●

●●●

●

●● ●

●
●●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●●

● ●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●●● ●

●

●

●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●

●

●
●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●●
●

●

●●●●
●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●
●

●●
●
●●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●● ●

●

● ●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●●

●●

● ●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●
●

●

●

●

●●● ●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●● ●●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

● ●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●

● ●●●

● ●● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●
●

●●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●
●
●●●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●
●

●
●●

●● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●
●●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●
●

●

● ●●

●

●●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

● ●

●

●●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●●

●

●

●

●

● ●●●

●

●

●

●

● ● ●●

●●●●

●●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●●●

● ●

●

●

●

●●● ● ● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

● ●

● ● ●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●
●

●

●●

●●●

●

● ●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●
●●

●●

●

● ●

●●

●●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

● ●

●

●

●

●

●●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

● ●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●

●

● ●●

●

● ●

●●

●●

●
●

●

●●

●

●
●

●●●

●

●●

●

●

●●

●

●

●

●●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●●
●

●

●●
●

●

●

●

●
●

●

●

●

●●
● ●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●
●
●

●

● ●

●

●

●

●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●

●●●
●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●
●

●

●●

●

● ●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

● ●●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●
●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●●

●●●

●● ●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●● ●●

●

●● ●●●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●
●

●●
●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

● ●●●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●● ●

●

●

●

●
●
●

●

●

●●
●

●●

●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●●
●
●

●

●

●

●

●●

●●

● ●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●1e+01

1e+03

1e+05

1500 1700 1900 2100
Year

Fr
eq

ue
nc

y

Figure 7: Time distribution for events’ timestamp.

The data contains events from circa 15 th to 21 st century.
Figure 7 shows events across years, where each point corre-
sponds to the number of events in a day. Most of the events
occur around Fall 2014, because the data is mostly around
the 3 months covered by the snapshot. Starting from Jan-
uary 2015 onward, the reported events are future forecasts.

Metrics. We crafted ground rules for all events to evaluate
the discovery algorithms. These rules are dependencies that
are semantically correct. We report their number for every
event in Table 1, where we also report as “Coverage” the
ratio of the distinct number of attributes in the set of rules
to the total number of attributes for that event. We then
use this ground truth to evaluate the precision and recall
over the top-k dependencies returned by the algorithms.

In the case of Tfds, crafting also their ground durations is
more challenging since there are rarely clear duration values
that can be set. We argue that it is not correct to compare
the discovered duration value versus an arbitrary manually
set ground truth; different persons may come up with dif-
ferent durations. We also show that a combination of these
arbitrary values does not lead to the best duration value.
Distance between the discovered duration and the real one

can be better measured in a controlled environment with
synthetic data, as we discuss in Section 5.2. We therefore
evaluate the quality of the duration discovery on real data in
a different way. Instead of measuring the distance between
durations, we evaluate the quality of a duration by measur-
ing its effect in a target application. In particular, for a Tfd,
we run it multiple times in the same data cleaning tool with
different durations, and measure the quality of the obtained
repairs. We use BigDansing [22] , a data cleaning system
that can handle Tfds with the repair semantics discussed
in Section 2.

For this validation, we manually created ground truth for
a large sample of the data. We randomly picked 12 event
types and discovered rules over their corresponding instance
datasets. For each selected rule, we sampled 1% of the tu-
ples, making sure that (i) at least 150 tuples comprising 5
different entities were selected, (ii) both popular and rare
entities were selected, and (iii) at most 150 tuples were an-
notated for one single entity. Each tuple has been manually
validated with sources such as Twitter accounts for persons,
LinkedIn official web pages for companies, and stock bro-
kers. Table 1 gives the details about the selected events,
representative rules, and size of the samples.

Given the ground data and the results of the cleaning,
we follow common practices from the data cleaning litera-
ture [3, 10] to evaluate the quality of the obtained repair.
We count as correct detections the updates in the repair that
correctly identify dirty values. This corresponds to measur-
ing the effectiveness of repairs based on delete-semantics,
where tuples with errors are removed. We count as correct
changes the updates in the repair that are equal to the orig-
inal values in the ground truth. Based on these two met-

rics, we can then measure precision P = |changes∩errors|
|changes| ,

which corresponds to correct changes in the repair, recall

R = |changes∩errors|
|errors| , which corresponds to coverage of the

errors, and F-measure F = 2×(P×R)
(P+R)

.

Results. We start with evaluating the discovery of approx-
imate Fds. Table 2 shows the obtained precision and recall
values. We rank the approximate Fds based on their scores
and compute the precision and recall @k= {1,3,5}, where k
is the number of dependencies evaluated after they are or-
dered with decreasing scores. On average, the precision and
recall @k of the NPMI-sorted results is significantly higher
than the CORDS-sorted results. The significance is most
obvious @k = 1. On average, the NPMI scoring approach
clearly yields better results than the baseline. This is not
surprising, since CORDS was designed to discover approx-
imate Fds on relational databases and it is reported to re-

343

NMPI CORDS
Event k=1 k=3 k=5 k=1 k=3 k=5

Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

Acquisition 1 0.25 0.66 0.5 0.8 1 1 0.25 0.66 0.5 0.6 0.75
Company Employees # 1 1 0.5 1 0.5 1 0 0 0.5 1 0.5 1

Company Meeting 1 0.14 1 0.42 1 0.7 1 0.14 0.66 0.28 0.6 0.42
Company Ticker 1 0.5 0.33 0.5 0.4 1 0 0 0 0 0.2 0.5

Credit Rating 1 0.16 1 0.5 1 0.83 1 0.16 1 0.5 1 0.83
Employment Change 0 0 0.66 0.18 0.6 0.27 0 0 0.33 0.09 0.4 0.18
Insider Transaction 1 0 1.0 0.01 1.0 0.02 0 0 0 0.66 0.01 0.02

Natural Disaster 1 1 0.5 1 0.5 1 1 1 0.5 1 0.5 1
Person Travel 0 0 0.33 0.5 0.4 1 0 0 0.33 0.5 0.4 1

Political Endorsement 1 1 0.5 1 0.5 1 0 0 0.5 1 0.5 1
Product Recall 0 0 0.66 0.17 0.8 0.33 0 0 0.66 0.17 0.8 0.33
Voting Result 1 0.5 1 1 1 1 1 0.5 1 1 1 1

Avg 0.75 0.38 0.68 0.57 0.71 0.76 0.42 0.17 0.57 0.50 0.62 0.67

Table 2: Precision/Recall of approximate FD discovery for sample events over 3 months of data.

quire a sample of size between 1k and 2k pairs [20]. Such
amounts of data are not always available when the data is
chunked into time buckets.

We analyze next how different duration values for the
same rule impact the quality of the repairs. In Figure 8(a),
the event is Acquisition. Since a company is usually acquired
only once, the considered rule is a Fd as it is demonstrated
by the improvement in the quality of the repair for both pre-
cision and recall when the duration exceeds 3600 days (10
years). The explanation is that for smaller values, the rules
cannot detect errors. As expected, the results in terms of
detection (delete semantics) are much better than the ones
that consider the modification of problematic values (update
semantics). In particular, there is not enough redundancy
in the data to find the correct update for the repair. In Fig-
ure 8(b), the event reports the number of employees for a
company. As this information changes over time, different
durations lead to different quality results in the repair. In-
tuitively, if the time is small, precision is favored over recall,
and the other way around with large values. This is the
behavior we observed for all events with temporal charac-
terization. Also in this case, the detection has much better
performance than the metric considering also the values of
the updates. Finally, Figure 8(c) reports a case where there
is a clear point in which precision falls to low values when
the duration increases. In this case, the duration is too large
and covers several changes of employment for a person, thus
several correct values are detected as problematic.

In Table 3, we report the discovered minimum duration M
and the cleaning quality results with the Repair-Outliers
(RO) and No Repair-Probability (NP) approaches. We
compare them against (i) the results obtained using a Fd,
(ii) the average of the durations suggested by three domain
experts, (iii) the best duration value for the rule, selected
with the previous study (as in Figure 8). The first three
rules do not depend on time since they have only one cor-
rect reference value in our dataset. Hence, the Fds perform
best for this case. The duration discovery algorithm was not
able to find a duration that is large enough to make the Tfd
perform better. This is because our dataset mainly contains
events that happened within three months and the discov-
ery approach subsequently suffers from the limited timespan
when identifying these larger durations. Interestingly, values
for the remaining events change over time. In these cases,
the durations discovered with our RO approach always lead

Event Entity Conditional Global
M F M F

Company Emp # Wal-Mart 24 0.82 24 0.82
Company Emp # Tesco 27 1.0 24 1.0
Company Meet. Val. Pharm. Int. 217 0.68 336 0.68
Company Meet. Wal-Mart 45 0.57 336 0.57
Credit Rating Tysons Foods 53 1.0 48 1.0
Credit Rating NY Method. Hosp. 72 0.66 48 0.0
Emp. Change Sean Moriarty 3168 1.0 24 1.0
Emp. Change Rodney Reid 12 1.0 24 1.0

Natural Disaster Argentina 45 0.57 24 0.57
Natural Disaster England 7 0.67 24 0.6

Person Travel C. Ronaldo 24 0.71 48 0.69
Person Travel Lady Gaga 26 0.73 48 0.69

Pol. Endorsement Ron Paul 96 0.52 48 0.54
Pol. Endorsement Sarah Palin 20.5 0.75 48 0.75

Product Recall vehicle 108 0.76 177 0.76
Product Recall cars 32 1.0 177 0.89
Voting Result Afghanistan 24 0.76 24 0.76
Voting Result United States 6 0.33 24 0.86

Table 4: Comparison of F-measure results for con-
ditional and global TFDs.

to better a F-measure value than the Fds and the alterna-
tive approach NP. Moreover, in several cases we are able to
achieve the same precision and recall of the best duration
from the previous study. The other Tfd approaches NR
and AL performed similarly to RO on these datasets with
failures in some cases. For example AL discovers a dura-
tion of 0 for Voting Result, while NR fails with the events
with higher noise rate, such as Company Employees #. We
shall elaborate on the differences of the Tfd approaches in
more detail in the next subsection. Finally, the average of
the durations collected from the three domain experts show
poor results in terms of F-measure, with the exception of
the Person Travel case. This confirms that manually craft-
ing the correct durations for data cleaning is a hard problem
to be tackled top-down; a bottom-up approach that mines
the data leads to more useful results.

While the minimum durations from Table 3 can be applied
for all the entities, we report in Table 4 minimum duration
values for popular entities over all events. In our approach,
the specific minimum duration for each entity can be com-
puted before the aggregation of the stripes. For popular
entities, these values can lead to better cleaning results. For
example, while the discovered minimum duration for Per-
son Travel is 48 hours (Table 3), conditional rules for pop-

344

0	

0.2	

0.4	

0.6	

0.8	

1	

1	
 10	
 100	
 1000	
 10000	
 100000	

Days	

P	
 repair	
 R	
 repair	
 P	
 detect	
 R	
 detect	

(a) Acquisition (FD)

0	

0.2	

0.4	

0.6	

0.8	

1	

1	
 10	
 100	
 1000	
 10000	
 100000	

Hours	

P	
 repair	
 R	
 repair	
 P	
 detect	
 R	
 detect	

(b) Company Employee # (TFD)

0	

0.2	

0.4	

0.6	

0.8	

1	

1	
 100	
 10000	

Hours	

P	
 repair	
 R	
 repair	
 P	
 detect	
 R	
 detect	

(c) Employment Change (TFD)

Figure 8: Cleaning results with different durations.

Event TFD Semantic (RO) TFD Semantic (NP) FD semantic Humans Best possible F
M P R F M P R F P R F M F M P R F

Acquisition 48 1.0 0.08 0.16 840 0.92 0.21 0.34 0.96 0.46 0.62 - - - 0.96 0.46 0.62
Company ticker 24 0.43 0.25 0.31 1 0.69 0.14 0.23 0.96 1.0 0.98 - - - 0.96 1.0 0.98

Insider transaction 24 1.0 1.0 1.0 264 1.0 1.0 1.0 1.0 1.0 1.0 - - - 1.0 1.0 1.0

Company Employees # 24 0.74 0.17 0.27 1344 0.37 0.17 0.23 0.24 0.19 0.22 1016 0.23 48 0.73 0.20 0.31
Company Meet. 336 0.94 0.5 0.65 5k 0.4 0.54 0.46 0.38 0.53 0.44 4560 0.46 720 0.88 0.53 0.67
Credit Rating 48 0.6 0.75 0.67 72 0.56 0.75 0.64 0.18 0.66 0.29 4680 0.55 24 0.69 0.75 0.72

Employment Change 24 1.0 0.88 0.94 14k 0.39 0.73 0.51 0.37 0.8 0.51 12k 0.5 ≤720 1 0.88 0.94
Natural Disaster 24 0.8 0.5 0.62 29 0.8 0.5 0.62 0.51 0.91 0.65 255 0.86 [168:500] 0.93 0.78 0.86

Person Travel 48 0.61 0.82 0.7 72 0.59 0.84 0.69 0.42 0.93 0.58 36 0.73 24 0.92 0.85 0.88
Political Endorsement 48 1.0 0.59 0.74 216 0.85 0.65 0.73 0.52 0.88 0.65 1200 0.68 [24:70] 1.0 0.59 0.74

Product Recall 177 0.9 0.9 0.9 7,033 0.41 0.9 0.56 0.38 0.9 0.53 352 0.9 [100:400] 0.9 0.9 0.9
Voting Result 24 1.0 0.6 0.75 816 0.79 0.71 0.75 0.31 0.9 0.59 4440 0.57 720 0.83 0.75 0.79

Table 3: Precision and recall of the error detection based on duration discovery approaches (M in hours).

ular entities yield higher F-measure than the unconditional
Tfds. Interestingly, there is a case where the conditional
Tfd performs worse that the non-conditional one. Since in
the US there can be multiple elections in different states in
the same day, the algorithm mines a very low duration of 6
hours. This suggests that Voting Result extractors can be
revised to consider American states, instead of one country.

0"

1"

2"

3"

4"

5"

6"

7"

0"

0.2"

0.4"

0.6"

0.8"

1"

0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

TI
m
e%
(s
)%

F*
m
ea
su
re
%

delta%

F.measure" Total"9me"

(a) Early termination δ

0	

0.2	

0.4	

0.6	

0.8	

1	

0	

0.2	

0.4	

0.6	

0.8	

1	

5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

c	

Recall	
 F-­‐measure	

Precision	

(b) Cut off point c with RO

Figure 9: Study of the input parameters averaged
over 9 temporal events: (a) Execution time and F-
measure for the top-5 rules, (b) Precision, Recall,
and F-measure of the repair for RO.

Parameters. In the above experiments the early termina-
tion threshold δ and the cut-off point c for trimming and
duration discovery were set to 0.7 and 10%, respectively.
We report in Figure 9(a) how different values for δ affect
the F-measure of the top-5 dependencies discovered with
our method. We observe that aggressive pruning leads to
faster execution, but to a loss in the quality of the results.
However, an early termination with δ=0.7 reduces the exe-
cution from 52 to 6 seconds and preserves the quality.

Figure 9(b) shows that the discovery algorithm behaves
as expected with respect to the cut-off parameter c: low
cut-off points lead to high precision and higher values lead
to higher recall. This property allows the user to tune the
discovery for their target application requirements. Interest-
ingly, increasing values for c show similar behavior for both
RO and NP, and the default value of c = 10 is close to the
max F-measure value for both methods.

Execution times. Aetas’s runtime is dominated by the
time needed for reading the data from a database. For the
largest dataset, CompanyTicker with more than one million
tuples, and without early termination, Aetas took a total
time of 53 seconds from which 52 seconds were spent to iden-
tify the implications and 1 second to discover the minimum
duration for a chosen implication. With early termination,
the process takes less than 2 seconds. The dependency cube
is also easy to maintain in memory as we handle one cube
per Fd at a time and its size is bound by the number of
tuples. Also, when imputing missing timestamps, we do
not materialize their values in the stripe, and we implicitly
maintain the time sequence for a non changing value.

5.2 Synthetic Data
The goal of the experiments with synthetic data is to an-

alyze how the discovery algorithms perform wrt different
properties of the data.
Dataset. In each scenario, we generate S sources with in-
formation over events for O objects for T timestamps. The
generation of the values follows a Tfd with a given Mg.
Each tuple for a source has an attribute for the entity (ref-
erence value), an attribute value for the Tfd, and a times-
tamp. For example, for Tfd name ∧ ∆ → position with
∆=[0, 2] would generate tuples such as (Jay, worker, 1),
(Jay, worker, 2), (Jay, manager, 3), (Jay, manager, 4),

345

(a) Reporting error Pr (b) Value error Pe (c) Time error Pt (d) Multiple sources

Figure 10: Ratio of the mined duration M wrt the golden duration Mg with different kinds of errors.

(Jay, manager, 5), (Jay, manager, 7), and (Jay, clerk, 8).
For each timestamp and entity, a source has a probability
Pr of not reporting the current value in a tuple, a probabil-
ity Ph of changing the value (with the current duration up
to a given maximum value), a probability Pe of reporting
a wrong value, and a probability Pt of reporting a wrong
timestamp. We run the different discovery algorithms on
the union of the data from all sources. All experiments have
been carried out for 1000 reference values and the probabil-
ity of changing the value Ph was set to 0.2.
Metrics. In this controlled environment, we know the prop-
erties of our generative model, such as the golden values for
Mg. We can thus measure the quality of the mining as the
ratio of the discovered duration M to the input duration Mg.
A ratio of 1 shows that the method has correctly mined M .
Results. To evaluate the influence of errors and sparseness
in the data, we created different scenarios by varying differ-
ent parameters. We first tested each type of error, namely
missing values, wrong values, and wrong timestamps in iso-
lation, i.e., we varied the probability of the error at hand
from 0 to 0.6 and fixed the others probabilities to zero. We
had 12 experiments for each error type by varying (i) the
number of reporting sources from 2 to 5, and (ii) Mg to 7,
12, 17. The maximum duration (the time an event holds)
was fixed at Mg + 5. From these experiments, we collected
12 M/Mg ratios, and took their median. We then tested the
role of sources and skewed error rates for our method. In
this experiment, we considered 1, 4, 7, and 10 sources, all of
them with Pr=0.1 and Pt=0.2, and three cases. In case 1,
the first source has Pe=0.1, and at each step we add three
new sources with Pe values 0.1, 0.3, and 0.5. Similarly, in
case 2 (resp. 3), the first source has Pe=0.2 (resp. 0.3), and
at each step we add three sources with Pe values 0.2, 0.4,
and 0.6 (0.3, 0.5, and 0.7 resp.).

Figure 10 shows the overall results. We see that RO per-
forms better than the baselines with all error types. In Fig-
ure 10(a), it is easy to see that both RO and NP are robust
to missing values, AL performs poorly because it cannot
align stripes when values do not match, and the absence of
integration leads to several missing values for NR. With er-
rors in the values (Figure 10(b)) RO is the only one able
to perform well with high percentages of noise, while the
other methods experience a big drop in performance. In Fig-
ure 10(c)), we see that RO is robust to errors in the times-
tamps and computes better durations that the others (NP
drops in performance at 0.3). Finally, Figure 10(d) shows
that increasing the number of sources leads to improvement

in the mining. The combination of missing values, errors in
the timestamps, and very erroneous sources make the prob-
lem more challenging. In particular, a useful duration is
discovered starting with seven sources in all cases.

6. RELATED WORK
Our work is related to two main areas, namely, depen-

dency discovery and temporal data management.
In the context of constraints discovery, Fds attracted the

most attention. TANE is a representative for the schema-
driven approach to discovery [19], while FASTFD is an
instance-driven approach [32]. Recently, DFD has also been
proposed with improvements in performance [1]. While all
these methods are proven to be valid over clean data, few
solutions have been proposed for discovery over noisy data.
An extension in this direction is the discovery of approxi-
mate Fds that hold for a subset of a relation with respect
to a given threshold [23]. A similar extension has been pro-
posed to mine approximate Tfds [11]. The major drawback
of approximate Fds on noisy data is that from a certain
threshold of noise on, such as 26% in our real world data
scenario, the results of the discovery approach will mix up
useful approximate Fds with actual non-dependent columns.

Another aspect of discovering constraints is to mea-
sure their importance according to a scoring function.
CORDS [20], which we use as baseline for approximate Fds
discovery, uses statistical correlations for each column pair
to score possible Fds. In conditional functional dependen-
cies (Cfds) discovery, other measures have been proposed,
including support, which is defined as the percentage of the
tuples in the data that match the pattern tableaux (the con-
stants) and χ2 test [8, 14]. Song et al. introduced the con-
cept of differential dependencies [31] by extending Fds with
differential functions, which are dependencies that change
over time. They also mine dependencies, but they have fo-
cused on identifying dependencies on clean data only.

Integration and cleaning with temporal data [2, 9, 25, 27]
is also of interest. The related approaches can benefit from
our algorithms. The Prawn integration system [2] can use
our Tfds to detect errors, while the record-linkage systems
for temporal data can exploit our repair-based duration dis-
covery for their mining of temporal behavior. In fact, their
goal is to identify records that describe the same entity over
time and understanding how long a value should hold is
critical for their algorithms. In particular, we adapted the
disagreement decay discovery algorithm from [27] to our set-
ting and indeed it can be applied for minimum duration dis-

346

covery. From the experimental study, it is clear that our
algorithm does better because of the improved robustness
wrt the noise in the data. Notice that, differently from [27],
noisy data cannot be clustered with good results. We there-
fore decided to go directly to the tuple-pair comparisons in
the cleaning step, and this aggressive cleaning is supported
by the experimental results with low execution times and
good results in terms of quality. Another application for
our rules is truth discovery [15, 28, 29, 33].

7. CONCLUSION
We presented Aetas, a system for the discovery of ap-

proximate temporal functional dependencies. At the core of
the system are two modules that exploit machine learning
techniques to identify approximate dependencies and their
durations from noisy web data. As we have shown in the ex-
perimental study, traditional Fds lead to poor results when
used on a temporal dataset in a data cleaning system. On
the contrary, temporal dependencies can improve the qual-
ity of the data; our system is able to discover Tfds with
minimal interactions with the users and with better results
than alternative methods.

As a future direction, we plan to mine Tfds that iden-
tify large extreme values over the duration distributions,
i.e., outlying durations that are too long for a certain event.
For example, in many countries politicians have a maximum
number of mandates for a certain position. We also plan to
extend our duration discovery algorithm with more sophis-
ticated methods for temporal outlier detection [18].

8. ACKNOWLEDGMENTS
This research was supported by Qatar Computing Re-

search Institute (QCRI). The research in this paper used
data kindly provided by Recorded Future.

9. REFERENCES
[1] Z. Abedjan, P. Schulze, and F. Naumann. DFD: efficient

functional dependency discovery. In CIKM, pages 949–958,
2014.

[2] B. Alexe, M. Roth, and W.-C. Tan. Preference-aware
integration of temporal data. PVLDB, 8(4):365–376, 2014.

[3] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs
of functional dependency violations under hard constraints.
PVLDB, 3(1):197–207, 2010.

[4] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, pages
143–154, 2005.

[5] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional dependencies for
data cleaning. In ICDE, pages 746–755, 2007.

[6] G. Bouma. Normalized (pointwise) mutual information in
collocation extraction. In GSCL, pages 31–40, 2009.

[7] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti.
Extraction and integration of partially overlapping web
sources. PVLDB, 6(10):805–816, 2013.

[8] F. Chiang and R. J. Miller. Discovering data quality rules.
PVLDB, 1(1):1166–1177, 2008.

[9] Y.-H. Chiang, A. Doan, and J. F. Naughton. Modeling
entity evolution for temporal record matching. In
SIGMOD, pages 1175–1186, 2014.

[10] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In ICDE, pages 458–469,
2013.

[11] C. Combi, P. Parise, P. Sala, and G. Pozzi. Mining
approximate temporal functional dependencies based on
pure temporal grouping. In ICDMW, pages 258–265, 2013.

[12] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang. NADEEF: A Commodity
Data Cleaning System. In SIGMOD, pages 541–552, 2013.

[13] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy,
S. Sun, and W. Zhang. From data fusion to knowledge
fusion. PVLDB, 7(10):881–892, 2014.

[14] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE TKDE,
23(5):683–698, 2011.

[15] A. Galland, S. Abiteboul, A. Marian, and P. Senellart.
Corroborating information from disagreeing views. In
WSDM, pages 131–140, 2010.

[16] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC data-cleaning framework. PVLDB,
6(9):625–636, 2013.

[17] A. Gelman and J. Hill. Data analysis using regression and
multilevel/hierarchical models. Cambridge U. Press, 2006.

[18] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier
Detection for Temporal Data. Synthesis Lectures on Data
Mining and Knowledge Discovery. Morgan & Claypool
Publishers, 2014.

[19] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional
and approximate dependencies. Comput. J., 42(2):100–111,
1999.

[20] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and
A. Aboulnaga. CORDS: Automatic discovery of
correlations and soft functional dependencies. In SIGMOD,
pages 647–658, 2004.

[21] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending
existing dependency theory to temporal databases. IEEE
Trans. Knowl. Data Eng., 8(4):563–582, 1996.

[22] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani,
P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and S. Yin.
Bigdansing: A system for big data cleansing. In SIGMOD,
pages 1215–1230, 2015.

[23] J. Kivinen and H. Mannila. Approximate inference of
functional dependencies from relations. In ICDT, pages
129–149, 1995.

[24] S. Kolahi and L. V. S. Lakshmanan. On approximating
optimum repairs for functional dependency violations. In
ICDT, pages 53–62, 2009.

[25] F. Li, M. Lee, W. Hsu, and W. Tan. Linking temporal
records for profiling entities. In SIGMOD, pages 593–605,
2015.

[26] H. Li and N. Homer. A survey of sequence alignment
algorithms for next-generation sequencing. Briefings in
bioinformatics, 11(5):473–483, 2010.

[27] P. Li, X. L. Dong, A. Maurino, and D. Srivastava. Linking
temporal records. PVLDB, 4(11):956–967, 2011.

[28] X. Li, X. L. Dong, K. Lyons, W. Meng, and D. Srivastava.
Truth finding on the deep web: Is the problem solved?
PVLDB, 6(2):97–108, 2012.

[29] J. Pasternack and D. Roth. Making better informed trust
decisions with generalized fact-finding. In IJCAI, pages
2324–2329, 2011.

[30] S. Truvé. A white paper on temporal analytics.
www.recordedfuture.com/assets/RF-White-Paper.pdf.

[31] S. Song, L. Chen, and H. Cheng. Efficient determination of
distance thresholds for differential dependencies. IEEE
Trans. Knowl. Data Eng., 26(9):2179–2192, 2014.

[32] C. M. Wyss, C. Giannella, and E. L. Robertson. FastFDs:
A heuristic-driven, depth-first algorithm for mining
functional dependencies from relation instances. In
DaWaK, pages 101–110, 2001.

[33] B. Zhao, B. I. Rubinstein, J. Gemmell, and J. Han. A
bayesian approach to discovering truth from conflicting
sources for data integration. PVLDB, 5(6):550–561, 2012.

347

