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ABSTRACT
The Optimistic Concurrency Control (OCC) method has been com-
monly used for in-memory databases to ensure transaction serial-
izability — a transaction will be aborted if its read set has been
changed during execution. This simple criterion to abort transac-
tions causes a large proportion of false positives, leading to exces-
sive transaction aborts. Transactions aborted false-positively (i.e.
false aborts) waste system resources and can significantly degrade
system throughput (as much as 3.68x based on our experiments)
when data contention is intensive.

Modern in-memory databases run on systems with increasingly
parallel hardware and handle workloads with growing concurrency.
They must efficiently deal with data contention in the presence
of greater concurrency by minimizing false aborts. This paper
presents a new concurrency control method named Balanced Con-
currency Control (BCC) which aborts transactions more carefully
than OCC does. BCC detects data dependency patterns which can
more reliably indicate unserializable transactions than the criterion
used in OCC. The paper studies the design options and implementa-
tion techniques that can effectively detect data contention by iden-
tifying dependency patterns with low overhead. To test the perfor-
mance of BCC, we have implemented it in Silo and compared its
performance against that of the vanilla Silo system with OCC and
two-phase locking (2PL). Our extensive experiments with TPC-W-
like, TPC-C-like and YCSB workloads demonstrate that when data
contention is intensive, BCC can increase transaction throughput
by more than 3x versus OCC and more than 2x versus 2PL; mean-
while, BCC has comparable performance with OCC for workloads
with low data contention.

1. INTRODUCTION
The rapid increase of memory capacity has made it possible to

store the entire OLTP database in the memory of one single server.
With memory-resident data, database’s performance bottleneck has
shifted from disk I/O to software related overhead such as locking
and buffer management [15, 9]. This has triggered the re-design
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of the database systems for the in-memory data. Of the concur-
rency control methods that have a great impact on database per-
formance, Optimistic Concurrency Control (OCC) [17] has been
favored by recent in-memory databases for high performance and
scalability [18, 8, 30, 31, 33, 21].

With the OCC method, a database executes each transaction in
three phases: read, validation, and write. In the read phase, the
database keeps track of what the transaction reads into a read set
and buffers the transaction’s writes into a write set in the transac-
tion’s private storage. In the validation phase, the database validates
the transaction’s read set. If the transaction’s read set has been
changed, the transaction must be aborted. Otherwise, the trans-
action proceeds to the write phase, in which the database installs
the transaction’s writes to the database storage. The validation and
write phases must be executed in the critical section.

OCC is optimistic in the read phase. It assumes that all the
transactions can proceed concurrently. Transactions in the read
phase cannot block the execution of other transactions. Being op-
timistic maximizes concurrency level, leading to high scalability
and throughput. However, OCC becomespessimisticin the val-
idation phase. It excessively aborts transactions to ensure serial-
izability. Some aborted transactions may not affect serializability
because change in a transaction’s read set is not a sufficient con-
dition that the transaction schedule cannot be serialized. Based on
the serializability theory, only transactions forming a cycle in their
dependency graph cannot be serialized and should be aborted [13].
The paper refers to the transactions aborted false-positively asfalse
aborts, to differentiate them from the transactions that actually vi-
olate the serializability requirement.

A false abort happens when a transaction is aborted by OCC (i.e.
read set changed) but it meets the serializability requirement (i.e.,
not in a cycle in dependency graph). The differences between these
two criteria can be illustrated with the following two transactions:
T1: r(A) w(B) andT2: r(A) w(A). Figure 1 shows a schedule ofT1
andT2. According to OCC’s validation criterion,T2 can success-
fully commit since its read set is not changed, whileT1 must be
aborted since its read set has been changed byT2. However, based
on the serializability theory, since there is no cycle in the serializa-
tion graph (i.e.T1

rw
−→ T2), both T1 andT2 should be committed.

If both of them were allowed to commit, the database state would
be the same as that afterT1 and T2 execute serially. SinceT1 is
aborted by OCC though it should be allowed to commit based on
the serializability requirement, the abort is a false abort.

When data contention is low, aborts, as well as false aborts, are
rare, being pessimistic in transaction validation will not cause seri-
ous performance issues. For example, in-memory OCC databases
can achieve throughput of over 500,000 transactions per second un-
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Figure 1: A schedule of the two transactionsT1 and T2 (r:read,
w:write, a:abort, c:commit) and the corresponding serialization
graph.T1 will be unnecessarily aborted by an OCC database.

der low-contention workloads [30, 31]. However, when data con-
tention becomes intensive, an increasing number of transactions
may be aborted false-positively. Data contention becomes intensive
with the increase of CPU core counts. Data sets with skewed char-
acteristics, e.g., those in OLTP workloads [28], also intensify con-
tention. Based on our experiments, false aborts can reduce system
throughput by 3.68x under a TPC-W-like workload. It is important
for databases to provide good performance in both low contention
and high contention scenarios.

To completely remove false aborts, database systems must abort
transactions based on cycle detection in serialization graphs. The
idea of detecting partial cycle dependency to guarantee serializ-
ability was first proposed by Cahill et al. [5] for disk-based snap-
shot isolation databases. However, the techniques are not directly
applicable to in-memory databases where transactions are usually
very short due to their prohibitive cost. Detecting cycles requires
the database to operate on shared data structures such as wait-for
graphs, which will significantly impact the system’s scalability, es-
pecially for low contention workloads [6].

The dilemma lies between improving the validation with an ac-
curate criterion to abort transactions and maintaining a low over-
head for transaction execution. In this paper, we resolve the dilemma
by proposing theBalanced Concurrency Control (BCC) method
that seeks a sweet spot between being careful and fast. This bal-
ances the accuracy and the overhead of transaction validation well.
Specifically, in addition to detecting the anti-dependency as OCC
does, BCC detects one additional data dependency in a confined
search space, which, together with the anti-dependency, forms an
essential dependency pattern. This pattern more reliably indicates
the existence of a cycle in the transaction dependency graph (i.e.
unserializable transaction schedule) than OCC’s criterion. We will
show that by examining one additional dependency BCC can ef-
fectively reduce false aborts. At the same time, since BCC limits
the search space for the additional dependency, the overhead for
dependency detection can be effectively controlled through careful
system design and implementation.

The paper makes the following contributions. First, it proposes
a new concurrency control method for reducing false aborts while
retaining OCC’s merits for low contention workloads. Second, the
paper proposes an optimized BCC method leveraging the state-of-
the-art in-memory database features. Third, the paper studies im-
plementation techniques for minimizing run-time overhead. Fourth,
to demonstrate BCC’s effectiveness, we implement it in Silo [30],
which is a representative OCC-based in-memory database. Our im-
plementation makes a case of how to adopt BCC in an OCC-based
concurrency control kernel. Finally, we comprehensively evaluate
BCC’s performance on a 32-core machine. Our results demonstrate
that BCC has a decisive performance advantage over OCC when
contention becomes intensive. This advantage is due to a reduc-
tion in transaction aborts, and an increase in transaction throughput

and workload scalability. Meanwhile, BCC has comparable perfor-
mance with OCC for low contention workloads.

2. BALANCED CONCURRENCY CONTROL
BCC is an optimistic concurrency control method in nature. The

key difference between BCC and other optimistic methods lies in
the validation phase — how to determine if a transaction sched-
ule is unserializable. In this section we first review the concepts
of transaction history and data dependency in databases. Then we
present BCC’s transaction model and the essential dependency pat-
terns that BCC utilizes in its validation to guarantee serializability.
After that we explain how BCC detects the essential patterns and
discuss BCC’s overhead.

2.1 Background
Transaction history. A transaction history is an execution of

database transactions which specifies a partial order of transac-
tional operations on database tuples. Similar to previous work [4,
3], we user i [x j ] to represent that transactionTi reads the versionj
of tuple x, wi [x j ] to represent thatTi writes the versionj of tuple
x, ci to represent thatTi is committed andai to represent thatTi is
aborted. Given a tuplex’s two versions,xi is generated beforex j if
i < j.

Data dependency. Data dependencies happen between transac-
tions when they operate on the same tuple and at least one of the
operations is write. The types of dependencies are determined by
the operation type (read or write) and the order in which the trans-
actions commit.

There are three types of data dependencies.
• Write-Read (wr) dependency: if transactionTj reads a tuple

that has been committed earlier by another transactionTi , Tj

is wr dependent onTi , denoted asTi
wr
−→ Tj .

• Write-Write (ww) dependency: if transactionTj commits a
tuple that has been committed earlier by another transaction
Ti , Tj is ww dependent onTi , denoted asTi

ww
−−→ Tj .

• Read-Write (rw) dependency: if transactionTj commits a
tuple that has been read earlier by another transactionTi , Tj
is rw dependent onTi (or Ti is anti-dependent onTj ), denoted

asTi
rw
−→ Tj . Here,Ti has already started whenTj commits.

We useTi −→ Tj to denote thatTj depends onTi through any of
the above dependency types.

2.2 Essential Dependency Patterns
BCC assumes the following transaction model.
• Each transaction is executed in read, validation and write

phases.
• Each transaction can only read committed tuples.
• The validation and write phases must be executed in the crit-

ical section.
Note that BCC and OCC [17] have the same transaction model.

In the validation phase, BCC exploitsessential dependency pat-
terns (or essential patterns for brevity) among transactions to de-
termine unserializable transaction schedules. Each essential pattern
specifies that certain data dependencies exist between transactions.
We will demonstrate that the existence of an essential pattern is a
necessarycondition that a transaction schedule is unserializable in
databases that satisfy BCC’s transaction model. In this case, BCC
ensures serializability by avoiding the essential patterns.

The essential dependency patterns that BCC detects and prevents
are described as follows.

Theorem 1 In databases that satisfy BCC’s transaction model, when
an unserializable transaction schedule is created, the schedule must
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(a) T1
ww
−−→ T2

rw
−→ T3 (b) T1

wr
−→ T2

rw
−→ T3 (c) T1

rw
−→ T2

rw
−→ T3 (d) T1

rw
−→ T2

rw
−→ T3

Figure 2: Different types of essential patterns when an unserializable transaction schedule is created. The essential patterns from (a) to (c)
are created when transactionT2 commits. The essential pattern in (d) is created when transactionT1 commits.

contain the following transactions T1, T2 and T3 such that(1) T3 is
the earliest committed transaction in the schedule;(2) T2

rw
−→ T3;

and (3) T1 −→ T2 and T1 commits after T2 starts. The data depen-
dency patterns formed by T1, T2 and T3 are called the essential
patterns.

PROOF. When an unserializable transaction schedule is created,
a cycle must exist in the transaction dependency graph. LetT3 be
the first transaction committed in the schedule. To form the cy-
cle, T3 must be dependent on another transaction (i.e. it should
be pointed by an arrow in the dependency cycle). Since a transac-
tion can only read committed tuples, this dependency cannot be a
ww dependency or awr dependency (otherwise there would exist
another transaction in the schedule that committed earlier thanT3
committed, which contradicts with the fact thatT3 is the first com-
mitted transaction in the schedule). Thus, this dependency must be
a rw dependency. Let the transactionT3 rw dependent on beT2

(i.e. T2
rw
−→ T3). T3 must commit afterT2 starts. To form the cycle,

T2 must also be dependent on a transaction in the cycle. Let the
transaction beT1 (i.e. T1 −→ T2). T1 must commit afterT2 starts,
becauseT3 commits afterT2 starts andT1 commits later thanT3
commits.

Theorem 2 Transactions aborted by OCC may not be aborted by
BCC, while transactions aborted by BCC will always be aborted
by OCC.

PROOF. The dependencyT2
rw
−→ T3 in the essential patterns is

the anti-dependency detected by OCC, and the essential patterns
examine additional dependencies to decide whether a transaction
should be aborted.

BCC utilizes the essential patterns to ensure serializability for
three reasons. First, based on Theorem 1, validation based on de-
tecting essential patterns only commits serializable transactions.
Second, based on Theorem 2, validation based on detecting essen-
tial patterns reduces aborts compared to OCC. Third, the overhead
of detecting the essential patterns can be effectively controlled by
limiting the search space: BCC excludes all transaction T1 that
commit before T2 starts.

2.3 Detection of Essential Patterns
A BCC database aborts a transaction if committing the trans-

action would create an essential pattern. To detect the essential
patterns, the database needs to decide: (1) what data dependencies
should be examined in each transaction’s validation phase; and (2)
what data dependency information should be kept for validating
other transactions.

Figure 2 shows all possible essential patterns when an unserial-
izable transaction schedule is created. The essential patterns can be
divided into two categories based on when they would be created.

The first category contains three essential patterns that would be
created at the time a transactionT2 commits, which are shown in
Figures 2(a) to 2(c). To detect these patterns, the database needs
to validate if any transaction could beT2 in the essential pattern by
checking: (1) if the transactionT2 is anti-dependent on a committed
transactionT3, orT2

rw
−→ T3; and (2) if the transactionT2 is ww-, wr-

or rw-dependent on any concurrent transactionT1, or T1
ww
−−→ T2,

T1
wr
−→ T2 or T1

rw
−→ T2.

The second category only manifests with snapshot transactions
that always operate on a consistent snapshot of the database. The
essential pattern that would be created at the time snapshot trans-
action T1 commits is shown in Figure 2(d). In this case, when
T1’s snapshot time is beforeT2’s commit time andT1’s read op-
eration happens afterT2 commits, the dependencyT1

rw
−→ T2 can

only be detected whenT1 commits. To detect this pattern, the
database needs to validate if any transaction could beT1 in the
essential pattern by checking if the transactionT1 is a snapshot
transaction andT1 is anti-dependent on a committed transactionT2

(T1
rw
−→ T2), which is in turn anti-dependent on another committed

transactionT3 (T2
rw
−→ T3). This requires the database to retain all

anti-dependency information.
Algorithm 1 summarizes how BCC validates a transactionT to

detect and prevent the essential patterns.

Algorithm 1 BCC’s validation and write phases for a committing
transactionT
1: if T is anti-dependent on any committed transactionthen
2: recordT ’s anti-dependency information;
3: if T is wr-, ww-, or rw-dependent on any concurrent trans-

actionthen
4: abortT;
5: end if
6: if T is a snapshot transactionand there exists a transac-

tion T ′ such thatT is anti-dependent onT ′ and T ′ is anti-
dependent on a committed transactionthen

7: abortT;
8: end if
9: end if

10: installT ’s writes and commitT;

BCC examines two data dependencies to detect the essential pat-
terns. Theoretically, examining more dependencies can further re-
duce false aborts. However, the overheads will increase signifi-
cantly. If detecting more dependencies, the dependencies can hap-
pen not only between concurrent transactions, but also between
an active transaction and previously committed transactions that
were concurrent with other active transactions. This makes the cost
of checking dependency increase exponentially. Even disk-based
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databases (e.g. PostgreSQL) avoid considering more than two de-
pendencies [26] because of the high overhead [24].

3. AN OPTIMIZED BCC METHOD
In-memory databases can execute transactions as snapshot trans-

actions. In some state of the art in-memory databases, such as [30,
31], read-only transactions are executed as snapshot transactions
while write transactions are not. There are two reasons for this
design. First, read-only transactions may be continuously aborted
when running with other write transactions. Running them as snap-
shot transactions guarantees that they will never be aborted, al-
though they may read stale data. Second, write transactions dom-
inate the transactions executed by the database. Running them as
snapshot transactions could introduce expensive operations like ac-
quiring latches and locks for read operations in some concurrency
control kernels, which will degrade the database’s performance and
scalability when the database has strived to avoid all centralized
hotspots and scalability bottlenecks.

The BCC method requires the database to maintain a history of
anti-dependency information to detect the essential pattern shown
in Figure 2(d). If this is naively implemented, it can add a cen-
tralized hotspot to the in-memory database kernel and hurt BCC’s
scalability. The overhead is caused by the fact that when a transac-
tion T1 is a snapshot transaction, the dependencyT1

rw
−→ T2 may not

exist whenT2 commits. In this case, to avoid BCC’s overhead of
maintaining historical dependency information, the database must
guarantee that read-only snapshot transactions may never appear in
any essential pattern.

Existing in-memory OCC databases avoid validating the snap-
shot transaction by taking an early snapshot time. However, this
does not work in BCC. The reason is that the dependency cycle that
is shown in Figure 2(d) can be created, with transactionT1 being the
snapshot transaction, no matter when the snapshot is taken. Based
on BCC’s validation criteria, both transactionsT2 andT3 would be
allowed to commit because no essential patterns are detected. To
guarantee serializability, the database has to validate the snapshot
transactionT1, detect the essential pattern, and abortT1.

We solve the problem by adding a light-weight synchronization
point for snapshot transactions. The idea is that when a new read-
only snapshot transaction begins, the database doesn’t immediately
start executing the snapshot transaction. Instead, it waits until all
the active transactions are finished. During this period, no new
transactions will be executed. After all active transactions have
finished, the database takes a snapshot for the snapshot transaction
and resumes executing transactions as normal.

With the above snapshot mechanism, a read-only snapshot trans-
action cannot become part of the essential patterns. This can be
proved by contradiction. Assume that a read-only snapshot trans-
action could be part of the essential patterns. Since the snapshot
transaction doesn’t write any tuple, it cannot beT3 in the essential
patterns. Let the snapshot transaction beT2. Then the essential
pattern would beT1

wr
−→ T2

rw
−→ T3. In this case,T1 must commit

beforeT2 takes the snapshot, andT3 must commit afterT2 takes the
snapshot. This meansT1 commits earlier thanT3, which contradicts
with the fact thatT3 is the first transaction committed in the depen-
dency cycle. Let the snapshot transaction beT3. Then essential
pattern would beT1

rw
−→ T2

rw
−→ T3. The snapshot transaction can

only bewr dependent on another transaction to form a cycle. Let
the transaction thatT1 is wr dependent on beT0. T0 must commit
beforeT1 starts. With our snapshot mechanism,T2 andT3 cannot
start earlier thanT1. ThusT0 must commit earlier thanT3, which

contradicts with the fact thatT3 is the first committed transaction in
the dependency cycle.

In this case, the database only needs to validate if a transaction
can become the essential pattern’sT2 to guarantee serializability.
The overhead of maintaining history anti-dependency information
is avoided. Moreover, there is no need to maintain the read set of
read-only snapshot transaction and validate it.

This optimization technique targets long-running read-only trans-
actions where a short execution delay is acceptable. Users can al-
ways choose to revert to the original BCC protocol (and accept the
additional overhead) if slight latency degradation is unacceptable.

4. DETAILED BCC IMPLEMENTATION
To support BCC in the database, two components must be im-

plemented. One is a global clock to help detect data dependencies
between concurrent transactions, the other is efficient management
of the tuples accessed by each transaction. These two components
are introduced in Section 4.1 and Section 4.2, respectively. Section
4.3 presents how to detect data dependency and Section 4.4 dis-
cusses phantom problems. In the last part of the section we explain
how a BCC database executes transactions.

4.1 Global Clock
BCC needs a global clock to help decide if a data dependency

should be considered as part of the essential pattern.
Our design of the global clock relies on the following in-memory

database’s features. First, to achieve good scalability, in-memory
databases generate Transaction IDs (TIDs) in a decentralized way.
For example, in Silo [30], which is a representative in-memory
database, each TID can be divided into three parts: (1)thread in-
dex, which denotes the database thread that generated the TID; (2)
the value of the database thread’slocal counter; and (3) the value of
global epoch, which is a slowly advanced global timestamp in the
database. A database thread can generate a TID by reading its local
counter and the global epoch without synchronizations. One im-
portant property of the TIDs is that TIDs generated by the same
database thread increase monotonically. However, this property
doesn’t hold for TIDs generated by different database threads. Sec-
ond, each tuple in the database has an associated metadata record-
ing the TID of the latest transaction that has written the tuple.

The global clock is designed as a global TID vector. The num-
ber of entries in the vector is the same as the number of available
threads in the database. Each thread has a corresponding entry in
the global clock, which records the thread’s most recently assigned
TID. A database thread must update its entry in the global clock
every time it assigns a new TID.

The database can determine the order of a global clock value and
a TID in two steps. The database first finds the database thread that
generated the TID. Then it compares the value in the thread’s global
clock entry with the TID. The one with a smaller value happened
first. The comparison process is shown in Figure 3.

Figure 3: Comparison between the global clock and a tuple’s TID.
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The global clock is used in data dependency detections, which
will be described in Section 4.3.

4.2 Transaction Data Management
BCC requires the database to keep track of each transaction’s

read set and write set to detect data dependencies. In the validation
phase, the database checks if the transaction’s read set has been
changed and if the transaction’s write set overlaps with other con-
current transactions’ read sets. In this case, the transaction’s write
set can be simply kept in the database thread’s local storage and will
be released when the transaction finishes. On the other hand, the
transaction’s read set must be stored in the shared memory. Next
we discuss how to efficiently manage the read sets.

Organization. We use hash table to organize the read set, since
it may be searched by multiple database threads. A common ap-
proach is to use a shared hash table to store the tuples read by
each transaction, but it requires synchronizations when accessing
the hash table. For example, if two transactions read the same
tuple, they will modify the same entry in the hash table, which
must be synchronized. To ease the synchronization overhead, in-
stead of maintaining one shared hash table across the database,
each database thread maintains a separate hash table for each trans-
action. Each entry in the hash table contains a pointer to a tu-
ple and the tuple’s TID. A transaction’s hash table must be kept
in the memory until the transaction’s concurrent peers have fin-
ished. Hash tables allocated by the same database thread are or-
ganized into a history list. Each entry in the list is a triple<

TID,Address,Release>, whereTID specifies which transaction
the hash table belongs to;Addressrecords the hash table’s starting
memory address; andReleasedetermines when the hash table can
be released.

Allocation and release. A database thread allocates a hash table
when it starts a transactionT. It also allocates an entry in the history
list to store the hash table’s memory address andT ’s TID.

The hash table’sReleaseis set with the maximum TID in the
global clock afterT finishes. In this way, any transaction that has a
larger TID thanReleaseof T ’s hash table must start afterT finishes
and is not concurrent withT.

To releaseT ’s hash table, the database thread must guarantee
that allT ’s concurrent transactions have finished. This can be de-
termined by checking if the minimum TID in the global clock is
larger than the hash table’sRelease. If minimum TID in the global
clock is larger, all the active transactions in the database must start
afterT finishes. The hash table can be safely released.

The release mechanism is conservative. A transactionT ’s hash
table is not immediately released afterT ’s concurrent transactions
have finished. But it guarantees safe release of each hash table
without synchronizations.

Synchronizations. Since a hash table can only be modified by
one database thread and is not released until all concurrent trans-
actions have finished, the only scenario that needs synchronization
is while a thread is inserting into the hash table, another one is
searching the hash table forrw dependency (i.e.T1

rw
−→ T2). With-

out synchronization, an actually happenedrw dependency may not
be detected by the searching thread, which can cause serializability
problem. Protecting the hash table with latch can solve the prob-
lem, but it harms scalability thus we avoid it.

We solve the problem by verifying the tuple after inserting it into
the hash table. If any change has happened, arw dependency may
not be detected. Thus the database thread must discard the old tuple
and re-read the tuple. This guarantees that either therw dependency
can be detected later, or the thread will read the newest tuple. The
synchronization process is shown in Algorithm 2.

Algorithm 2 Hash table synchronization
1: read a tuple from database;
2: insert the tuple into the hash table ;
3: while truedo
4: read the same tuple from database;
5: if tuple has changed after inserting into the hash tablethen
6: discard the old tuple from hash table;
7: insert the new tuple into the hash table;
8: else
9: break;

10: end if
11: end while

Garbage collection. In the BCC database, a transactionT ’s hash
table is kept in the database untilT ’s concurrent transactions have
finished. It is possible that some tuples that stored inT ’s hash table
have been garbage collected by the database when a database thread
searchesT ’s hash table. This does not cause any problem because
the hash table contains sufficient information (tuple’s address and
tuple’s TID) to detect the data dependency. The search thread only
needs to check if the tuple is in the hash table. There is no need to
access the content of the tuple.

4.3 Data Dependency Detection
Detect anti-dependency. The anti-dependency is detected with

OCC’s criterion by checking whether T’s read set has been changed.
Detect wr and wwdependencies. The database thread first takes

a snapshot of the global clock whenT starts and stores the value as
Start in T ’s local memory. To detectwr, Every timeT reads a tuple
1, the thread compares the tuple’s TID withStart to decide if TID
is generated afterStart. If TID is generated later thanStart, wr has
happened. Theww dependency is detected afterT enters the vali-
dation phase in a similar way. If any tuple in the transaction’s write
set has a TID that is generated later thanStart, ww has happened.

Detect rw dependency. The database thread first takes a snap-
shot of the global clock whenT starts and stores the value asStart
in T ’s local memory. The thread takes another snapshot of the
global clock afterT enters the validation phase and stores the value
asEnd in T ’s local memory.Start andEnd define the TID range
of the concurrent transactions thatT may berw dependent on.

With Start and End, the database thread simply goes through
other thread’s history lists and check ifT ’s write set overlaps with
any hash table whose TID is generated later thanStart but earlier
thanEnd. If there is overlap,rw has happened.

Since taking the snapshot of the global clock doesn’t need syn-
chronizations, it is possible that while the thread is taking the sec-
ond snapshot, new transactions have started. These transactions
may not be considered as concurrent with T. This will not cause
any problem. The reason is that these new transactions cannot read
the tuples inT ’s write set sinceT is in the critical section. ThusT
cannot berw dependent on them.

4.4 Phantom
Phantom problem can happen when a transaction is executing a

range query while a concurrent transaction inserts a new tuple into
the range. In the essential patterns, phantom can happen in two
cases: (1)T2 is the read transaction andT3 is the insert transaction
and (2)T1 is the read transaction andT2 is the insert transaction.
The BCC database avoids phantom in the same way as recent in-
memory OCC database (e.g, [30, 31]) does, which will abort the

1The delete operation only marks a tuple as deleted without remov-
ing the tuple for snapshot transactions.
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read transaction if phantom happens. In the first case, phantom
will be detected in the validation ofT2 andT2 will be aborted. In
the second case, there is no need to detectT1

rw
−→T2 in the validation

of T2 sinceT1 will be aborted when validatingT1.

4.5 Put Together: A Transaction’s Life

Algorithm 3 How a BCC database works in different phases
1: Transaction Start:
2: assign a TID and update the global clock;
3: take a snapshot of the global clock;
4: allocate a new hash table and release history hash tables;
5:
6: Transaction Validation:
7: enter the critical section;
8: take a snapshot of the global clock;
9: left conflict = right conflict = 0;

10: if there exists anti-dependencythen
11: right conflict = 1;
12: find concurrent transactions;
13: if T is wr, wwor rw dependent on its concurrent transactions

then
14: left conflict=1;
15: end if
16: end if
17: if right conflict == 1 and leftconflict == 1then
18: set theReleasefield of the transaction’s hash table;
19: abort the transaction;
20: else
21: install the writes and commit the transaction;
22: end if
23: leave the critical section;

With the above designs, we now illustrate how a BCC database
works in different transaction execution phases. The process is
shown in Algorithm 3.

When a transactionT starts, the database first assignsT a new
TID and updates the corresponding entry in the global clock. Then
the database takes a snapshot shot of the global clock, which serves
as multiple purposes. First, it is used to help determine the con-
current transactions for the later validation. Second, it is used to
set theReleasefield of previous transaction’s hash table with the
maximum TID value in the global clock. Third, it is used to re-
lease unused history hash tables by finding the minimum TID in
the global clock and releasing all hash tables whoseReleaseare
smaller than the minimum TID. The database also allocates a new
hash table for the transaction.

When the transaction enters the validation phase, the database
first takes a snapshot of the global clock, which can be used to-
gether with the clock taken in line 3 to determine concurrent trans-
actions. Then the database checks ifT is anti-dependent on any
committed transaction. If no anti-dependency exist, T will be com-
mitted since no essential pattern will be created. Otherwise the
database checks ifT is dependent on any of its concurrent trans-
actions. This requires the database to find all the transactions that
are concurrent withT and check data dependencies between them.
The data dependency is checked in the order ofwr, ww andrw. If
any data dependency is detected, the transaction will be aborted.
The database will also set theReleaseof the aborted transaction’s
hash table such that the hash table can be immediately released.
Otherwise the transaction will be committed.

5. EXPERIMENTAL METHOD
To evaluate BCC’s effectiveness, we have implemented BCC and

two phase locking (2PL) in Silo [30], which is a multi-threaded,
shared in-memory OCC database. Silo generates TIDs in a decen-
tralized way. It maintains a thread-local read-set and write-set for
each transaction. Tuples in the transaction’s write set are locked in a
deterministic order before validation starts. After that, Silo assigns
a TID to the transaction if the transaction writes to the database and
validates the transaction using OCC’s criterion.

5.1 Silo With BCC
Multi-Level Circular Buffers. Each thread in BCC database

requires a memory space to store history hash tables, which may
be allocated, released, and checked frequently. It is necessary to
manage this memory space efficiently.

One way to manage the space is to organize it as a single re-
gion and use a free list to record the memory blocks available for
new allocations. However, this approach would incur serious cache
misses when each newly allocated hash table is filled with read
sets. This problem can be addressed by utilizing two special char-
acteristics of BCC thread’s memory operations: (1) the hash tables
are always released in the same order as they are allocated; (2) the
memory demand of each thread for storing history hash tables is
usually low, and only occasionally jitters to its maximum require-
ment (Section 6.3).

In our implementation, each thread partitions its memory space
into three smaller areas that are managed with three levels of cir-
cular buffers. The lowest-level circular buffer is the smallest and
can fit into the L1 CPU cache; the next one is slightly larger but
is smaller than the L2 cache; the highest-level buffer is the largest
one and can be any size that satisfies the maximum memory re-
quirement of a thread. The database thread always tries to allocate
memory from a lower-level circular buffer, and only resorts to a
higher one when the lower buffer space becomes depleted. In each
circular buffer, the memory is always allocated and released in a
chase-tailfashion. Since most OLTP transactions are short and the
average memory requirement of each database thread is low, this
design ensures that most hash table operations can be satisfied in
the L1 or L2 (or even L3) CPU cache.

Global clock. We implement the global clock as a set of sub-
vectors. The number of sub-vectors equals to the number of CPU
sockets and each sub-vector is a continuous array aligned on a sin-
gle cache line on each socket.

TID generation. We use Silo’s distributed TID generator to gen-
erate TIDs for every transaction. The original Silo only assigns
TIDs to transactions that write to the database. We modify the TID
generator such that every transaction will be assigned a TID. Every
time a database thread generates a TID, it will update its entry in
the global clock. For each database thread, we use the last TID gen-
erated by the thread to identify the current transaction’s hash table
since Silo generates TIDs in the validation phase.

Snapshot transactions. We add a synchronization point in the
database before a snapshot transaction begins. After the synchro-
nization, the database first advances the global epoch and then starts
executing transactions. The snapshot is created based on the cur-
rent Epoch value. Only tuples written in the previous Epoch can be
read by the snapshot transactions.

5.2 Silo With 2PL
Our 2PL implementation is motivated by [25]. We avoid the

centralized lock manager which generates suboptimal performance.
Instead, we implement the per-tuple lock, and associate each tuple
with a shared read lock and an exclusive write lock. No lock lists
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are used. To avoid the deadlock detection overhead, we adopt the
wait-die 2PL mechanism [27]. A global timestamp allocator, which
is implemented as an atomic variable, assigns timestamp to each
transaction to differentiate the precedence of transactions.

5.3 Experimental Setup
All experiments are conducted on a 32-core machine with four

2.13GHz Intel Xeon E7-8830 CPUs and 128GB memory. Hyper-
threading is disabled to yield the best base performance of Silo [30].
The operating system is 64-bit Linux with 2.6.32 kernel. The ver-
sion of GCC compiler is 4.8.2.

To avoid stalls due to user interaction, no network clients are
involved in our experiments. Each database thread runs on a ded-
icated CPU core and has a local workload generator to generate
input transactions for itself. Database logging is also disabled. All
table data are resident in main memory and no disk activities are
involved during each measurement. For each measurement, we run
the experiment for 10 times, each lasting for 30 seconds, and the
median results are reported.

6. EXPERIMENT RESULTS
In this section we present the performance results of BCC, OCC,

and 2PL based on the prototype implementation in Silo. The ex-
periment results confirm our expectations for BCC performance as
follows:

• BCC achieves comparable performance and scalability with
OCC when the workload contention is low(Section 6.1).

• BCC significantly improves transaction throughput for high-
contention workloads: BCC improves the throughput by 3.68x
over OCC and by 2x over 2PL(Section 6.2).

• BCC’s overhead on memory consumption and increased trans-
action latency is acceptable(Section 6.3).

The performance results demonstrate BCC’s usefulness in prac-
tice, which can provide good performance in both low contention
and high contention scenarios.

6.1 Low Contention
We first evaluate how BCC performs when data contention is

low. TPC-C [1] and YCSB [7] benchmarks are used in the experi-
ments. Due to limited space, we only present TPC-C’s results here.
YCSB’s results are similar.

TPC-C. TPC-C is an industry-standard benchmark for evaluat-
ing transaction database performance. It models the operations in
a wholesale store that consists of a number of warehouses. In the
Silo implementation, TPC-C tables are partitioned across the ware-
houses. We set the number of warehouses (i.e., the scale factor) to
be the same with the number of database threads. In this configu-
ration, each thread will mostly operate on the data items in its own
warehouse, which makes the chance of data contention rare.

Figure 4 shows the transaction throughputs achieved by BCC,
OCC and 2PL as the number of threads increases. As can be seen
from the figure, BCC performs comparably and scales near-linearly
as OCC does for the TPC-C workload. When there are 32 threads,
BCC delivers an overall throughput of 1.15M transactions per sec-
ond, which is only 7.29% lower than that achieved by OCC (1.24M).
Despite the extra operations introduced by BCC for detecting the
essential patterns, inter-core communication induced for checking
history hash tables is rare when there are few data contentions. This
makes BCC’s overhead low, retaining OCC’s performance benefits
for low-contention workloads.

To better understand the causes of BCC’s slight overhead com-
pared to OCC, we further break down the slowdown of BCC at 32
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Figure 4: TPC-C transaction throughputs achieved by BCC, OCC
and 2PL with up to 32 threads (cores). The scale factor is set to be
the same with the number of threads.

Table 1: Breakdown of BCC overhead for TPC-C workload at low
contention with 32 threads.

Operations Contributions to slowdown (%)

Mm 4.76
Clock 2.42
Others 0.11

threads and show how different kinds of operations in BCC con-
tribute to the throughput degradation. The result is listed in Ta-
ble 1. It can be seen that the overhead mainly comes from two
sources: memory management (Mm), which lowers the throughput
by a delta of 4.76%, and accessing global clocks (Clock), which
contributes 2.42% to the performance degradation. When the data
contention is low, memory management operations mainly include
bookkeeping the history list, and allocating and releasing memory
for history hash tables. In our implementation each database thread
uses a small memory region residing on local NUMA node to store
the history list and hash tables. In this case no inter-core communi-
cation is needed for memory management operations. Since most
OLTP transactions are short, the overhead due to memory manage-
ment should remain almost constant regardless of the number of
cores on the target platform.

On the other hand, the overhead of accessing the global clock
is affected by the number of sockets on the machine. This is be-
cause the global clock in BCC is implemented as a distributed vec-
tor spread among the sockets. Each database thread needs to read
all the distributed vectors at the beginning of a transaction, incur-
ring inter-socket communication. This overhead is mainly deter-
mined by the number of sockets in the machine. However, since
the number of sockets in a system is typically small, we believe
this overhead (only 2.42% with 4 sockets) is acceptable in practice.

Compared to 2PL, BCC achieves better performance and scala-
bility. With 32 threads, 2PL only delivers a throughput of 0.92M
transactions per second, which is 19.9% and 25.8% lower than
BCC and OCC respectively. In general, 2PL introduces extra over-
heads in two aspects. First, 2PL incurs extra locking operations for
read operations compared to BCC and OCC. Each read operation
needs to acquire and release a latch-protected read lock. Second,
2PL needs a centralized timestamp allocator to accurately deter-
mine the order of transactions to avoid deadlock, which becomes a
bottleneck with the increase of number of the threads.

6.2 High Contention
This section compares the performance of BCC with OCC and

2PL when data contention is high. A modified TPC-W [2], TPC-C
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Figure 5: Throughput of modified TPC-WDoCart andOrderPro-
cesstransactions as the per-thread contention probability is 100%
and the number of threads varies.

and YCSB [7] are used in the evaluation.
TPC-W. TPC-W is a popular OLTP benchmark simulating the

operations of an online bookseller. Compared with TPC-C, TPC-W
has more complex read-only transactions. Since read-only transac-
tions are executed as snapshot transactions which Silo never aborts
with either OCC or BCC, their performance is similar under both
concurrency control methods. We thus exclude them from our ex-
periments with TPC-W, otherwise they would dominate the mea-
sured system throughput.

We experiment with the two update-intensive transactions from
the TPC-W benchmark: (1)DoCart adds a set of random items
to the shopping cart and displays the cart; (2)OrderProcesspro-
cesses a set of random orders and updates the database (e.g., up-
dating the stock numbers of the ordered items). To simulate the
high contention scenario, we use slightly modified versions of the
two transactions: there is one hot item in the orders processed by
each OrderProcess transaction, and eachDoCart transaction has a
certain probability to display the hot item. In all our experiments,
we let one database thread execute theOrderProcesstransactions,
while all other threads execute theDoCart transaction.

In our first experiment, we evaluate the performance of BCC,
OCC and 2PL when theDoCart transaction has the highest con-
tention probability with theOrderProcesstransaction. We set the
probability of DoCart adding the hot item to 100%, and measure
transaction throughputs as the number of threads varies. The result
is presented in Figure 5.

It can be seen that BCC scales much better than OCC in this
experiment. As the number of threads increases, BCC gains in-
creasingly higher performance advantage. With 32 threads, BCC
achieves a throughput of 1.03M transactions per second, which is
3.68x over the throughput with OCC (0.28M).

The performance improvement achieved by BCC over OCC is
mainly attributed to the reduction offalse-aborted DoCarttransac-
tions. We can understand this conclusion from the following ob-
servations. First, there can be no data dependencies between two
DoCart transactions because eachDoCart only modifies its own
private shopping cart. Second, the hot item displayed (read) by a
DoCart transaction has a high probability of having been modified
by anOrderProcesstransaction when theDoCart transaction tries
to commit. In this case, OCC must abort theDoCart transaction
due to the appearance of a anti-dependency on a committed trans-
action. However, it is actually unlikely that a data dependency cycle
would form because the rest tuple accesses in bothDoCartandOr-
derProcessare random, making it afalse abortto abort theDoCart
transaction. BCC effectively reduces such false aborts by checking
for one more data dependency besides the anti-dependency.

2PL performs differently. As can be seen, 2PL’s throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

m
ill

io
n 

tx
n/

se
c)

TPC-W-update contention probability (%)

OCC
BCC
2PL

Figure 6: Throughput of TPC-W transactions with fixed 32 threads
as per-thread contention probability varies.

goes through three stages: decrease-increase-decrease. When us-
ing 2PL, OrderProcess’s throughput decreases as the number of
threads increases because the hot tuple is more likely to be read
locked byDoCart, which blocksOrderProcess. The reason for
the decrease of 2PL’s throughput when the number of threads in-
creases from 1 to 2 is that the decreased throughput ofOrderPro-
cessis larger than the added throughput ofDoCart. Note that 2PL’s
throughput with one database thread isOrderProcess’s throughput.
As the number of threads increases from 2 to 16, 2PL’s throughput
increases. The reason is thatDoCart’s throughput has increased
and it outweighs the decrease ofOrderProcess’s throughput. As
the number of threads further increases, bothDoCart’s throughput
andOrderProcess’s throughput decrease because of the high con-
tention. Thus 2PL’s throughput decreases.

Compared to 2PL, BCC doesn’t perform as well as 2PL when the
number of threads is 4 or less. However, as the number of threads
increases, BCC significantly outperforms 2PL. With 32 threads, the
throughput of BCC is 2.03x over that of 2PL (0.5M). The per-
formance differences are mainly determined by the relationship
between 2PL’s synchronization overhead and BCC’s overhead of
detecting essential patterns. With 2PL, the workloads are domi-
nated byDoCart transactions when the number of threads is 32.
2PL has to synchronize between different threads because each
one tries to add a read-lock to the hot tuple. In an optimized in-
memory database, the synchronization cost is non-trivial. On the
other hand, BCC’s validation doesn’t incur synchronizations for
read contention.

The above experiment demonstrates how BCC performs under
the highest intensity of per-thread contention. To understand how
different contention intensity affects the transaction throughput, we
fix the number of threads to 32 and vary the probability thatDoCart
adds the hot item to shopping cart. When the probability is 100%, it
is the same with the previous experiment at 32 threads and the con-
tention reaches the highest. When the probability is 0%, all items
in a DoCart transaction are randomly chosen and the contention is
the lowest. The result is shown in Figure 6.

Compared to OCC, BCC performs slightly lower when the con-
tention probability is less than 10%, (by up to 7.95%) due to the
overhead of shared memory management and inter-socket commu-
nication incurred by accessing the global clock. With the increase
of contention probability, the throughput of OCC drops sharply,
bottoming at only 285k transactions per second when the probabil-
ity reaches 100%. On the other hand, BCC’s throughput decreases
at a much a slower rate. When the contention probability is 20% or
greater, BCC’s benefit of reducing false aborts outweighs its over-
head for detecting the essential patterns, which improves the overall
throughput.

We can see that 2PL has a similar performance trend with OCC,
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although 2PL performs better than OCC. When the contention prob-
ability is less than 40%, 2PL has comparable performance with
BCC. However, as the contention probability continuously increases,
the performance of 2PL decreases much faster as that of BCC. This
is because of 2PL’s higher synchronization cost as we have dis-
cussed previously.

TPC-C. In the TPC-C experiments we use the update-intensive
transactions,NewOrderand Payment, which comprises of most
transactions in the TPC-C benchmark. We set the scale factor of
TPC-C to 2 and the workload mix executed by each thread to{50%,
50%}. Figure 7 shows the throughput of this TPC-C workload as
we increase the number of threads.
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Figure 7: Throughput of TPC-CNewOrderand Paymentwith a
workload mix of 50%-50% as the number of threads varies.

It can be seen that BCC outperforms OCC when the number of
threads exceeds the number of warehouses. With up to 16 threads,
the throughput of BCC and OCC both increase with the increase
of thread number, but BCC scales better than OCC. BCC improves
the throughput by 37% over OCC with 16 threads. As the number
of threads further increases beyond 16 threads, the performance of
both BCC and OCC start degrading with similar trends, but BCC
still maintains good performance improvement (up to 35.8%) above
OCC. This again confirms BCC’s advantage over OCC through re-
ducing false aborts.

The transactionsNewOrderandPaymentin TPC-C have much
more complex data dependency patterns than the transactionsDo-
Cart andOrderProcessin TPC-W do. When operating on the same
warehouse, all types of data dependencies can happen between any
two concurrent transactions, each of which can be eitherNewOrder
or Payment. Thus it is possible that a cycle would be created in the
transaction dependency graph. For example, when two threads are
executing thePaymenttransactions on the same warehouse, they
both need to read and update the year-to-date payment, a depen-
dency cycle containingrw and wr dependencies would likely be
formed and thus one of thePaymenttransaction will be aborted
by both BCC and OCC. This explains the performance decrease
of both BCC and OCC when the contention becomes severe (with
more than 16 threads).

BCC also performs better than 2PL. The throughput is improved
by up to 1.84x. The poor performance of 2PL is mainly caused by
its high synchronization overhead and the lock thrashing behavior.
For example, when multiple database threads are executingPay-
menton the same warehouse, they need to acquire both read lock
and write lock on the contended tuple. It is likely that the tuple
is read locked by multiple threads thus only one thread can wait
for the write lock while the rest are aborted. These aborted trans-
actions cause unnecessary synchronization for others which limits
the number of transactions processed to the database. We observe
that with 32 threads, the total number of transaction throughput

processed by 2PL (including both committed and aborted transac-
tions) is 0.31M per second, which is significantly lower than that
of BCC (0.9M).
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Figure 8: Breakdown of TPC-C throughput by transaction types
with OCC, BCC and 2PL.

To better understand BCC’s performance improvement over OCC
and 2PL on TPC-C, we break down the overall throughput by the
numbers contributed by different transaction types. The results are
shown in Figure 8.

OCC, BCC and 2PL perform differently forNewOrderandPay-
ment. OCC favorsPaymenttransactions overNewOrdertransac-
tions while 2PL commits much moreNewOrdertransactions than
Paymenttransactions. BCC’s performance forNewOrderandPay-
mentlie between.

Compared to OCC, BCC’s performance advantage comes from
the improved throughput of theNewOrdertransaction. The reason
is that many of therw dependencies that happen betweenNewOrder
andPaymentthat do not actually form a dependency circle, thus
suffering false aborts with OCC. Examining additional dependency
can greatly avoid the aborts and thus improve the overall through-
put. However, BCC cannot improve the throughput ofPayment
transactions. It performs even worse than OCC. This is because
each OCC-abortedPaymenttransaction is likely to reside in a de-
pendency cycle with another transaction of the same type (i.e.,true
abort). Therefore the OCC-abortedPaymenttransactions will also
be aborted by BCC. In this case, BCC’s effort of examining ad-
ditional dependencies only increases transaction execution latency,
which in turn degrades the overall throughput.

On the other hand, BCC outperforms 2PL because it performs
much better on thePaymenttransactions. With 32 threads, 2PL
can barely commitPaymenttransactions. 2PL’s poor performance
on Paymentis caused by the following two reasons. First, there is
read write contention betweenNewOrderandPaymentwhen they
operate on the same warehouse. When the contended tuple is read
locked by a NewOrder transaction, otherNewOrdertransactions
can continue adding read locks to the tuple whilePaymenttrans-
action has to wait. In this case,Paymenttransaction is likely to
be aborted to avoid deadlock. Second, the contention twoPayment
transactions on the same warehouse cause aborts of thePayment
transactions because they create dependency cycle.

YCSB. YSCB (Yahoo Cloud Serving Benchmark) benchmark [7]
models the workload generated from online key-value and cloud
serving stores. The benchmark contains a single table with ten
String columns and populated with one million data items. Each
transaction randomly accesses 16 tuples with each one having a
20% probability of being an update. Accesses to the tuples follow
a Zipfian distribution. We set the conflict factorθ to 100 to make
the level of data contention high. In this case, all types of data de-
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Figure 9: YCSB throughputs achieved with BCC, OCC and 2PL
as the number of threads (cores) increases. The level of workload
contention (θ ) is set to 100.

pendencies can happen between two transactions. The results are
shown in Figure 9.

As can be seen from Figure 9, BCC performs better than both
OCC and 2PL when the number of thread is 8 or greater. With 32
threads, BCC’s throughput is 1.99x over that of OCC and 1.63x
over that of 2PL. The reason for the different performance behav-
iors is similar to the previous high contention benchmarks. BCC’s
performance improvement over OCC comes from BCC’s reduction
of unnecessary transaction aborts. On the other hand, BCC out-
performs 2PL because of 2PL’s high synchronization cost and lock
thrashing behaviors.

6.3 Memory Consumption and Latency
BCC improves transaction throughput through detecting the es-

sential patterns, with shared memory usage and extra operations. In
this part we illustrate BCC’s memory consumption and its impact
on transaction latency.

Memory Consumption. With BCC, each thread maintains a
memory area to store (1) a list of entries for recent history trans-
actions, and (2) the hash tables of these transactions needed for
detecting the essential patterns.

The size of saved history hash tables determines the memory
consumption of BCC. For a given workload with a fixed number of
threads, this overhead is usually stably low. Figure 10 shows the
average and maximum sizes of memory occupied by history hash
tables in each thread, executing the TPC-CNewOrderandPayment
workload mix used in the previous subsection. It can be seen that
the average per-thread memory consumption stays below 56KB
consistently across all thread counts, with the maximum memory
usage not exceeding 1.6MB. The high variance of the memory con-
sumption between the average and the maximum is caused by the
conservative hash table release mechanism, which achieves good
performance but relies on the process of all database threads to de-
termine when a hash table can be released. When a transaction
T ’s hash table is released,T ’s concurrent transactions may have
already finished for some time. Similar results are observed with
other workloads used in our experiments as well.

In our experiments we set the number of entries in the history
transaction list to 16K and the total size of memory for storing his-
tory hash tables to 4MB, which are more than enough for all the
workloads encountered in our experiments. This amounts the total
memory consumption of BCC with each thread to about 4.38MB,
which is negligible compared with the tens of hundreds of giga-
bytes of memory present on a typical enterprise server. This also
justifies BCC’s design of using one hash table per transaction for
the benefit of performance with low-contention workloads.

Latency. To illustrate how BCC affects transaction execution
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Figure 10: BCC memory consumption for saving history hash ta-
bles in each thread as the total number of threads varies for the
50%-50% workload mix of TPC-CNewOrderandPaymenttrans-
actions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  4  8  12  16  20  24  28  32
La

te
nc

y 
(u

s)
Number of workers

OCC-Aborted
BCC-Aborted

Figure 11: Latency ofNewOrdertransactions aborted by both OCC
and BCC. The workload is the same with that used in Figure 10.

latency, we divide theNewOrdertransactions processed with BCC
in the previous experiment into the following three categories: (1)
transactions that are committed with OCC’s validation criterion;
(2) transactions that are aborted even after BCC checks; and (3)
transactions that are aborted with OCC but committed with BCC.
These three types of transactions do not overlap.

For the first type of transactions, BCC’s overhead mainly in-
cludes memory management and accessing the global clock, which
are similar as the low contention workloads we discussed earlier in
Section 6.1. For the second type of transactions, they are aborted
by both OCC and BCC. Besides memory management and global
clock operations, BCC performs extra data dependency checking
before aborting a transaction. Figure 11 shows the total latency of
each abortedNewOrdertransaction in this case. BCC increases the
latency by up to 26% with 32 threads. However, since the database
needs to cleanup an aborted transaction for re-execution, this makes
BCC’s overhead negligible.

For the third type of transactions, BCC commits a transaction
that would otherwise be aborted by OCC (i.e., BCCsavesa transac-
tion). This comes at the overhead of increased latency because the
database thread needs to validate the transaction’s write set with the
history hash tables on other threads. Figure 12 shows the latency
of transactions in this type, compared with transactions that OCC
commits. As can be seen, the latency of transaction saved by BCC
is almost twice as that committed by OCC. However, this over-
head is acceptable for two main reasons. First, in high contention
scenario, an OCC-aborted transaction may be aborted several times
before it can actually commit. Considering the high cost of transac-
tion re-executions, the latency of BCC-saved transactions is often
justified. Second, the increased latency is still within tens of mi-
croseconds, which is sufficiently small for most real-world applica-
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pared with that committed by OCC. The workload is the same with
that used in Figure 10.

tions. We thus believe it is reasonable to trade the small increasing
of latency for the high improvement of transaction throughput.

7. RELATED WORK
Partial dependency detection. The idea of detecting partial

graph cycles to guarantee serializability was first proposed in the
snapshot isolation concurrency control method [5, 11]. Snapshot
isolation (SI) has been implemented in major database systems,
such as Oracle and PostgreSQL. SI guarantees that read and write
transactions won’t block each other to increase system through-
put. However, Fekete et al. [12] showed that SI could not guaran-
tee transaction serializability, and Fekete et al. [11] further found
a data dependency pattern (dangerous structure) that will always
happen when transactions cannot be serialized in snapshot isola-
tion (SI). Cahill et al. [5] demonstrated how to implement the dan-
gerous structure in Berkeley DB. Ports et al. [24] further optimized
this method for PostgreSQL. Han et al. [14] further optimized SI for
multicore systems. BCC’s essential patterns contain different data
dependencies compared to the dangerous structure, which is caused
by different record visibilities between SI and the optimistic con-
currency control model. In SI a transaction cannot see writes which
happen after the transaction starts. However, in BCC, any data de-
pendency may exist between concurrent transactions. Moreover,
BCC is designed and optimized for the short latencies that are en-
countered in main-memory OLTP workloads and not for disk-based
implementations.

OCC for in-memory databases. The optimistic concurrency
control (OCC) method was originally proposed by Kung and Robin-
son [17] and has been implemented in recent in-memory databases
[18, 30, 31, 32]. These works mainly study how to efficiently
implement the OCC method in in-memory databases. Larson et
al. [18] proposed OCC for Microsoft SQL Server’s in-memory OLTP
engine “Hekaton” [8] and compared the performance of OCC with
two-phase locking. Their implementation of OCC used a central-
ized timestamp allocator. Silo [30] introduced an implementation
of OCC without centralized bottlenecks which can achieve near-
linear scalability for low contention workloads. Tran et al. [29]
studied transaction behaviors on hardware transactional memory.
Wang et al. [31] explored how to build high performance OCC
for in-memory databases with hardware transactional memory. Yu
et al. [32] studied the scalability of different concurrency control
methods on up to 1024 cores with a simulator. Despite the im-
plementation differences among these databases, their OCC-based
nature unavoidably causes spurious false aborts.

OCC for distributed systems. Recently OCC has also been
studied in distributed systems. Maat [19] re-designed OCC for dis-

tributed systems and removed the need of locking during two-phase
commit. ROCOCO [20] broke transactions into atomic pieces and
executed them out of order by tracking dependencies, which signif-
icantly outperformed OCC. In comparison, BCC focuses on trans-
action execution for single-node in-memory databases.

OLTP on modern hardware. Our design and implementation
benefits from existing in-memory OLTP systems. Databases such
as Hyper [16] and H-Store [15] adopt the partitioning approach to
scale. Harizopoulos et al. [15] analyzed the overheads of the Shore
database. Pandis et al. [22] eliminated the overhead of centralized
lock manager with partitioning. Porobic et al. [23] systemtically
compared the performance of shared-nothing and shared-everyting
OLTP system designs on multi-socket, multi-core CPUs. Faleiro et
al. [10] redesigned the multiversion concurrency control method for
in-memory databases by avoiding bookkeeping operations for read
and global timestamp allocator, but it requires all the transactions
to be submitted to the database before they can be processed.

Doppel [21] introduced an in-memory database designed for trans-
actions that contend on the same data item. It proposed splitting the
contended data item across cores such that each core can continue
updating the data item in parallel. The per-core value was recon-
ciled before the data item can be read. Doppel’s optimization is
orthogonal to BCC: Doppel improves performance whenww de-
pendencies happen, while BCC avoids false aborts caused byrw
dependencies.

8. CONCLUSION
In this paper we have presented the Balanced Concurrency Con-

trol (BCC) mechanism for in-memory databases. Unlike OCC that
aborts a transaction based on whether the transaction’s read set
has changed, BCC aborts transactions based on the detection of
essential patterns that will always appear in unserializable trans-
action schedules. We implemented BCC in Silo, a representative
OCC-based in-memory database and comprehensively compared
BCC with OCC and 2PL with TPC-W-like, TPC-C-like and YCSB
benchmarks. Our performance evaluations demonstrate that BCC
outperforms OCC by more than 3x and 2PL by more than 2x when
data contention is high; meanwhile, BCC has comparable perfor-
mance to OCC in low-contention workloads.
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Yeom. Scalable serializable snapshot isolation for multicore
systems. InIEEE 30th International Conference on Data
Engineering, Chicago, ICDE 2014, IL, USA, March 31 -
April 4, 2014, pages 700–711, 2014.

[15] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. InProceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’08, pages 981–992, New York, NY, USA, 2008. ACM.

[16] A. Kemper and T. Neumann. Hyper: A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots. InProceedings of the 2011 IEEE 27th
International Conference on Data Engineering, ICDE ’11,
pages 195–206, Washington, DC, USA, 2011. IEEE
Computer Society.

[17] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control.ACM Trans. Database Syst.,
6(2):213–226, June 1981.

[18] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases.Proc.
VLDB Endow., 5(4):298–309, Dec. 2011.

[19] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and
A. El Abbadi. Maat: Effective and scalable coordination of
distributed transactions in the cloud.Proc. VLDB Endow.,
7(5):329–340, Jan. 2014.

[20] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 479–494, Broomfield, CO,
Oct. 2014. USENIX Association.

[21] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions. In11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 511–524, Broomfield, CO,
Oct. 2014. USENIX Association.

[22] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution.Proc. VLDB Endow.,
3(1-2):928–939, Sept. 2010.

[23] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki.
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