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ABSTRACT
Database architectures typically process queries one-at-a-time, ex-
ecuting concurrent queries in independent execution contexts. Of-
ten, such a design leads to unpredictable performance and poor
scalability. One approach to circumvent the problem is to take
advantage of sharing opportunities across concurrently running
queries. In this paper we propose Many-Query Join (MQJoin),
a novel method for sharing the execution of a join that can effi-
ciently deal with hundreds of concurrent queries. This is achieved
by minimizing redundant work and making efficient use of main-
memory bandwidth and multi-core architectures. Compared to ex-
isting proposals, MQJoin is able to efficiently handle larger work-
loads regardless of the schema by exploiting more sharing oppor-
tunities. We also compared MQJoin to two commercial main-
memory column-store databases. For a TPC-H based workload,
we show that MQJoin provides 2-5x higher throughput with signif-
icantly more stable response times.

1. INTRODUCTION
In recent years, increased connectivity and availability of in-

formation have changed the requirements for databases. Systems
catering to large user bases must provide robust performance with
strong guarantees. This, together with the trend toward real-time
data analytics, has put a strain on database architectures. Under
these circumstances, systems must be designed to provide guaran-
teed response times for complete workloads, rather than the fastest
performance for individual queries. For instance, reservation sys-
tems used in the airline industry need to execute hundreds of deci-
sion support queries per second with tight latency guarantees while
sustaining high update rates [27].

An emerging approach to deal with such requirements is to
exploit the sharing opportunities available in these workloads.
Various techniques for sharing query execution have been explored
to date, ranging from exploiting common subexpressions in multi-
query optimization [25], simultaneous pipelining in QPipe [15];
sharing of scans in MonetDB [28], Blink [24, 23], and Crescando
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[27]; to sharing global query plans in CJoin [9], Datapath [3], and
SharedDB [12].

As one of the most expensive relational operations, efficient
join processing is crucial for performance. Exploiting sharing
opportunities in joins across multiple queries is important to sustain
throughput in highly concurrent workloads.

In this paper we present MQJoin, a method for sharing join ex-
ecution that is able to efficiently exploit sharing opportunities and
provide high performance for up to hundreds of concurrent join
queries. Similarly to CJoin [9], Datapath [3] and SharedDB [12],
MQJoin shares query execution by annotating intermediate results
with additional information. What differentiates our approach is
the use of several techniques that enables a significantly higher de-
gree of sharing and an efficient use of main-memory bandwidth and
CPU resources. This allows MQJoin to outperform state-of-the-art
commercial analytical main-memory databases for workloads with
high concurrency.

To evaluate MQJoin, we first present a series of microbench-
marks to illustrate the benefits and overhead of the approach
with respect to a query-at-a-time counterpart. We analyze how
much overlap should intermediate relations of queries have so
that sharing pays off. Using an existing shared scan implemen-
tation as a storage engine, we then compare MQJoin integrated
into a complete system to commercial databases and related work.
Performance-wise, we compare to two leading main-memory ana-
lytical databases, namely Vectorwise and another popular commer-
cial database which we refer to as System X, on a TPC-H based
workload. We show that our system outperforms its commercial
counterparts in terms of throughput when the load grows beyond
60 clients. Furthermore, it provides significantly more stable and
predictable response times, having a lower 99th percentile even
for a handful of clients. In terms of scalability we also compare
to CJoin, the closest approach to ours, and show that for the Star
Schema Benchmark[21] for which CJoin was designed, MQJoin is
able to provide up to an order of magnitude more throughput while
maintaining lower response times.

The main contributions of the paper are: 1) we present a method
for sharing joins for highly concurrent workloads that supports
one order of magnitude more concurrent queries than the best
published result to date; 2) we provide an analysis of the impact
of sharing on main-memory joins showing how to adapt existing
join algorithms to support sharing; and 3) we validate the potential
of the idea through a comparison of a shared scan/join system
to leading main-memory analytical databases demonstrating 2-5x
higher performance.

The rest of the paper is organized as follows: Section 2 discusses
related work on join algorithms and shared query execution sys-
tems; Section 3 gives a model of the shared join execution approach
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that we use; Section 4 explains the two-way join algorithm in de-
tail; Section 5 explains how multi-way joins are handled; Section 6
explains the system architecture, including integration with shared
scans; Section 7 provides extensive analysis on the effects of shar-
ing and the performance of MQJoin; Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Main-memory Join Execution
The performance of a join is very important in a relational

database. Due to the availability of systems with large main
memories, recent research has focused on optimizing in-memory
joins. Shatdal et al. [26] proposed partitioning the relations so that
they fit in cache to avoid high random access latencies. Manegold
et al. [20] partition the relations in two steps to avoid expensive
TLB misses during partitioning. Chen et. al [10, 11] propose
software prefetching techniques to hide the memory latencies of
random accesses. More recently, there has also been discussions
on whether sort-merge join or hash-based join are better suited for
modern architectures [5, 17], as well as whether it is worth to tune
to the underlying architecture [6, 7]. There is also a line of work
that optimizes main-memory joins for NUMA architectures [2].
We have carefully evaluated all these results design a join that is
as efficient as possible but supports shared execution.

2.2 Shared Query Execution
Several techniques for shared query execution have been devel-

oped to date. Sharing execution was initially proposed in the form
of multi-query optimization [25]. MQO detects and jointly exe-
cutes common subexpressions in multiple queries including execu-
tion of join operations. StagedDB [14] and QPipe [15] use a si-
multaneous pipelining technique to share execution of queries that
arrive within a certain timeframe. Using a system based on these
techniques, Johnson et al. [16] show that there is a trade-off be-
tween sharing and parallelism. A limitation in these systems is that
they rely on temporal overlap for sharing. Typical results show
sharing for a few tens of queries [15].

Sharing data and work for scans has been shown to be effective
in various forms and use cases. MonetDB [28] optimizes disk
bandwidth utilization by doing cooperative scans where queries
are dynamically scheduled according to their data requests and the
current status of the disk buffers. Similarly, systems like IBM
UDB [18, 19] perform dynamic scan grouping and ungrouping
as well as adaptive throttling of scan speeds to increase buffer
locality. Blink [24, 23], and Crescando [27] go one step further
and answer multiple queries in one table scan, independently of
the query predicates, thereby sharing disk bandwidth and memory
bandwidth. In those systems, the degree of sharing is between a
few hundred to several thousand concurrent queries.

Recently, several systems propose shared execution of complex
operations such as joins, for queries without common subexpres-
sions. CJoin [9] achieves high scalability, handling up to 256 con-
current queries, by using a single always-on plan of operators that
executes all queries. The approach is tailored to star schemas. Dat-
apath [3] makes the case for a data-centric approach to analytical
databases, advocating a push-based model to query processing in-
stead of the traditional pull-based. They work with a more general
TPC-H schema and show sharing for up to 7 concurrent queries. A
push-based, data-flow model for query processing was also used in
the Eddies project [4]. While Eddies are similar to sharing, they
were designed to provide runtime-adaptivity of query execution
where a static query plan generation is not sufficient. They can
not provide high throughput for concurrent workloads.

SharedDB [12, 13] shows that a shared query execution system
based on a global query plan and batching can give robust per-
formance for highly concurrent workloads of up to thousands of
queries. SharedDB, however, uses single-threaded operators.

Finally, [22] integrates the approaches of CJoin and QPipe. This
work shows that a combination of global query plans with shared
operators and simultaneous pipelining is better suited for high
concurrency, while traditional query execution with simultaneous
pipelining is better suited for low concurrency workloads. Similar
to CJoin, the authors also focus on star schema workloads.

3. SHARED JOIN MODEL
This section presents a model for the input and output character-

istics of the shared join algorithm. The algorithm itself is described
in Section 4. For simplicity, this model represents only sharing of
two-way inner-joins. Handling of other join types is described in
Section 4.7, while Section 5 covers multi-way joins. Before defin-
ing a shared join, we will describe a join across two relations. We
then formally define a shared scan and then define a shared join as
the join between two shared scans.

Let R and S be two relations, and tR ∈ R and tS ∈ S be tuples
of the corresponding relations. A scan and select operation on the
relation R is then defined as a function σR : R→ {>,⊥}, and the
output of this scan is noted as σR for brevity. A join on selections
σR, σS of the two relations is then defined as:

Definition 1: Join
σR ./ σS = { (tR, tS) |

σR(tR) ∧ σS(tS) ∧ f./(tR, tS) } �

Where f./ : R×S → {>,⊥} is the join predicate function and
(tR, tS) is a concatenation of the attributes tR and tS .

A shared join for a set of queries Q = {q1, q2, . . . qn}, where
qi = σR

i ./ σS
i for i ∈ {1, 2, . . . n}, is defined as the join between

the result of the shared scans σR
Q, σS

Q. The result of a shared scan
σR
Q can be defined as:

Definition 2: Shared Scan
σR
Q = { (tR, (b

R
q1 , b

R
q2 , . . . b

R
qn)) |

bRqi = > ⇐⇒ σR
i (tR) ∧

∃i.bRqi = > } �

Thus, a shared scan outputs intermediate relations with an
extended schema that has one extra Boolean attribute bRqi for every
query qi. The attribute bRqi for a tuple tR holds a value of true if and
only if the query qi is interested in that tuple, i.e. σR

qi(tR) = >.
Furthermore, a tuple tR is output by the shared scan if at least one
query is interested in tR. The set of the attributes bRqi for all queries
qi ∈ Q is denoted as bRQ and a set of values of these attributes for a
particular tuple tR is called the set of query IDs for tR. Having the
output of a shared scan defined, we define a shared join as the join
of the output of two shared scans or:
Definition 3: Shared Join

σR
Q ./ σS

Q = { (tR, tS , (b
R./S
q1 , bR./S

q2 , . . . bR./S
qn ))|

bR./S
qi = > ⇐⇒
(bRqi = > ∧ b

S
qi = >) ∧

∃i.bR./S
qi = > ∧ f./(tR, tS)} �

In other words, a shared join outputs a relation with extended
schema that also contains one extra attribute bR./S

qi for each
query qi. This attribute is the result of the conjunction of the
corresponding attributes of the input relations: bRqi ∧ b

S
qi . Similarly
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Page 1

CID Name NID Q1 Q2 Q3

⋈

1 Laura 1 1 1 0 NID Nation Q1 Q2 Q3
2 Noah 1 0 1 0 1 Switzerland 0 1 0
3 Emma 2 1 0 1 2 Germany 1 1 1
4 Pierre 3 1 0 1 3 France 0 1 1
5 Marion 3 1 0 0
6 Hans 2 1 1 1

CIDNID Name Nation Q1 Q2 Q3
1 1 Laura Switzerland 0 1 0
2 1 Noah Switzerland 0 1 0
3 2 Emma Germany 1 0 1
4 3 Pierre France 0 0 1
6 2 Hans Germany 1 1 1

Figure 1: Sample Shared Join On Attribute NID

to the shared scan, the shared join outputs only tuples for which at
least one query is interested. One thing to note is that, for this inner-
join based model, queries need to share a common join predicate
function f./ so that the join can be shared. For other join types,
Section 4.7 shows examples of queries whose join can be shared
even if they do not share any predicate.

An example for the input and output relations of a shared
join is shown in Figure 1. Here we show a shared join for
three queries: Q1, Q2, and Q3, on two relations Customers
(CID,Name,NID) and Nations (NID,Nation) with each
query having different predicates on each relation. The upper
part of Figure 1 shows the two input relations of the join or,
in other words, the output relations of the shared scan. As
explained previously, intermediate relations have an additional
Boolean attribute for each query, which has a value of 1 if the
corresponding tuple belongs to the query or 0 otherwise. The set of
query IDs in this case is the set of values of all Boolean attributes
for a particular tuple. The bottom part of Figure 1 shows the output
of the shared join, where the set of query IDs of an output tuple is
simply an intersection of the sets of query IDs of the matching pair
of input tuples.

4. TWO-WAY JOIN ALGORITHM
We faced two key challenges when designing MQJoin: minimize

time spent per tuple and minimize the number of tuples processed
for a set of queries. To address the first challenge we combine
approaches from related work on optimizing joins with techniques
to efficiently reuse data-structures over multiple join sessions and
to minimize the overhead imposed by sharing, such as handling
query IDs. To address the second challenge we use techniques
that schedule queries in a way that minimizes redundant work and
develop ways to share execution of queries that require different
types of joins.

4.1 Algorithm Overview
From a high level perspective, the algorithm is a parallel hash

join running on a single multi-core machine similar to those
available in the literature [6, 7, 10]. During the build step, multiple
threads consume the build relation to populate the hash table. In
the next phase, the threads consume the probe relation and probe
the hash table to find matches of tuples. Unlike a traditional hash
join algorithm, the threads do an additional step of computing the
intersection of the query ID sets of all matching pairs of tuples and
filtering out tuples with an empty intersection.

The algorithm inherits several features from recent work on
main-memory hash joins. Similarly to Blanas et al. [7], threads
during the build step synchronize using spin-locks, where there
is one lock per hash entry in the table. Similarly to Balkesen et
al. [6] we optimize the algorithm by minimizing the number of
random accesses per tuple. Although it was shown to be more

effective [6], we do not partition the relations to cache sizes, mostly
because we have a row-store based system and larger tuple sizes.
In particular, due to the meta-data per tuple introduced by sharing,
the partitioning step would be more expensive. Instead, we reduce
the latency of random accesses by applying a grouped software
prefetching as proposed by Chen et al. [10, 11]. One novelty in
our approach is the introduction of a sessionID attribute to each
hash entry to provide an efficient reset operation of the hash table.
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0 2 4 8 16 24 32
SID Key

Buffer Space
Lck Record Ptr QID Set Ptr Next Bucket Ptr

Figure 2: Structure of a Hash Bucket

4.2 Hash Table Structure
The hash table is structured in a way that each bucket is aligned

at the 64B cacheline boundary, guaranteeing that each hash bucket
lookup will access a single cacheline. The structure of a bucket is
shown in Figure 2. A hash bucket consists of the following fields:
Lck: Lock is used to synchronize between threads during building
of the hash table; SID: Session Id is used to identify the last session
when this hash bucket was updated. This is needed in order to
reuse the memory of a hash table for multiple join cycles without
the need of an expensive memzero operation; Record Ptr points
to the address in memory where the record is located. This can be
either in the buffer space of the hash bucket or somewhere else;
Query ID Set Ptr points to the address in memory where the set
of query IDs for the tuple are located; Next Bucket Ptr points to
the next hash bucket in cases of overflow. Each thread has its own
dedicated pool of overflow buckets; Key: Join Key is typically a
4 byte integer cached in the hash bucket for quick access in case
the record is stored somewhere outside; Buffer space is the extra
memory located on the cacheline that is used to store the record
and/or the query ID set in cases when they are small enough.

Algorithm 1 Build Phase
for group ∈ relation do

for tuple ∈ group do
bucket← COMPUTEBUCKETADDRESS(tuple)S1

 PREFETCH(bucket)
end for
for tuple ∈ group do

LOCKBUCKET
if bucket.SID ! = currentSID then

POPULATEBUCKET(tuple, bucket)
bucket.SID = currentSID

else
ofbucket← GETOVERFLOWBUCKETS2


SWAPNEXTBUCKETPTRS(bucket, ofbucket)
POPULATEBUCKET(tuple, ofbucket)

end if
UNLOCKBUCKET

end for
end for

4.3 Join Procedure
Next we explain the build and probe phases of the hash join

algorithm in more detail. For clarification purposes we also provide
an example shown in Figure 3 and work through the example as we
explain the algorithms. The figure shows a simple setup with a
building relation of 5 tuples, probing relation with 10 tuples and
the populated hash table.
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Algorithm 2 Probe Phase
for group ∈ relation do

for tuple ∈ group do
bucket← COMPUTEBUCKETADDRESS(tuple)S1

 PREFETCH(bucket)
end for
while group != [ ] do

otherGroup← [ ]
keyMatchGroup← [ ]
for tuple ∈ group do

if bucket.SID == currentSID then
if bucket.key == tuple.key then

ADDTOKEYMATCHGROUP(tuple)
PREFETCH(bucket.queryIDs)
PREFETCH(bucket.record)

end ifS2



if HASNEXTBUCKET(bucket) then
ADDTOOTHERGROUP(tuple)
PREFETCH(bucket.nextBucket)

end if
end if

end for
for tuple ∈ keyMatchGroup do

resQIDs← INTERSECT(tuple.QIDs, bucket.QIDs)
if !EMPTYSET(resQIDs) then

OUTPUTTUPLE(tuple, bucket, resQIDs)S3

 end if
end for
SWAP(group, otherGroup)

end while
end for

Both the build and probe algorithms divide their input interme-
diate relations in small groups and iterate over these groups mul-
tiple times before proceeding to the next group. The reason for
this is to avoid high memory access latencies to memory locations
not present in the cache. In each iteration, addresses to non-cache-
resident memory to be accessed in the next iteration are calculated
and prefetch instructions are issued. We experimented with differ-
ent group sizes and found that groups of about 50 tuples are enough
to hide random main memory access latencies. For simplicity, in
the example in Figure 3 we use group sizes of 5 tuples, so there
is only one group for the building relation and two groups for the
probing relation.

The build phase (Algorithm 1) consists of two iterations over
the small groups of tuples. In the first iteration (S1), the hashes
of the join keys are precomputed and prefetch statements to the
addresses of the corresponding hash buckets are issued. In the
second iteration (S2), the hash buckets are populated with the input
tuples. If a hash bucket is already populated, the input tuple is
populated in an overflow bucket and the pointer of the hash bucket
is updated to point to the overflow bucket.

For the example join, in the first step key hashes of tuples
BT{1,2,3,4,5} are computed and the prefetch instructions are
issued on the hash buckets HB{1,4,2,1,4} in the corresponding
order. In the second step, building tuples BT{1,2,3} are populated
in hash buckets HB{1,2,4} respectively, while tuples BT{4,5} are
populated in new overflow tuples OB{1,2} that are linked to hash
buckets HB{1,4}. In this example, the buffer space in the buckets
is enough to hold the QIDs bitset, but not enough to store the record
as well. Therefore, only the bitsets are copied into the buffer space
of buckets and QID pointers are set to point to the buffer space,
while the record pointers are set to point to the original memory of
the input relation.

The probe phase (Algorithm 2) is a bit more involved. Step 1
(S1) computes hashes and prefetches the hash buckets. Step 2 (S2)

P
ro

be
 

G
ro

up
 1

Probing Relation
Record QIDs 

B
uild

G
roup 1

Building Relation
Record QIDs

8

1
2

4

1
4
2
5
8

Hash Buckets Overflow Buckets

PT 1
PT 2
PT 3
PT 4
PT 5
PT 6
PT 7
PT 8
PT 9
PT10

Key Key
BT 1
BT 2
BT 3
BT 4
BT 5

HB 1
HB 2
HB 3
HB 4

OB 1

OB 2
Key Rec.

Ptr
QID
Ptr

Next
Buck.

Next
Buck.

5

8

1

5

1

8

8

8

5

4

2

P
ro

be
 

G
ro

up
 2

Rec.
Ptr

QID
Ptr

KeyBuffer Buffer

Figure 3: Two-way Join Algorithm Example

evaluates join predicates and prefetches the set of query IDs and
the records. If the set of query IDs and the record span multiple
cachelines, it issues a prefetch statement for each cacheline. In
case of overflow, it also issues a prefetch statement to the overflow
buckets. Step 3 (S3) computes the set intersection of the query ID
sets and materializes the output tuple if the set intersection is not
empty. In cases of overflows, the procedure from step 2 to step 3 is
repeated as many times as the length of the longest bucket chain.

In the example in Figure 3, the probing procedure for the first
probing tuple group will be the following. In the first iteration
(S1), key hashes of probing tuples PT{1,2,3,4,5} are computed
and prefetch instructions are issued on the memory addresses of
hash buckets HB{1,4,2,4,1} in the corresponding order. In the
next iteration (S2), key comparison of corresponding tuples and
hash buckets are performed and the record and QID pointers
are prefetched for the buckets with matching key comparison
(HB{1,2}). In the same iteration (S2), prefetch instructions are
also issued for the overflow buckets OB{1,2}. In the next iteration
(S3), QID set intersection is performed and output tuples are
materialized for tuple pairs: {(BT1,PT1),(BT3,PT3)}. Since there
overflow buckets, steps S2 and S3 are repeated for the overflow
buckets. In the next iteration (S2) key comparison is performed
for tuple-bucket pairs: {(OB2,PT2),(OB2,PT4), (OB1,PT5)}, and
since all keys match, record and QID pointers are prefetched
for both overflow buckets OB{1,2}. No overflow buckets are
prefetched in this S2 iteration since all next bucket pointers are null.
Finally, the algorithm proceeds with the last iteration of the first
probing group of tuples (S3) with performing set intersection and
output tuple materialization of tuple pairs: {(BT5,PT2),(BT5,PT4),
(BT4,PT5)}. As the algorithm processed all overflow buckets, it
exits the while loop and continues on with the next group of probing
tuples in a similar manner.

4.4 Query Scheduling
Our model for sharing joins assumes a fixed set of queries during

the join operation. To satisfy this property, the join runs in cycles
for batches of queries where arriving queries wait in a queue if
the system is busy executing a join, similarly to SharedDB. One
might argue that this waiting causes response times to increase.
The waiting, however, is more than compensated by allowing
the system to organize the join execution in a way that both the
build and probe phases are shared for all queries currently being
executed. The result is, as we will show, higher throughput and
more predictable performance.
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The other alternative is to schedule queries immediately as they
arrive. This is common for systems that share scans such as
IBM DB2 [18, 19], MonetDB [28], and is also used by CJoin [9]
and Datapath [3]. The effect on join execution is that the build
and probe phases need to be executed concurrently in a pipeline
fashion. The problem is in the redundant work to be done for a
set of concurrently running queries, which is the first stage of the
pipeline, i.e. the build phase. The effect on performance depends
on the relative cost between the build and probe phases and the
amount of sharing missed. The effect is further aggravated in cases
of multi-way joins where there are multiple stages in the pipeline.

4.5 Query ID Set Representation
As mentioned previously, shared query execution introduces an

additional attribute for each intermediate tuple in the system. This
attribute keeps information on which queries are interested in each
tuple. There are several ways to store and handle this attribute,
each with advantages and disadvantages. One way to represent this
attribute is as an array of integers each of which represents the ID
of the query that is interested in the tuple. The impact of this is that
the size of the attribute is Ni · sint bytes where Ni is the number
of queries interested in the tuple and sint is the size of the integer.

Another way of representing the set of query IDs is to use a bitset
where each query in the system has a dedicated bit position in the
bitset. For a certain tuple with a bitset B, and a query Q whose bit
position is i if the ith bit in B is 1 then the query is interested in
the tuple, and vice-versa if the bit is 0. The size of the attribute is
then the size of the bitset which is Ns

8
bytes where Ns is the total

number of concurrently running queries.
One factor affecting the performance trade-off between the two

methods is the ratio Avg(Ni)
Ns

of average number of queries per tuple
Avg(Ni) to the number of concurrent queries Ns. Bitsets work
well when this ratio is high or Ns is sufficiently low. Arrays work
well in cases where this ratio is low andNs is very high. In practice,
we found that, for analytical workloads, bitsets perform better.

4.6 Discussion
MQJoin is similar to CJoin and Datapath in using bitsets to

handle the query ID set for each tuple, as well as the use of a hash
based algorithm.

An important difference to CJoin and Datapath is that in those
systems the build and probe phases are executed concurrently. As
a result, the hash table is constantly updated for all incoming and
outgoing queries, which introduces extra work per query. In CJoin,
for instance, the hash table is updated for each query individually,
both when the query enters and exits the system. This works for star
schemas and low concurrency cases where the effort required in the
build phase is significantly lower than during the probe phase. In
Datapath, colliding hash table entries from newly arrived queries
will be placed in the next available entry in the hash table. This
causes extra work to be done during probing and it is unclear how
the hash table is purged when queries finish. To minimize the work
required for building, updating and clearing the hash table, our join
algorithm runs in cycles, performing build and probe one after the
other in each cycle. This allows us to share the build operation
for all queries that are being executed in the current cycle. At the
end of each cycle we clear all data in the hash table by simply
incrementing the session ID number. This avoids replaying build
subqueries to clear data from the hash table.

Another difference is in the micro-architectural properties of the
algorithm. SharedDB uses single-threaded join operators which is
inefficient for analytical workloads on multi-core systems. Simi-
larly, CJoin builds and updates the hash table in a single thread,

1. SELECT * FROM R, S WHERE R.A = S.A
2. SELECT * FROM R LEFT OUTER JOIN S ON R.A = S.A
3. SELECT * FROM R RIGHT OUTER JOIN S ON R.A = S.A
4. SELECT * FROM R FULL OUTER JOIN S ON R.A = S.A
5. SELECT * FROM R WHERE R.A IN (SELECT S.A FROM S)
6. SELECT * FROM R WHERE R.A NOT IN (SELECT S.A FROM S)
7. SELECT * FROM S WHERE S.A IN (SELECT R.A FROM R)
8. SELECT * FROM S WHERE S.A NOT IN (SELECT R.A FROM R)

Figure 4: List of Queries Whose Join Can be Shared

which is inefficient if the build relations are not insignificantly
small. This is another reason why CJoin is restricted to star
schemas. Datapath uses a single hash table for all joins which is
divided in 64 regions with exclusive locks. To avoid contention on
these locks, it needs to update the hash table in two phases. Our
algorithm parallelizes both build and probe phases and synchro-
nizes build operations on a per bucket basis. We optimize for both
CPU and bandwidth efficiency by hiding random access latencies
through software prefetching and minimizing the number of ran-
dom cachelines accessed per tuple. This makes the performance
of our algorithm comparable to that of the fastest published query-
at-a-time join algorithms, something that none of the competing
versions can do.

4.7 Sharing Execution for Other Join Types
The algorithm we just described works for queries that require

inner joins. It can be extended to share execution for queries
that also require (left, right, full) outer-joins and (anti) semi-joins,
provided that they are all on the same equality predicate. Consider a
simple schema of relations R(A int,B int) and S(A int, C int),
and a shared join operator which builds the hash table with the
relation S and probes with the relation R. Then consider the set of
queries shown in Figure 4. To handle these queries, the algorithm
is extended to perform additional operations on the bitsets during
probing. These additional operations depend on the join type and
can be setting bits of individual queries to 1, conditional set to zero,
or bitwise OR. This extension allows to answer queries 2, 4, 5, 6
and 7. Another extension is to modify tuples’ bitsets in the hash
table during probing, and iterate over the build relation again after
probing to output tuples which did not have a match in the probing
relation. This extension allows to answer queries 3, 4 and 8.

5. MULTI-WAY JOINS
In this section we describe how multiple join operations are

handled. As with the query-at-a-time approach, the shared join
approach also requires an optimization decision on how to create
query plans involving multiple joins. The shared join optimizer not
only needs to decide the order of a multi-way join but also which
queries’ execution should be shared. It can be undesirable to share
the execution of some queries either for performance isolation
reasons or if sharing would hurt overall performance.

Building such an optimizer is actually a non-trivial task and is
out-of-scope of this paper. Recent work by Giannikis et al. [13] has
addressed this problem and these techniques can also be applied to
our approach. In this paper we focus on one end of the spectrum,
that is to maximize sharing across all concurrent queries. While this
might not be always optimal or desirable, it provides a lower bound
for the performance of our approach. The ordering of the joins is
currently done by hand. Next we explain how we maximize sharing
for queries with multi-way joins. The key challenge to address is
handling queries without common subplans. In this regard, we use
two techniques: query plan equalization and global query batching.

484



Relation Orders:
OID CID Date

1 2 2012.JUL.01
2 3 2013.JAN.01
3 1 2011.NOV.31
4 3 2013.FEB.01
5 2 2012.NOV.15
5 2 2012.DEC.14

Relation Customers:
CID Name NID

1 John 1
2 Maria 1
3 Dieter 2

Relation Nations:
NID Name

1 USA
2 Germany

(a) Sample Database

Q1 SELECT * FROM Orders O, Customers C
WHERE O.CID = C.CID AND C.Name = ’John’

Q2 SELECT * FROM Orders O, Customers C, Nations N
WHERE O.CID = C.CID AND C.NID = N.NID
AND O.Date ¿ 2012.DEC.21 AND N.Name = ’USA’

Q3 SELECT * FROM Customers C, Nations N
WHERE C.CID = N.NID AND N.Name = ’Germany’

(b) Sample Queries

(c) Shared Join Plan for Q1, Q2, Q3

Figure 5: Sample Database with Queries

5.1 Query Plan Equalization
A key property of our shared join approach that minimizes the

number of tuples processed in the join operators is that a join
operation is shared even for queries without common subplans. We
illustrate this with an example. Figure 5 shows a sample database
with three relations: Orders, Customers and Nations together with
3 queries with various joins and predicates on the three relations.
The three queries share almost no common subexpressions: Q1
asks for all the orders from John, Q2 asks for all orders after
2012.DEC.21 from USA, and Q3 asks for all customers from
Germany. The query execution plan that we create to execute all
3 queries together is shown in Figure 5c.

One can notice that the organization of join operations in the
plan does not directly correspond to the join operations required
by all queries. In particular, Query 1 does not require the join of
Customers ./ Nations, however it is still included in its plan. The
reason is that it allows for the Orders ./ Customers join to be
shared for Query 1 and 2.

We considered the two following techniques to exploit this type
of sharing opportunity: (i) modify the query plan of Query 1 to
include an unnecessary full table scan of Nations followed by a
join with Customers (ii) have the Customer ./ Nations join always
forward tuples for which Query 1 is interested. Both methods have
advantages and disadvantages, and could be used interchangeably
depending on the situation. The advantage of the first method is
that it requires less computation per tuple, however it might process
more tuples. This would not be a problem, if for instance a full table

join is already required by the union of all joins that are processed.
The advantage of the second method is that it might process less
tuples, but would require more computation per tuple. Currently
we modify the query plans to include extra full table scans and
joins. This technique can be referred to as query plan equalization
where query plans are modified to increase sharing opportunities.
The approach differs the ones in Datapath and SharedDB where,
for join queries with different subplans where the join operations
are either replicated or process intermediate relations from separate
query plans, thereby creating redundant work.

5.2 Global Query Batching
As explained earlier, to exploit more sharing opportunities, our

algorithm requires a fixed set of queries during its execution.
This means that queries or subqueries need to be coscheduled (or
batched), so that they are executed together. To facilitate this,
we use query queues where there is one queue for each class of
queries or subqueries that need to be coscheduled. If the system
is busy executing a certain class of queries, arriving queries of that
class will wait in the queue. The decision of how many queues to
have involves making a trade-off between the amount of sharing
exploited and isolation of query performance. To show the effects
of sharing compared to query-at-a-time execution, we focus on one
end of this spectrum which maximizes sharing. Therefore, we use
a single query queue which gives the system maximum flexibility
in how to schedule execution of concurrent queries. We refer to the
use of a single query queue as global query batching. The effect of
this can also be shown with the example in Figure 5. Assume that
there are many clients connected to the system where each client
repeatedly executes one of the three queries at random. Although
the instances of Query 3 do not require the Orders./Customers
join like Query 1 and 2, all queries will be coscheduled together.
This means that query execution can be organized in a way that the
Customers./Nations join is executed only once for all queries that
are being executed at the same time, minimizing redundant work.

6. SYSTEM ARCHITECTURE
For an efficient end-to-end query execution, a shared join must

run on top of a storage engine that supports shared scans. Sharing
computation and bandwidth in scans is a common technique used
in many systems. Some examples include: Blink [23], MonetDB
[28] and Crescando [12]. To provide a clearer picture of the
performance of MQJoin when it runs as part of a complete system,
we integrated it with Crescando. Crescando is a row-oriented
storage engine where relations are partitioned across cores and fully
reside in main-memory. Therefore, neither the scan nor the join
need to fetch data from disk to execute queries.

An example of how this integration works is shown in Figure 6.
This example depicts two shared scan operations, one join operator
divided into build and probe parts, and an output operator. The
output operator is shown just to illustrate an operator on top of
the shared join. It can be the build or probe part of an additional
join operator, an aggregate operator, or the end point of query
processing that communicates with the clients.

Query execution in our architecture is performed in one or more
steps. In each step, a set of threads work on separate partitions,
and execution progresses to the next step only when all threads are
done processing their partition. In the example in Figure 6 there are
two steps, where in step 1, n threads scan the R relation and build
a hash table, and in step 2 they scan the S relation, probe the hash
table, and output the results.

For optimizing data and instruction cache locality, tuples are
processed in vectors similarly to MonetDB/X100 [8]. Within a
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Figure 6: Integration with Shared Scans

step, threads switch contexts between operations when they fill up
a buffer of 1000 tuples. For instance in step 1, thread 1 will scan its
partition of relation R until it fills up the buffer with 1000 tuples.
Consequently, it will push the buffer of tuples to the operator on
top, which in this case is a function call to the build operator.

6.1 Interpreting the Results of the Shared Join
The shared join outputs intermediate results in a similar way as

it gets the input, by including a bitset to every tuple representing
the query ID sets. These intermediate relations can be used by
any other operator or can be sent directly to the clients. In the
absence of mechanisms to support the execution of more complex
queries, we only add a simple aggregate operator on top of the join
operator, which can evaluate arbitrarily complex expressions for
each query individually. This aggregate operator iterates over the
bits in the bitset for each query, evaluates the expressions of the
corresponding queries and updates their states. This way we avoid
sending large materialized relations over the network.

6.2 Tuple Format
Since we built MQJoin on top of a row-oriented storage engine,

the system uses a row-wise format (NSM) throughout the whole
query execution process. Nevertheless, MQJoin could also be
integrated with column-oriented storage engines that use a column-
wise format (DSM) to store relations. In this case we would need
to employ an on-the-fly conversion between DSM and NSM to be
able to benefit from both formats. Zukowski et al. [29] showed
that this kind of conversion can be efficiently implemented and
that it enables significant performance improvement for in-memory
analytical query processing.

6.3 Main-memory Footprint
One may argue that sharing the execution of multiple join

operations increases the main-memory requirements of a database.
The reason behind is based on a traditional trade-off between the
number of concurrent queries and the available memory. While our
shared join does take more memory than a single join, we run many
queries through it and exploit the sharing opportunities that arise,
thereby reducing the overall demand for memory when considering
how many queries are being executed concurrently.

6.4 Scaling Out
As main-memory gets cheaper and larger, an increasing number

of datasets can fit in the memory of a single machine. For this
reason, our algorithm assumes that relations and intermediate data

structures are memory resident. Nevertheless, although our system
is designed for single-node join processing, the techniques we use
can also be applied in a distributed setting. As a memory intensive
operation, network bandwidth is a limiting factor when running a
join across multiple machines. Therefore, our approach of sharing
the bandwidth for multiple queries will also be beneficial in this
case. Similar rationale can also be applied to disk-based joins that
spill intermediate relations to disk.

7. EVALUATION
To evaluate the performance of MQJoin we first run a series

of microbenchmarks where we investigate the micro-architectural
effects of sharing the join. We then evaluate MQJoin running
on top of a shared scan with a TPC-H based scan and join
workload and compare the performance to main-memory, column-
store databases optimized for analytical workloads such as TPC-
H, namely Vectorwise [30] and System X. We also compare our
approach with CJoin using the star schema benchmark and based
on the code provided by the authors of CJoin. All experiments
were done on a machine with 4× twelve-core AMD Opteron 6174
“Magny-cours” processors clocked at 2,200 MHz. The machine
has 8 NUMA nodes each with 16 GB of memory, for a total of 128
GB of RAM.

7.1 Microbenchmarks
The purpose of these microbenchmarks is to show how sharing

affects the performance of a join between two relations. We
evaluate performance and compare it to a query-at-a-time join for
various relevant factors, such as number of concurrent queries,
hash table size, tuple size, and workload type. All experiments
refer to an equi-join between relations R(int A, int B) and
S(int A, int C). Unless otherwise noted both relations have
100 million tuples, each of which is 8 bytes, where the first 4
bytes contain the join key. The join key ranges from 1 to 100
million and is randomly distributed across tuples in both relations.
The relationship between R and S is a primary-key foreign-key
relationship, thus the join key in R is always unique. There is no
skew in the workload, so keys in S are evenly distributed. The
reason this workload is chosen is that it resembles workloads used
to evaluate query-at-a-time join algorithms in related work on joins
[6, 7, 17], giving us a fair base for comparison.

7.1.1 Scaling with the Number of Concurrent Queries
and Record Size

In the first experiment (Figure 7) we measure absolute perfor-
mance of our join algorithm in isolation and investigate how per-
formance is affected by the size of the bitset, i.e., the number of
concurrently running queries, as well as, the record size. We mea-
sure the time it takes to execute all join queries while varying the
number of queries. To keep the number of tuples constant and to
minimize the effect of the scan, all queries ask for a full table join of
the two relations. We show performance for two cases, one where
the join runs on 48 cores and one where it runs on a single core.
This indicates how the algorithm performs both in memory-bound
and compute-bound scenarios.

The first thing to note is the absolute performance of the
algorithm compared to state-of-the-art join algorithms. From the
48-thread graph we see that the maximum performance obtained
for small-sized tuples and few queries is a little bit less than 0.5
seconds, which for our 100M × 100M join corresponds to around
200 million tuples per second. This is in the same ballpark with
highest performing joins that is around several hundred million
tuples per second [5]. Next, we analyze the performance effect of
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Figure 7: Performance of a 100M×100M MQJoin for Various
Number of Queries and Record Size

bitset and record size. Dealing with bitsets is an important source of
overhead as it is not present in query-at-at-time join algorithms. We
note that the difference in performance of sharing join execution for
around 500 concurrent queries instead of 1 is in general small and
at most a factor of 2, the main reason being that 500 bits can still
be accommodated in a single cacheline of 64 bytes.

The overhead of dealing with larger record sizes is also impor-
tant, since queries might be interested in different attributes requir-
ing for larger records to be projected and processed by the join op-
erators. Similarly to the bitset size, the results show that increasing
the record sizes from 8 bytes to a cacheline size of 64 bytes has a
marginal overhead. Enlargening the records to sizes bigger than a
cacheline of up to 256 bytes, however, adds a significant overhead
and performance starts degrading linearly with the record size as
more non-cache resident memory has to be accessed per probe op-
eration. To avoid this type of overhead several techniques can be
used. One way is to employ standard techniques used in current
databases to avoid processing large records in the join such as data
compression and late materialization. Another way is to compress
individual records and have record-specific projection using only
the attributes that are of interest to the queries the record belongs to.
This technique prevents the increase in record size at the expense of
having more complex data dependent code. In our case, we found
that such techniques are not necessary, since for the workloads we
used the tuples did not exceed 64 bytes. And as mentioned before,
the impact on performance in this case is negligibly small.

7.1.2 Effect of Hash Table Size
The join is an operation which scales supralinear with relation

size. Typical breaking points are when the hash table no longer fits
in cache or no longer fits in main memory. When sharing a join the
input relations are a union of all relations required by the queries.
Thus, knowing how exactly does a join scale with the size of a hash
table is important to understand the effect of sharing the join.
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In this paper we focus on main-memory databases. Thus, we
consider only the cases when a hash table fits in main-memory.
We vary the size of relation R from 1,000 tuples to 100 million
tuples which covers the cases from when the hash table fits in L1

cache until it is much larger than L3 cache. As before, we measure
performance of full table joins for a join on 1 core and 48 cores.
Since the size of the build relation is not constant, we only measure
the performance of the probe operation. We take measurements for
3 different join cases. The first one is a query-at-a-time join for
which we used our join algorithm without sharing support. The
second one is a shared join with only few queries (< 64). Finally,
the third one is a shared join with 512 queries which is already
enough to feel the impact of the bitset size.

The most important thing to get from these graphs is the ratio
between the lowest performance of the shared join and the highest
performance of a query-at-a-time join. The reason this is important
is that it depicts a worst-case scenario where the hash tables of
each individual query fits in cache, but the union of all hash tables
does not fit in cache. The highest ratio in this case is around 6,
which means in the worst case a probe operation will cost 6 times
more for a shared join. However, it is important to note that since
this corresponds to shared execution of 512 concurrent queries, the
extra cost is compensated by the sharing.

Another observation to make is that the single-threaded case
is less sensitive to hash table size, and does not experience a
performance drop as the hash-table grows larger than the L3 cache.
This means that the software prefetching technique we use is able to
successfully hide the large random main memory access latencies
which occur when each hash table access is a cache miss.

7.1.3 Effects of Sharing the Join
In the following experiment we illustrate the effect of sharing

the join for queries with predicates. We vary the selectivity as
well as the location of the predicates and we measure how much
time it would take to execute a set of queries if they were to be
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Figure 9: Performance of MQJoin versus Query-at-a-time Join

executed with a shared join or one by one with a query-at-a-time
join. We consider three types of queries with predicates: one
where all queries have a predicate on one of the relations; one
where all queries have predicates on both relations; and one where
half of the queries have a predicate on one relation and the other
half have a predicate on the other relation. We use the default
relations R and S both with 100 million tuples. A selectivity of
a predicate of, for instance 0.001% on relation R, means that that
query selects randomly around 1,000 tuples from R. To avoid
measuring the effects from scanning and evaluation of predicates,
the input relations are precomputed both for the shared join and the
query-at-at-time join. Results are shown in Figure 9.

One important thing to emphasize from these results is that the
execution time of the shared join has a ceiling. This represents the
point where the union of all tuples is the whole relation and thus
shared join does a full table join. The performance then is constant
until the size of the bitset gets high enough to make an impact.

For the first type of queries where all predicates are on one
relation a shared join almost always performs better than a query-
at-a-time approach. This is true even in the cases when the
predicates are mutually exclusive for all queries, making the output
relations mutually exclusive as well. The benefit in this case comes
from sharing the probe relation, where every probing tuple is shared
for all queries.

For the second type of queries where each query has a predicate
on both relations we can see that a shared join is only beneficial
if there are some common tuples between the queries. Due to
the randomness of the predicates in this setup, only the queries
with lower selectivity predicates share tuples as the number of
queries increase. As the bitsets increase with more queries, the
performance of the shared join will suffer. However, if there are no
common tuples between queries then the bitset will contain mostly
zeros so it will be easily compressible.

While the previous two cases were interesting to point out, we
expect that a realistic workload will consist of more diverse sets of
queries. The worst case scenario for shared join is when there are
two queries one with a predicate on one relation, while the other has
a predicate on the other relation. The shared join in this case will do
a full table join, and the number of queries in this case required for

the shared join to do better than the query-at-at-time join depends
the impact of the size of the hash table on the join, which is what
we saw in Figure 8.

7.2 TPC-H Benchmark
The TPC-H benchmark suite [1] consists of 22 analytical queries

most of which require heavy scans and joins on large portions of
data. As we focus only on the scan and join operations of the
queries we took the TPC-H queries and extracted their scan and join
subqueries. In order to avoid sending large materialized relations
over the network we included simple SUM aggregate on top of every
query. To ensure that all attributes are projected during the joins as
required in the original queries, we added all necessary attributes to
the SUM aggregate expression. For instance the transformed version
of Query 9 is shown in Listing 1

Listing 1: Transformed SQL version of Query 9
SELECT SUM(

p s s u p p l y c o s t + l e x t e n d e d p r i c e + l d i s c o u n t
l q u a n t i t y + s n a t i o n k e y + o t o t a l p r i c e )

FROM l i n e i t e m , p a r t , s u p p l i e r , p a r t s u p , o r d e r s
WHERE l o r d e r k e y = o o r d e r k e y
AND l p a r t k e y = p p a r t k e y
AND l s u p p k e y = s s u p p k e y
AND l p a r t k e y = p s p a r t k e y
AND l s u p p k e y = p s s u p p k e y
AND p name LIKE ’%[COLOR]% ’ ;

Furthermore, we removed any queries that required no joins,
queries that contain more complex predicates which our shared
scan implementation does not yet support, and queries that required
joins other than equi-joins, which are not currently supported by
our system. The final set of queries include 13 query templates
that contained the scan and join subqueries of the following TPC-H
queries: 2, 3, 5, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20. For comparison,
related work uses a smaller subset of TPC-H. Both QPipe and
Datapath work with only 8 queries. The global operator plan that is
used to process these queries is shown in Figure 10. This plan was
created as described in Section 5 to maximize sharing for a batch
of queries. The scale of the TPC-H data used was 10.
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Figure 10: Global Join Plan for the TPC-H Workload

7.2.1 TPC-H Execution
To compare our approach to a query-at-a-time system we run

an experiment with multiple clients where each client executes the
TPC-H based queries one by one, in randomized order, and with
randomized parameters as per the TPC-H specification. The clients
execute the queries without think-time for a particular period of
time, while we vary the number of clients and measure throughput
and response time.

Our shared join system in this case is running on all 48 cores,
with every TPC-H relation partitioned across the cores. The
memory of each partition is bound to the NUMA node of the
core, while the memory of the hash tables is interleaved across all
NUMA nodes. As mentioned before, the system executes queries
in batches where queries are queued up in a batch while the current
batch is being executed. For Vectorwise, we have one connection
per client for up to 64 clients. With more than 64 clients the clients
start sharing 64 connections in a FCFS fashion.

In Figure 11a we show the throughput comparison of our
system, Vectorwise and System X as we increase the number
of clients. The results indicate that our system outperforms
both commercial counterparts for more than 60 clients and gives
2-5x higher throughput for 256 clients. Although this might
not seem to be a large improvement, it should be taken into
account that we are comparing to systems that are leading TPC-H
benchmark performers for single node main-memory processing.
There are many optimizations in Vectorwise and System X that
are orthogonal to shared query processing, in particular column-
wise processing. The reason why performance increase slows down
from 256 to 512 queries is explained in the next section where we
profile the performance of our system.

In Figure 11b we show response time percentiles for the same
experiment. This graph shows that our system has significantly
more stable and consistent response time. Both Vectorwise and
System X are slower for the most expensive queries for as low
as 4 clients. This graph also shows the equalization effect of the
single query queue on response time. This might not always be a
desired property for all queries in the system, however it provides
predictable performance that is important for systems which must
provide response time guarantees.

Figure 12 illustrates the advantage of MQJoin over its query-
at-a-time counterparts. For this experiment we measured the
total number of input and output tuples processed by hash join
operators for different sized sets of concurrently running queries.
Due to technical limitations we only collected this data from

MQJoin and System X. Nevertheless, the results clearly show
the difference between MQJoin and a traditional query-at-a-time
approach. For small number of concurrent queries, System X
processes significantly less join tuples than MQJoin since it can
optimize the join order of each query individually. Furthermore,
System X makes use of bitmaps to prefilter join tuples, further
reducing them at additional cost to the scan operation. On the
other side, the number of processed join tuples in MQJoin, grows
significantly slower reaching a plateau due to the sharing effect
as shown in Figure 9. This enables MQJoin to process larger
workloads more efficiently reaching higher performance.
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7.2.2 Performance Profiling
In the performance results in the previous experiment the through-

put no longer increased for MQJoin after a certain point. In the
following experiment we show the reason behind this. Figure 13
shows the breakdown of CPU time spent in our system per opera-
tor class while varying the number of concurrently running queries.
The concurrent queries are a multiple of the set of 13 TPC-H based
queries with randomized parameter values. The results shows that,
as the number of queries in the batch increase, the scan operators
take most of the CPU time. The reason for this is that, as shown
previously, a shared join scales almost constantly with the number
of queries as soon as the point of doing full table joins is reached.
On the other hand, scaling the evaluation of predicates is more dif-
ficult and depends on workload parameters such as complexity and
selectivity of the predicates.

7.2.3 Workload Properties
Since we are running a workload with hundreds of concurrent

queries, it is important to understand the amount of overlap in the
queries and its effect on performance. For this reason we performed
both a static analysis of each of the 13 query templates and a
dynamic analysis on the workload as it is being executed in the
system. The results show little overlap in the amount of data queries
are interested in and demonstrates the reason why MQJoin is able
to benefit from sharing opportunities in this case.

Table 1 shows the summary from the static workload analysis
with two key properties for each of the 13 query templates. The
number of possible predicate parameters indicate how many unique
queries there are in a certain workload. For the largest workload
of 512 concurrent clients, this corresponds to around 40 query
instantiations per template. As the table shows, only 3 of the 13
templates have less than 40 possible parameter values, the smallest

 0

 1

 2

 3

 4

 5

 6

 64  128  192  256  320  384  448  512

C
P

U
 T

im
e 

p
er

 C
o
re

 (
s)

Number of Queries

Scan
Join

Aggregate

Figure 13: CPU Time spent per Operator Class for TPC-H
Based Workload

Table 1: Workload Properties: Selectivity and Number of
Possible Parameters per Query Template

Select. #Param. Select. #Param.

Q2 0.08% 1250 Q11 4% 25
Q3 0.465% 155 Q14 0.277% 60
Q5 4% 25 Q16 2% 3750
Q7 0.064% 625 Q17 0.1% 1000
Q8 0.0053% 18750 Q19 0.0028% 250
Q9 5.26% 92 Q20 0.043% 2300
Q10 4.16% 24

one having 24. The rest have many more possible parameter values,
meaning that even in a set of 512 concurrent queries, the expected
amount of identical queries will be marginally small.

The selectivity values show the combined selectivity of the
predicates for each query template. The results show that the
majority of the queries have a selectivity of less than 1 percent,
which indicates possibly little overlap in the data of interest even
for several hundred queries. This is confirmed by the results of our
dynamic workload analysis shown in Figure 14. In this experiment
we measured the average number of queries per tuple for different
types of intermediate results. The solid red line corresponds to
the intermediate results, which are the output of join operators and
input to aggregate operators. The very small amount of queries per
tuple of around 1.4 for 100 queries and 2.6 for 400 queries confirms
the small overlap in data mentioned before.

Unlike the output, the input to the join operators contains a larger
overlap in data with an average of 120 queries per tuple for 400
concurrent queries. For this case we measured the average number
of queries per tuple in the intermediate results that are the output
of scan operators and input to join operators. As is also shown in
Figure 14, the majority of this overlap comes from full table scans.
This experiment demonstrates the benefits of sharing join execution
even for queries with a disjoint set of predicates, since there is still
a large overlap in the data that needs to be processed.

7.3 Comparison to CJoin
As the closest related work, we also compare our approach to

CJoin [9]. We use the same Star Schema Benchmark [21] workload
used to test CJoin. The data set has a scale of 100 and we use three
workload types. The first two come from the same workload used
in the CJoin paper with the predicates on the dimension relations
set to 1% and 10% respectively. The third one uses the queries and
selectivity as defined by the Star Schema Benchmark specification.
We do not use queries 1.1, 1.2 and 1.3 as they contain predicates
on the fact relation which is not supported by CJoin. Since we
do not support a group by operation, we used a corresponding
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Figure 15: MQJoin and CJoin Performance for Star Schema Benchmark Dataset of Scale 100

sum operation for CJoin as well. To avoid any disk accesses for
CJoin, we placed the underlying Postgres instance in a temporary
in-memory file system. For both systems, we varied the number of
clients and measured response time and throughput. Clients issue
queries one after another without think-time.

The results are shown in Figure 15. The first thing to note
is the large performance difference between the two systems.
One reason is that CJoin was designed with a disk-resident fact
relation in mind, and was run on a smaller machine with 8 cores.
Although Postgres resides fully in main-memory, the streaming
of the fact relation from Postgres to CJoin becomes a bottleneck
and is not able to supply the CJoin operator running on 40+
cores. Nevertheless, the main conclusion to draw from these results
comes from the relative performance of the two systems as the
number of clients increases. CJoin’s performance starts degrading
significantly sooner as a result of missed sharing opportunities.
Since CJoin updates the hash tables for each query as the query
arrives to the system, it misses out on sharing the build operation for
concurrent queries. As the number of clients increase, updating the
hash tables becomes a bottleneck. The per query cost of building
and updating the hash table is also a relevant factor. As shown in the
results, workloads with less selective or more complex predicates
on the dimension relations aggravate the problem. It is also for this
reason why CJoin is suitable only in a star schema scenario.

8. CONCLUSIONS
This paper presented an algorithm that exploits the sharing

potential of join execution up to a very high level to meet the
demands of such workloads. The goal is achieved by using
techniques that minimize redundant work across concurrent queries
and efficiently use the hardware resources such as CPU and
memory bandwidth. The resulting method handles significantly
larger workloads than the state-of-the-art and outperforms leading
main-memory analytical databases by providing higher throughput
and more stable and predictable response times.
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