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ABSTRACT
The problem of computing k-edge connected components (k-
ECCs) of a graphG for a specific k is a fundamental graph problem
and has been investigated recently. In this paper, we study the prob-
lem of ECC decomposition, which computes the k-ECCs of a graph
G for all k values. ECC decomposition can be widely applied in
a variety of applications such as graph-topology analysis, commu-
nity detection, Steiner component search, and graph visualization.
A straightforward solution for ECC decomposition is to apply the
existing k-ECC computation algorithm to compute the k-ECCs for
all k values. However, this solution is not applicable to large graphs
for two challenging reasons. First, all existing k-ECC computation
algorithms are highly memory intensive due to the complex data
structures used in the algorithms. Second, the number of possible
k values can be very large, resulting in a high computational cost
when each k value is independently considered. In this paper, we
address the above challenges, and study I/O efficient ECC decom-
position via graph reduction. We introduce two elegant graph re-
duction operators which aim to reduce the size of the graph loaded
in memory while preserving the connectivity information of a cer-
tain set of edges to be computed for a specific k. We also propose
three novel I/O efficient algorithms, Bottom-Up, Top-Down, and
Hybrid, that explore the k values in different orders to reduce the re-
dundant computations between different k values. We analyze the
I/O and memory costs for all proposed algorithms. In our experi-
ments, we evaluate our algorithms using seven real large datasets
with various graph properties, one of which contains 1.95 billion
edges. The experimental results show that our proposed algorithms
are scalable and efficient.

1. INTRODUCTION
Graphs have been widely used to represent the relationships of

entities in real-world applications such as social networks, web
search, collaborations networks, and biology. With the prolifer-
ation of graph applications, research efforts have been devoted
to many fundamental problems in managing and analyzing graph
data. Among them, the problem of computing all k-Edge Con-
nected Components (k-ECCs) of a graph for a given k has been
recently studied in [26, 32, 5, 9]. Here, a k-ECC of a graph G is a
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Figure 1: Part of the Coauthor Network

maximal subgraph g of G such that g is k-edge connected (i.e., g
is connected after the removal of any (k − 1) edges from g).

Computing k-ECCs has many applications. For example, k-
ECCs are used in social network analysis to discover cohesive
blocks (communities) in a social network (e.g., Facebook) [25].
Computing the components with high connectivity is used to iden-
tify closely related entities in social behavior mining [4]. In compu-
tational biology, a highly connected subgraph is a functional cluster
of genes in gene microarray study [10]. Computing k-ECCs can be
used to identify groups of researchers with similar research inter-
ests in a collaboration network (e.g., DBLP). Moreover, k-ECCs
computation also plays a role as a building block in many other ap-
plications such as the robust detection of communication networks
and graph visualization [5, 9, 24, 27].

ECC Decomposition. In this paper, we study the ECC decompo-
sition problem, which is to compute the k-ECCs of a graph for all
possible k values. We give an example below:

Example 1.1: Fig. 1 shows a graph G, which is part of the col-
laboration network in the Coauthor dataset (http://arnetminer.org/).
We compute the k-ECCs of G for all 2 ≤ k ≤ 6. Here, G itself
is a 2-ECC since after removing any edge from G, G is still con-
nected. G has two 3-ECCs, which are the subgraphs induced by
{v1, v2, . . . , v11} and {v12, v13, . . . , v18} respectively. The sub-
graph induced by {v12, v13, . . . , v18} is also a 4, 5, and 6-ECC
of G. The subgraph induced by {v1, v2, . . . , v9} is a 4-ECC, and
the subgraph induced by {v4, v5, . . . , v9} is a 5-ECC. As shown in
Fig. 1, when k increases, the cohesiveness of the k-ECCs increases,
whereas the size of the k-ECCs decreases. 2

Using ECC decomposition, we can analyze the k-ECCs of a
graph for all the k values rather than a specific k to better under-
stand the network structure in each of the above-mentioned applica-
tions. Furthermore, ECC decomposition can also be used in many
new application scenarios. For example:
• Hierarchy Study in Networks. The k-ECCs of a graph for all k

values form a hierarchical structure. Understanding this hierar-
chical structure facilitates graph-topology analysis. In the liter-
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ature, approximation techniques have been used to compute the
graph connectivity hierarchy in [6, 7], and it is clear that ECC
decomposition can solve the problem accurately.
• Adaptive Community Detection. Computing k-ECCs with high

connectivity can be used to detect cohesive blocks (communi-
ties) in a social network [25]. However, it is not easy for a user
to choose the best k. ECC decomposition can help the user to
choose the best k adaptively according to the user’s requirement.
• Steiner Component Search. In many applications, users may of-

ten want to find a subgraph with maximum connectivity that con-
tains a given set of query nodes [8]. Such a subgraph is called
a Steiner component. ECC decomposition can be used as a pre-
processing step for the Steiner component search problem.
• Multi-granularity Graph Visualization. When applying k-ECCs

in graph visualization [24, 27], users may want to visualize the
graph in different granularities by zoom in and zoom out oper-
ations. ECC decomposition can be used directly to solve this
multi-granularity graph visualization problem.

Challenges. Given a graph G, a straightforward solution for ECC
decomposition is to independently compute the k-ECCs of G for
all k values using a k-ECC computation algorithm [26, 32, 5, 9].
However, this solution presents the following two challenges:

Challenge 1: High Memory Consumption. All existing k-ECC
computation algorithms assume that the graph G is retained in
memory. In order to compute the k-ECCs of a graph G efficiently,
they have to maintain complex data structures that have high mem-
ory cost. For example, on the Orkut dataset (a social network) with
only 117.2 million edges used in our experiment, the state-of the
art algorithm [9] consumes 15.4 GB memory for ECC decomposi-
tion. On the other hand, the size of many real-world graphs is huge.
For example, the Facebook social network contains 1.32 billion
nodes and 140 billion edges1; and a sub-domain of the web graph
Clubweb12 contains 978.5 million nodes and 42.6 billion edges2.
Therefore, applying the existing k-ECC computation algorithm on
G directly is not scalable for handling large graphs because of the
high memory consumption.

Challenge 2: High Computational Cost. In many real-world
graphs, the maximum k value can be very large. For example, on
the sk-2005 dataset used in our experiment, the maximum k value
reaches 4, 510. Applying the k-ECC computation algorithm for all
k values independently will result in high computational cost, since
large redundant computations will be produced due to the overlap-
ping of k-ECCs for different k values.

Our Solution. In this paper, we focus on I/O efficient ECC decom-
position. Targeting Challenge 1, we aim to reduce the memory used
to compute the k-ECCs so that it can handle real-world graphs even
when the memory is inadequate. Targeting Challenge 2, we aim to
reduce the redundant k-ECC computations between different k val-
ues to improve the efficiency of the algorithm. To achieve this, we
define an edge set Eφ=k(G) for each k value, which is the set of
edges in the k-ECC of G, but not in the (k+ 1)-ECC of G. Due to
the hierarchical structure of k-ECCs for all k values, the problem
of ECC decomposition of G is equivalent to computing Eφ=k(G)
for all k values. The benefits of computing Eφ=k(G) are twofold:

First (regarding Challenge 1), we observe that the size of
Eφ=k(G) is usually much smaller than the size of G and is usu-
ally memory-resident. For example, in the uk-2005 dataset with
936.36 million edges used in our experiment, the maximum size

1http://newsroom.fb.com/company-info
2http://law.di.unimi.it/datasets.php

of Eφ=k(G) is only 15.69 million, which is 1.6% of the graph
size. However, it is not easy to obtain Eφ=k(G) from G directly.
Therefore, we define a k-edge connectivity preserved graph (k-
PG), which is a graph G′ such that Eφ=k(G) = Eφ=k(G′). Sup-
pose that the k-PG is memory-resident and can be computed in an
I/O efficient manner, we can now obtain Eφ=k(G) by computing
Eφ=k(k-PG) in memory.

Second (regarding Challenge 2), although the k-ECCs for dif-
ferent k values overlap, it is easy to see that the Eφ=k(G) for
different k values are non-overlapping. Therefore, when comput-
ing Eφ=k(G) for all k values, the redundant computations can be
largely reduced if the k-PG is carefully selected and computed.

To make our idea practically applicable, the following issues
need to be addressed: (1) How can a good k-PG be obtained in
an I/O efficient manner? and (2) How can the CPU and I/O costs
be shared when computing the k-PGs for all k values?

Contributions. In this paper, we answer the above questions and
make the following contributions.

(1) The first work for I/O efficient ECC decomposition. In this
paper, we aim to solve the ECC decomposition problem on web-
scale graphs by considering I/O issues when the memory size is
inadequate. To the best of our knowledge, this is the first work to
study the problem of I/O efficient ECC decomposition.

(2) Two elegant graph reduction operators to reduce memory us-
age. Our general idea to reduce the memory usage is graph reduc-
tion. We introduce two elegant graph reduction operators, RE and
CE, for the removal and contraction of edges respectively. We dis-
cuss how to use these two graph reduction operators to minimize
the size of the graph (k-PG) that preserves the connectivity infor-
mation of the edges to be computed.

(3) Three novel I/O efficient algorithms by considering cost shar-
ing. We derive three algorithms to compute the k-PGs for all k
values, through which all k-ECCs can be computed. We discuss
the potential cost sharing of k-PG computation when we explore
k in different orders. Our Bottom-Up algorithm explores k in in-
creasing order and eliminates edges with high connectivity when
computing the k-PG. Our Top-Down algorithm explores k in de-
creasing order and eliminates edges with low connectivity when
computing the k-PG. Our Hybrid algorithm takes advantage of
both Bottom-Up and Top-Down and can minimize the size of the
k-PG. In each algorithm, we also discuss how to compute the k-PG
in an I/O efficient manner.

(4) Extensive performance studies on seven large real datasets.
We conduct extensive performance studies using seven large real
graphs with various graph properties. The experimental results
demonstrate that our proposed algorithms can handle graphs with
billions of edges using limited memory.

2. PRELIMINARIES
Consider an undirected graph G = (V,E), where V (G) repre-

sents the set of nodes and E(G) represents the set of edges in G.
We denote the number of nodes and the number of edges of G by
n and m respectively. We define the size of G, denoted by |G|,
as |G| = m + n. For each node u ∈ V (G), we use d(u,G) to
denote degree of u. For simplicity, we use d(u) to denote d(u,G)
if the context is self-evident. Given a set of nodes Vn ⊆ V , the
node-induced subgraph by Vn, denoted by G(Vn) = (Vn, En),
is a subgraph of G such that G(Vn) = (Vn, {(u, v) ∈ E|u, v ∈
Vn}). Given a set of graphs G = {G1, G2, . . . , Gn}, V (G) =⋃n
i=1 V (Gi), E(G) =

⋃n
i=1E(Gi).
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Definition 2.1: (Edge-based Graph Connectivity) For a con-
nected graph G, the edge-based graph connectivity of G, denoted
by λ(G), is the minimum number of edges whose removal makes
G disconnected. 2

Definition 2.2: (k-edge Connected) A connected graph G is k-
edge connected iff the remaining graph is still connected after the
removal of any k − 1 edges from G. 2

According to Definition 2.1 and Definition 2.2, a connected
graph G is k-edge connected for any 1 ≤ k ≤ λ(G).

Definition 2.3: (k-edge Connected Component) Given a graph
G, a subgraph G′ of G is a k-edge connected component iff 1) G′

is k-edge connected, and 2) any super-graph of G′ in G is not k-
edge connected. For simplicity, we use k-ECC as the abbreviation
for the k-Edge Connected Component. 2

In this paper, we use Ck(G) to denote the set of k-ECCs in graph
G. For example: in Fig. 1, C5(G) contains two 5-edge connected
components induced by {v4, v5, . . . , v9} and {v12, v13, . . . , v18}.
Problem Statement. In this paper, we study the problem of edge
connected component (ECC) decomposition, which is defined as
follows: Given a graph G, ECC decomposition computes the k-
ECCs of G for all 2 ≤ k ≤ kmax, where kmax is the maximum
possible k value. Since the k-ECC computation operation is mem-
ory consuming, we aim to minimize the memory usage and focus
on designing I/O efficient algorithms to compute the k-ECCs for
all k values in the graph G.

When analyzing the I/O complexity of our algorithms, we use
the standard I/O complexity notations in [2] as follows: M is the
main memory size andB is the disk block size. The I/O complexity
to scan N elements is scan(N) = Θ(N

B
), and the I/O complexity

to sort N elements is sort(N) = O(N
B
· logM

B

N
B

).

The In-memory Algorithms. In the literature, there are several in-
memory algorithms to compute k-ECCs for a specific k [26, 32, 5,
9]. In the following, we use Mem-Decom to denote the in-memory
algorithm that computes k-ECCs for a specific k. The state-of-
the-art in-memory algorithm [9] is based on a graph decomposition
paradigm. For a given graph G and an integer k, a non k-edge con-
nected subgraph of G is iteratively decomposed into several con-
nected subgraphs by the removal of edges in all cuts of G with val-
ues less than k. The time complexity of the algorithm isO(h·l·|E|)
where h and l are usually bounded by small constants.

Based on Mem-Decom, a naive solution for solving the ECC de-
composition problem is to use Mem-Decom to compute the corre-
sponding k-ECCs onG directly for all possible k values. However,
this solution has two drawbacks. First, due to the complex data
structures used in Mem-Decom, this solution usually consumes a
large amount of memory and is not scalable for large graphs. For
example, on the Orkut dataset with only 117.2 million edges used
in our experiment, this solution using the state-of-the-art algorithm
[9] consumes 15.4 GB memory for ECC decomposition. Second,
computing the k-ECCs for each k value individually is costly. Al-
though some simple heuristics are used in [8] to compute all k-
ECCs of a graph, the overlapping of k-ECCs for different k values,
which is critical for reducing the overall computational cost, is not
considered. Therefore, in this paper, we focus on I/O efficient is-
sues to reduce the size of the memory used for ECC decomposition
and we try to minimize redundant computation in ECC decompo-
sition to reduce the CPU and I/O costs.

3. I/O EFFICIENT ECC DECOMPOSITION
In this section, we present the general idea of our algorithms.

We first define a k-edge connectivity preserved graph k-PG and

analyze the problem. Then, we give an overview of our algorithms.
We summarize the notions used in this paper in Table 1.

3.1 k-edge Connectivity Preserved Graph
We define the edge connectivity number and connectivity

bounded edge-set as follows:

Definition 3.1: (Edge Connectivity Number) Given a graph G
and an edge e, the edge connectivity number of e, denoted by
φ(e,G), is defined as φ(e,G) = max{k : e ∈ E(Ck(G))}.
We use kmax to denote the maximum edge connectivity number
of edges in G, i.e. kmax = maxe∈E(G){φ(e,G)}. 2

Definition 3.2: (Connectivity Bounded Edge-Set) Given a graph
G and a condition f(φ) on the edge connectivity number, the con-
nectivity bounded edge-set, denoted by Ef(φ)(G), is the set of
edges whose edge connectivity number φ(e,G) satisfies f(φ). 2

For example, given a graph G and the condition φ = k,
Eφ=k(G) consists of edges whose edge connectivity number is k,
i.e. Eφ=k(G) = {e|e ∈ E(G), φ(e,G) = k}. For simplicity,
when the context is self-evident, we use φ(e) and Ef(φ) to denote
φ(e,G) and Ef(φ)(G), respectively. With φ(e) for all e ∈ E(G),
the k-ECCs of G can be constructed based on:

Proposition 3.1: For a given graph G, the k-edge connected com-
ponent set Ck(G) consists of the subgraphs of G constructed by
edges in Eφ≥k(G). 2

Based on Proposition 3.1, we can deduce that if we can compute
φ(e,G) for each e ∈ E(G), we can construct all k-edge connected
components easily by Eφ≥k(G) for any 2 ≤ k ≤ kmax. Since the
sets Eφ=k(G) for different k values are non-overlapping, if we can
computeEφ=k(G) for every 2 ≤ k ≤ kmax, then we can solve the
ECC decomposition problem. Therefore, we provide an alternative
problem definition as follows:

Definition 3.3: (Problem Definition∗) Given a graph G, ECC de-
composition computes Eφ=k(G) for any 2 ≤ k ≤ kmax. 2

Recall that the sets Eφ=k(G) for different k values are non-
overlapping. Therefore, by computing Eφ=k(G) only, we have
more possibilities for minimizing the redundant computations than
computing the k-ECCs for all k values. Based on Definition 3.3,
we define the k-edge connectivity preserved graph as follows:

Definition 3.4: (k-edge Connectivity Preserved Graph k-PG)
Given a graphG and an integer k, a k-edge Connectivity Preserved
Graph (k-PG) G′ is a graph such that Eφ=k(G′) = Eφ=k(G). 2

With Definition 3.4, to computeEφ=k(G), we can construct a k-
edge Connectivity Preserved Graph (k-PG) G′ of G, and compute
Eφ=k(G′) using the in-memory algorithm. We aim to reduce the
size of the k-PG in order to minimize memory usage.

3.2 Problem Analysis
To reduce the size of the k-PG, we define the following two types

of graph reduction operators:

Definition 3.5: (Operator RE(G,Er)) Given a graph G and a set
of edges Er = (e1, e2, . . .), RE(G,Er) generates a new graph Gr
by removing all the edges in Er and all the nodes with degree 0
after removing the edges in Er . 2

Definition 3.6: (Operators CE(G, e) and CE(G,Ec)) Given a
graph G and an edge e = (u, v), CE(G, e) removes e, merges
u and v into a new vertex v′, and revises each edge e′ incident to
either u or v to be incident to v′. Given a graphG and a set of edges
Ec = (e1, e2, . . .), CE(G,Ec) generates a new graph by applying
CE(G, e) on all edges e ∈ Ec. 2
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Figure 2: A 5-edge Connectivity Preserved Graph (5-PG)

Symbol Description
G = (V,E) graph with nodes V ane edgesE

d(u,G) The number of neighbors of u inG
Ck(G) the set of k-edge connected components ofG
φ(e,G) the edge connectivity number of e inG
kmax the maximum edge connectivity number of edges inG

Ef(φ)(G) the set of edges inG whose φ(e) satisfies f(φ)
k-PG k-edge connectivity preserved graph
Uk the set of unprocessed connectivity numbers before a certain k
Gk the input graph before processing a certain connectivity number k
φ(e) lower bound of φ(e)
Gkcert the union of (k + 1) edge-disjoint spanning forests of a graph
φ(e) upper bound of φ(e)

degree(e,G) the edge degree number of e inG

Table 1: Notations

Note that after applying CE(G,Ec), parallel edges may be
created. Using the graph reduction operators RE(G,Er) and
CE(G,Ec), we devise the following two propositions:

Proposition 3.2: Given a graph G and a certain k, RE(G,Eφ<k)
is a k-PG of G, i.e., Eφ=k(G) = Eφ=k(RE(G,Eφ<k)). 2

Proposition 3.3: Given a graph G and a certain k, CE(G,Eφ>k)
is a k-PG of G, i.e., Eφ=k(G) = Eφ=k(CE(G,Eφ>k)). 2

By combining Proposition 3.2 and Proposition 3.3, we have:

Corollary 3.1: Given a graph G and a certain k, CE(RE(G,
Eφ<k), Eφ>k) is a k-PG ofG, i.e.,Eφ=k(G) =Eφ=k(CE(RE(G,
Eφ<k), Eφ>k)). 2

Note that graph CE(RE(G,Eφ<k), Eφ>k) contains exactly the
same set of edges in Eφ=k. Therefore, CE(RE(G,Eφ<k), Eφ>k)
is an optimal k-PG. However, computing this k-PG I/O efficiently
is not easy. In this paper, instead of computing Eφ<k and Eφ>k,
we compute two sets E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k. We can
derive the following proposition easily.

Proposition 3.4: Given a graph G and k, for any E′φ<k ⊆ Eφ<k
and E′φ>k ⊆ Eφ>k, CE(RE(G,E′φ<k), E′φ>k) is a k-PG of G,
i.e., Eφ=k(G) = Eφ=k(CE(RE(G,E′φ<k), E′φ>k)). 2

We try to maximize both |E′φ<k| and |E′φ>k| in an I/O efficient
manner to minimize the size of CE(RE(G,E′φ<k), E′φ>k). We il-
lustrate this idea using the following example:
Example 3.1: Consider the graph G shown in Fig. 2. Suppose,
for instance, k = 5. The edges with edge-connectivity number 5
in G are the edges in the subgraph induced by nodes {v2, v3, . . . ,
v7}. After applying CE(RE(G,Er), Ec) where Er = {(v0, v2),
(v0, v3), (v1, v3), (v1, v4), (v9, v15), (v10, v15)} and Ec consists
of the edges in the subgraph induced by {v8, v9, . . . , v14}, we
can obtain the graph G′, which is shown on the right side of
Fig. 2. Since Er ⊆ Eφ<5 and Ec ⊆ Eφ>5, according to Propo-
sition 3.4, we have Eφ=5(G) = Eφ=5(CE(RE(G, Er), Ec)), i.e.,
CE(RE(G, Er), Ec) is a 5-PG of G. 2

3.3 Solution Overview
In this subsection, we give an overview of our solution. As

shown in Section 3.2, we need to compute Eφ=k for each con-
nectivity number 2 ≤ k ≤ kmax, and try to maximize the compu-

Gk 

RE/CE 

compute  

RE/CE, increase/decrease k 

KPG(G’) 

𝐸′𝜙>𝑘(𝐺𝑘) 

 G  

 G  

 G’  
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𝐸𝜙=𝑘(𝐺) k-PG Compute 

𝐸′𝜙<𝑘(𝐺𝑘) 

𝐸𝜙=𝑘(𝐺) Gk 
Gk 

Figure 3: The Algorithm Framework

Algorithm 1 Bottom-Up(Graph G)

1: k ← 1;Gk ← G;
2: whileGk 6= ∅ do
3: k-PG← CE(Gk, Eφ>k(Gk));
4: Eφ=k ← E(k-PG) \ E(Mem-Decom(k-PG, k + 1));
5: Gk+1 ← RE(Gk, Eφ=k);
6: k ← k + 1;

tational cost sharing among different k values. To do this, we can
reduce the input graph by removing unnecessary edges based on
the already processed k values instead of using the original graph
G as the input graph for each k value. To better describe our idea,
we first provide the following definitions.

Definition 3.7: (Uk, and Gk) We use Uk to denote the set of un-
processed connectivity numbers before processing a certain con-
nectivity number k, and use Gk to denote the input graph before
processing a certain connectivity number k. 2

Algorithm Framework. The framework of our approach is illus-
trated in Fig. 3. Given the input graph Gk for a certain k, we first
apply the graph reduction operator RE/CE on Gk to compute the
k-PG ofGk based on Proposition 3.4. Then we computeEφ=k(G)
on the k-PG using an in-memory algorithm. With Eφ=k(G), we
refine the input graph by applying graph reduction operator RE/CE
on Gk to generate the input graph for the next k value. The algo-
rithm terminates when all k values have been processed.

To compute Eφ=k(G) for all the connectivity numbers 2 ≤ k ≤
kmax correctly using the framework shown in Fig. 3, the set of
unprocessed connectivity numbers Uk and the input graph Gk for
each k should satisfy the following two properties.
• (Unseen-Connectivity Preservable): For each connectivity num-

ber i ∈ Uk, Eφ=i(G) = Eφ=i(Gk).
• (Input-Graph Computable): The input graph Gk can be com-

puted by applying the reduction operators RE and CE on the in-
put graph Gk′ for the previous iteration.
Following the framework, we propose three algorithms based on

different orders of processing the connectivity numbers, namely,
Bottom-Up, Top-Down, and Hybrid.

Algorithm Bottom-Up. The Bottom-Up algorithm computes all
Eφ=k in increasing order of k. Therefore, we have Uk = {i|k ≤
i ≤ kmax}. We define the input graph Gk for a certain k to be the
graph by removing all edges with φ < k using the RE operator,
i.e., Gk = RE(G,Eφ<k). The unseen-connectivity preservable
property and the input-graph computable property are satisfied by
the following two propositions respectively:

Proposition 3.5: Given a graph G and a connectivity number k,
for any k ≤ i ≤ kmax, Eφ=i(G) = Eφ=i(RE(G,Eφ<k)). 2

Proposition 3.6: Given a graph G and a connectivity number k,
RE(G,Eφ<k+1) = RE(RE(G,Eφ<k), Eφ=k). 2

Intuitively, Proposition 3.5 follows the fact that the sets
Eφ=k(G) for different k values are non-overlapping and removing
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Algorithm 2 Top-Down(Graph G)

1: k ← kmax;Gk ← G;
2: while k > 1 do
3: k-PG← RE(Gk, Eφ<k(Gk));
4: Eφ=k ← E(Mem-Decom(k-PG, k));
5: Gk−1 ← CE(Gk, Eφ=k);
6: k ← k − 1;

the edges with small edge connectivity number does not affect the
values of edge connectivity number of the remaining edges. Propo-
sition 3.6 is based on the property that E(Ck(G)) ⊆ E(Ck−1(G))
for any 2 ≤ k ≤ kmax and Gk can be computed according to
Gk−1 by RE operator.

To compute the k-PG for Gk, according to Proposition 3.4, we
need to compute two sets E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k.
Since Gk = RE(G,Eφ<k), there is no edge with φ < k in
Gk. Therefore, we only need to compute E′φ>k. However, the
exact φ(e) values for edges e with φ(e) > k are hard to obtain.
Therefore, we first compute a lower bound φ(e) of φ(e) for each
e ∈ E(Gk). It is evident that Eφ>k ⊆ Eφ>k. In this way, we can
compute the k-PG by CE(Gk, Eφ>k). We have:

Proposition 3.7: For a certain connectivity number k, the k-PG
for the Bottom-Up algorithm is CE(RE(G,Eφ<k), Eφ>k). 2

The framework of Bottom-Up is shown in Algorithm 1. We start
processing k = 1 and initially Gk is the original graph G (line 1).
The algorithm iteratively increases k until Gk = ∅ (lines 2-6).
In each iteration, for a certain k, we first compute the k-PG by
Proposition 3.7 (line 3). Then, we can compute Eφ=k using E(k-
PG) \ E(Mem-Decom(k-PG, k+ 1)) (line 4), because according
to Proposition 3.1, Mem-Decom(k-PG, k + 1) computes the set
Eφ≥k+1, and the k-PG does not include edges in Eφ<k. Here,
Eφ=k is correctly computed because of Proposition 3.5. Lastly, we
construct Gk+1 for the next iteration based on Proposition 3.6.

Algorithm Top-Down. The Top-Down algorithm computes all
Eφ=k in decreasing order of k. Therefore, we have Uk = {2 ≤
i ≤ k}. We define the input graph Gk for a certain k to be the
graph by contracting all edges with φ > k using the CE operator,
i.e., Gk = CE(G,Eφ>k). The unseen-connectivity preservable
property and the input-graph computable property are satisfied by
the following two propositions respectively:

Proposition 3.8: Given a graph G and a connectivity number k,
for any 2 ≤ i ≤ k, Eφ=i(G) = Eφ=i(CE(G,Eφ>k)). 2

Proposition 3.9: Given a graph G and a connectivity number k,
CE(G,Eφ>k−1) = CE(CE(G,Eφ>k), Eφ=k). 2

Similar to Bottom-Up, to compute the k-PG for Gk in Top-
Down, according to Proposition 3.4, we need to compute two sets
E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k. Since Gk = CE(G,Eφ>k),
there is no edge with φ > k in Gk. Therefore, we only need to
compute E′φ<k. However, the exact φ(e) values for edges e with
φ(e) < k are hard to obtain. Therefore, we first compute an upper
bound φ(e) of φ(e) for each e ∈ E(Gk). It is evident thatEφ<k ⊆
Eφ<k. In this way, we can compute the k-PG by RE(Gk, Eφ<k).
We can derive the following proposition:

Proposition 3.10: For a certain connectivity number k, the k-PG
for the Top-Down algorithm is RE(CE(G,Eφ>k), Eφ<k). 2

The framework of Top-Down is shown in Algorithm 2. Since
kmax is unknown, we compute an upper bound kmax of kmax. We
start processing k = kmax and initially Gk is the original graph
G (line 1). The algorithm iteratively decreases k until k ≤ 1
(lines 2-6). In each iteration, for a certain k, we first compute the
k-PG by Proposition 3.10 (line 3). Then, we can compute Eφ=k

Algorithm 3 Hybrid(Graph G)

1: k ← kmax;Gk ← G;
2: while k > 1 do
3: G′ ← RE(Gk, Eφ<k(Gk));
4: Compute the k-PG ofG′ by Bottom-Up(G′);
5: Eφ=k ← E(k-PG);
6: Gk−1 ← CE(Gk, Eφ=k);
7: k ← k − 1;

usingE(Mem-Decom(k-PG, k)) directly (line 4), because accord-
ing to Proposition 3.1, Mem-Decom(k-PG, k) computes the edge
set Eφ≥k, and the k-PG does not include edges in Eφ>k. Here,
Eφ=k is correctly computed because of Proposition 3.8. Lastly, we
construct Gk−1 for the next iteration based on Proposition 3.9.

Algorithm Hybrid. Hybrid takes advantage of both Bottom-Up
and Top-Down to further reduce the size of the k-PG. According
to Proposition 3.10, the k-PG of the Top-Down algorithm contains
the set of edges Eφ≥k(Gk) where Gk = CE(G,Eφ>k). In other
words, the k-PG contains the edges ewith φ(e) ≥ k and φ(e) ≤ k.
Hybrid aims to further reduce the size of the k-PG by eliminating
those edges with φ(e) < k. The Bottom-Up algorithm can be
naturally applied to handle this. The framework of Hybrid is shown
in Algorithm 3. It generally follows the framework of Algorithm 2.
However, after computing G′ = RE(Gk, Eφ<k(Gk)) in line 3,
we do not use G′ as the k-PG. Instead, we compute the k-PG of
G′ as the k-PG of G by invoking Bottom-Up(G) (line 4). Since
by Proposition 3.7, Bottom-Up can remove all edges with φ < k
when computing the k-PG, we can easily derive:

Proposition 3.11: For a certain connectivity number k, the k-PG
for the Hybrid algorithm is RE(CE(G,Eφ>k), Eφ<k). 2

In other words, Hybrid can compute the optimal k-PG. Further-
more, since the graph CE(RE(G,Eφ<k), Eφ>k) contains exactly
the same set of edges in Eφ=k, we can use E(k-PG) as Eφ=k
(line 5) without invoking Mem-Decom(k-PG , k). The rationale
for applying the Bottom-Up algorithm on G′ is that G′ can pre-
serve the edges e with φ(e) = k according to Proposition 3.4.
Note that by invoking Bottom-Up(G′), we also compute the set
Eφ=k′(G

′) for any 2 ≤ k′ < k. However, since G′ does not
satisfy the unseen-connectivity preservable property, this set on G′

cannot be used as the result in the original graph G.

4. BOTTOM-UP DECOMPOSITION
In this section, we discuss Bottom-Up in detail. We first de-

scribe how to compute a tight φ(e). Then we show how to im-
plement Bottom-Up I/O efficiently. Lastly, we analyze the peak
memory usage and I/O complexity of Bottom-Up.

4.1 φ(e) Computation
As discussed in Section 3.3, the key issue to obtaining a good k-

PG in Bottom-Up is to compute a tight φ(e) for any edge e in the
graph G. According to Definition 3.1, for an edge e in G, its edge
connectivity number inG cannot be smaller than that in a subgraph
of G, then a valid φ(e) can be computed based on:

Proposition 4.1: For any subgraph Gs of G and edge e ∈ E(Gs),
φ(e,Gs) ≤ φ(e,G). 2

By Proposition 4.1, we can select a subgraph Gs of G, and use
φ(e,Gs) as φ(e) for each e ∈ E(Gs). However, arbitrarily se-
lecting a subgraph Gs of G may result in a very loose φ(e). Re-
call that in the Bottom-Up algorithm, the k-PG is computed using
CE(Gk, Eφ>k(Gk)). A loose φ(e) may lead to a large k-PG when
k becomes large. Nevertheless, in CE(Gk, Eφ>k(Gk)), we only
care about those edges e with φ(e) > k in Gk when computing the
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k-PG. Therefore, when k is small, although Gk is large, φ(e) does
not need to be very tight since φ(e) > k can be easily satisfied by
selecting a small subgraph of Gk. When k is large, Gk becomes
small, and thus we can afford to select a subgraph of a large portion
of Gk to compute a tight φ(e).

Based on the above discussion, we can adaptively compute and
update φ(e) inGk when k increases from 2 to kmax. We denote the
subgraph used to compute φ(e) in Gk as a certificate graph Gkcert.

Certificate Graph Gkcert. We construct the certificate graph Gkcert
from Gk as follows: Initially, Gkcert = (V (Gk), ∅). We construct
Gkcert using k + 1 iterations. In each iteration, we first compute a
spanning forest F of the graph with edges E(Gk) \E(Gkcert), and
then update the edge set of Gkcert to be E(Gkcert) ∪ E(F). It is
easy to derive the following proposition:

Proposition 4.2: |E(Gkcert)| ≤ (k + 1)× (|V (Gk)| − 1). 2

The size of Gkcert can be bounded because although |V (Gk)|
is large, we only need to load a small number of spanning forests
of Gk to construct Gkcert when k is small, and when k is large,
|V (Gk)| becomes small, thus we can load more spanning forests
of Gk to construct Gkcert.

Fig. 4 (a) shows a comparison of |G|, |Gk| and |Gkcert| for
Bottom-Up on the uk-2005 dataset when we increase k from 2
to 100. |Gk| decreases as k increases. For |Gkcert|, we observe
that, when k is small, |Gkcert| increases as k increases. After reach-
ing the peak point with k = 20, |Gkcert| decreases as k increases.
Notably, the peak size of Gkcert is only around 20% of |G|, which
is much smaller than |G|. Therefore, it is usually suitable to use
Gkcert to compute φ(e) in Gk.

Computing φ(e) for e ∈ E(Gkcert). Since Gkcert is the union of
(k + 1) edge-disjoint spanning forests of a graph, we can derive
the following proposition based on the theoretical result derived in
[20] and Definition 2.2:

Proposition 4.3: Given a graph G and k, for any 2 ≤ i ≤ k + 1,
the graph Gkcert of G is i-edge connected if G is i-edge connected.

2

Recall that the graph Gk of Bottom-Up is defined as Gk =
RE(G,Eφ<k). Therefore, for each edge e ∈ E(Gk), we have
φ(e,Gk) ≥ k, i.e., Gk is k-edge connected. Since Gkcert is con-
structed based on Gk, Gkcert is also k-edge connected according to
Proposition 4.3. Therefore, we have:

Corollary 4.1: For each edge e ∈ E(Gkcert), φ(e,Gkcert) ≥ k. 2

Since φ(e) varies in different Gk, we denote φ(e) for Gk as
φ
k
(e). With Gkcert, for each e ∈ E(Gkcert), φ

k
(e) can be sim-

ply computed as φ(e,Gkcert). However, to compute φ(e,Gkcert),
we need to compute the k′-ECC for all 2 ≤ k′ ≤ kmax in Gkcert,
which is costly. Recall that the aim of computing φ

k
(e) is to obtain

the set Eφ>k(Gk). Therefore, for an edge e ∈ E(Gkcert), as long
as we guarantee φ

k
(e) > k, we do not need to compute the exact

φ
k
(e). In other words, for each e ∈ E(Gkcert), if we guarantee

φ(e,Gkcert) > k, we can simply set φ
k
(e) as k + 1 without com-

puting φ(e,Gkcert). Based on this, we can define φ
k
(e) for each

e ∈ E(Gkcert) as follows:

φ
k
(e) = min{φ(e,Gkcert), k + 1} (1)

Based on Eq. 1 and Corollary 4.1, we have:

Corollary 4.2: For each e ∈ E(Gkcert), k ≤ φ
k
(e) ≤ k + 1. 2
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Figure 4: Size of Different Graphs on the uk-2005 Dataset

According to the above discussion, for each edge e ∈ E(Gkcert),
we only need to compute the (k + 1)-ECC of Gkcert in memory to
compute φ

k
(e). If e belongs to the (k + 1)-ECC of Gkcert, we can

set φ
k
(e) to be k+1; otherwise, we set φ

k
(e) to be k. Note that our

objective is to maximize the number of edges with φ
k
(e) = k+ 1.

By Corollary 4.2, for each e ∈ E(Gkcert), φ
k
(e) is tight in the

sense that φ
k
(e) only differs from (k + 1) by at most 1.

Computing φ(e) for e /∈ E(Gkcert). Note that there are also edges

in E(Gk) that do not belong to E(Gkcert). For each such edge
e = (u, v), if u and v belong to the same (k+ 1)-ECC of Gkcert, u
and v also belong to the same (k + 1)-ECC of Gk, thus we can set
φ
k
(e) to be (k+1); otherwise, φ

k
(e) is set to be k sinceGk itself is

a k-ECC. The rationale for this is that, by combining (k+ 1) edge-
disjoint spanning forests of Gk, most parts of the (k + 1)-ECCs
of Gk are also preserved in Gkcert. For example, on the uk-2005
dataset with 39.45 million nodes and 936.36 million edges used in
our experiment, 96.2% of nodes in the (k + 1)-ECCs of Gk are
preserved in Gkcert on average. Based on this, φ

k
(e) can still be

effectively computed for each edge e ∈ E(Gk) \ E(Gkcert) .

The General Case. Given Gkcert, we can derive a general method
to compute φ

k
(e) for each e ∈ E(Gk) based on:

Corollary 4.3: For each e = (u, v) in E(Gk), if u and v belong
to the same (k + 1)-ECC of Gkcert, φk(e) = k + 1; otherwise
φ
k
(e) = k. 2

Fig. 4 (a) shows the size of the k-PG constructed by computing
φ
k
(e) using the above method in the uk-2005 dataset when varying

k from 2 to 100. For all k values, the size of the k-PG is much
smaller than |G| and even smaller than |Gkcert|, which indicates
that the φ

k
(e) values computed in this way are effective.

4.2 The Bottom-Up Decomposition Algorithm
In this subsection, we discuss how to implement Bottom-Up I/O

efficiently. For simplicity, we assume that graph Gk (2 ≤ k ≤
kmax) is connected. Otherwise, we can handle each connected
component of Gk individually.

The Bottom-Up algorithm is shown in Algorithm 4, which fol-
lows the framework of Algorithm 1 and processes k in its increas-
ing order. We use Mpeak to denote the peak memory usage of
the algorithm. When Gk can be processed in Mpeak memory
(|Gk| × α ≤ Mpeak), we can just apply the in-memory algorithm
following Algorithm 1 to computeEφ=k′ for all k′ > k (lines 3-5).
Here, α is determined by the in-memory algorithm Mem-Decom
used to compute the k-ECCs of a graph. IfGk cannot be processed
in Mpeak memory, we first compute Gkcert by invoking procedure
DisjointForest (line 6), and compute the k-PG using the CE op-
erator by invoking procedure CE-Disk (lines 7-8). Then, we load
the k-PG in memory, and after computing Eφ=k on the k-PG in
memory (line 9), we compute Gk+1 using the RE operator by in-
voking procedure RE-Disk. Below, we introduce the procedures
DisjointForest, CE-Disk, and RE-Disk in detail.
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Algorithm 4 Bottom-Up(Graph G)

1: Gk ← G; k ← 1;
2: whileGk 6= ∅ do
3: if |Gk| × α ≤Mpeak then
4: computeEφ=k′ (Gk′ ) for k′ ≥ k in memory following Algorithm 1;
5: break;
6: Gkcert ← DisjointForest(Gk);
7: G′ ←Mem-Decom(Gkcert, k + 1);
8: k-PG← CE-Disk(Gk, G

′);
9: Eφ=k ← E(k-PG) \ E(Mem-Decom(k-PG, k + 1));
10: Gk+1 ← RE-Disk(Gk, Eφ=k);
11: k ← k + 1;

12: procedure DisjointForest(Disk GraphGk)
13: Gkcert ← ∅;
14: for i = 0 to k do
15: F ← ∅;
16: for all edge (u, v) ∈ E(Gk) by sequential scanningGk on disk do
17: if (u, v) /∈ Gkcert and u, v are not connected in F then
18: F ← F ∪ (u, v);
19: Gkcert ← Gkcert ∪ F ;
20: returnGkcert;

21: procedure CE-Disk(Disk GraphGk, GraphG′)
22: Gc ← ∅ on disk;
23: create a node w.r.t. each connected component ofG′ in memory;
24: for all edge (u, v) ∈ E(Gk) by sequential scanningGk on disk do
25: if u ∈ V (G′) then
26: wu ← the node w.r.t. the connected component inG′ that contains u;
27: else wu ← u;
28: if v ∈ V (G′) then
29: wv ← the node w.r.t. the connected component inG′ that contains v;
30: else wv ← v;
31: if wu 6= wv then
32: add edge (wu, wv) inGc on disk;
33: returnGc;

34: procedure RE-Disk(Disk GraphGk, Edge SetE)
35: Gr ← ∅ on disk;
36: for all edge (u, v) ∈ E(Gk) by sequential scanningGk on disk do
37: if e /∈ E then
38: add edge (u, v) inGr on disk;
39: returnGr ;

Procedure DisjointForest. The DisjointForest procedure is used
to compute Gkcert of Gk (stored on disk). It initializes Gkcert
(line 13) and computes Gkcert by scanning all edges in Gk se-
quentially on disk for k + 1 times. In each scan (lines 15-19),
a spanning forest is computed (lines 16-18) and added to Gkcert
(line 19). To compute a spanning forest of E(Gk) \ E(Gkcert),
we do not compute E(Gk) \ E(Gkcert) explicitly as Gk needs to
be scanned once more. Instead, for each edge (u, v) ∈ E(Gk),
we only need to check whether (u, v) ∈ E(Gkcert) in memory. If
(u, v) /∈ E(Gkcert), we further check whether u and v are con-
nected in the current spanning forest F (line 17) using the union-
find data structure in memory. If not, we add (u, v) to the spanning
forestF . After computingF , we add it toGkcert (line 19). The pro-
cedure terminates and returns Gkcert after k + 1 disjoint spanning
forests are added to Gkcert.

Procedure CE-Disk. The procedure CE-Disk is used to com-
pute the k-PG on Gk (stored on disk) by CE(Gk, Eφ>k(Gk)).
According to Corollary 4.3, to obtain Eφ>k(Gk), we need to
compute the (k + 1)-ECC G′ of Gkcert (line 7). With G′,
we invoke CE-Disk(Gk, G

′) to compute the k-PG (line 8). In
CE-Disk(Gk, G

′) (lines 21-33), based on Corollary 4.3, to con-
tract edges with φ > k, we only need to compute the connected
components of G′ and contract the nodes in each connected com-
ponent into one node in Gk to obtain CE(Gk, Eφ>k(Gk)). To do
so, we first create a node w.r.t. each connected component of G′

in memory (line 23). Then we scan all edges (u, v) ∈ E(Gk) se-
quentially on disk. If u (or v) is contracted to a new node, we revise
the edge (u, v) by replacing u (or v) to be the corresponding con-

tracted node (lines 25-30). We denote the revised edge as (wu, wv)
and add it into the result graph Gc on disk if it is not a self-edge
(i.e., wu 6= wv) (lines 31-32). Here, by revising (u, v) in Gk to be
(wu, wv) in Gc, we still consider (u, v) and (wu, wv) as the same
edge when they are compared. This can be implemented easily us-
ing node mapping. Lastly, after scanning all edges in Gk once, we
can return Gc on disk as CE(Gk, Eφ>k(Gk)) (line 33).
Proecdure RE-Disk. The procedure RE-Disk(Gk, E) is used to
compute Gk+1 (stored on disk) by operator RE(Gk, E) with E =
Eφ=k on graph Gk (stored on disk). The procedure scans all edges
of Gk sequentially on disk (line 36). For each edge (u, v), if
(u, v) /∈ E, (u, v) belongs to RE(Gk, E), and thus we add (u, v)
to the result graph on disk (line 38). After scanning all edges inGk
once, we return the result graph on disk (line 39).
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Figure 5: Bottom-Up Example

Example 4.1: Fig. 5 illustrates a running example of Bottom-Up.
Consider the graph G in Fig. 2 as the input graph. For k = 2,
the input graph G2 is G itself. We obtain G2

cert by computing 3
edge-disjoint spanning forests which are illustrated with different
types of lines in Fig. 5(a). Then we compute G′ based on G2

cert,
which has two connected components and is highlighted with dot-
ted circles in Fig. 5 (a). After contracting the connected compo-
nents in G′ on G2, we obtain 2-PG. When we have obtained 2-
PG, we compute Eφ≥3(2-PG) by Mem-Decom(G2

cert, 3). Then
Eφ=2(2-PG) is computed by E(2-PG) \ Eφ≥3(2-PG), which is
Eφ=2 = {(v0, v2), (v0, v3), (v1, v3), (v1, v4), (v6, v8), (v5, v10),
(v9, v15), (v10, v15)}. Then we remove Eφ=2 from G2 and move
to k = 3. Note that after removing Eφ=2, the graph is divided into
2 subgraphs, namely the subgraphs induced by {v2, v3, . . . , v7}
(G′3) and {v8, v9, . . . , v14} (G′′3 ), respectively. Now, we can han-
dle G′3 and G′′3 individually. For k = 3, 4, the cases are trivial and
Eφ=3 = ∅ and Eφ=4 = ∅. For k = 5, 6, Eφ=5 consists of the
edges in G′3 and Eφ=6 consists of edges in G′′3 , which are shown
in Fig. 5 (b) and Fig. 5 (c), respectively. 2

Complexity Analysis. Below, we show the peak memory usage
and I/O complexity of our Bottom-Up algorithm (Algorithm 4):
Theorem 4.1: Given a graphG, letMbu

cert(G) be the maximum size
ofGkcert,M

bu
kpg(G) be the maximum size of k-PG, andMbu(G) be

the peak memory used in Bottom-Up (Algorithm 4), we have:

(1) Mbu
cert(G) = O(max1≤k≤kmax{k · |V (Eφ≥k(G))|});

(2) Mbu
kpg(G) = O(max1≤k≤kmax{|Eφ≥k,φ≤k(G)|});

(3) Mbu(G) = O(max{Mbu
cert(G),Mbu

kpg(G)}). 2

Here, |V (Eφ≥k(G))| is the number of nodes in the graph con-
sisting of edges in Eφ≥k(G). According to our discussion in Sec-
tion 4.1, both Mbu

kpg(G) and Mbu
cert(G) are usually much smaller

522



than |G|. Therefore, Mbu(G) is usually much smaller than the
memory consumed by the in-memory algorithm.
Theorem 4.2: Given a graph G, let Ibu(G) be the number of I/Os
used in Bottom-Up (Algorithm 4), we have:

Ibu(G) = O(
∑kmax
k=1 k · scan(|Eφ≥k(G)|)). 2

Discussion. Bottom-Up (Algorithm 4) exhibits the worst case be-
haviour when the input graph is a clique. In this case, when k <
kmax, Eφ=k = ∅ in line 9 and we cannot remove any edges in line
10. ThenGk is always the same asGwhen k < kmax. In this case,
Mbu(G) = O(|E(G)|) and Ibu(G) = O(k2max · scan(|E(G)|).

5. TOP-DOWN DECOMPOSITION
In this section, we discuss Top-Down in detail. We first intro-

duce how to compute a tight φ(e). Then we show how to implement
Top-Down I/O efficiently. Lastly, we analyze the peak memory us-
age and I/O complexity of Top-Down.

5.1 φ(e) Computation
From the analysis of Section 3.3, we need to compute an upper

bound φ(e) for each e ∈ E(G) to compute a good k-PG. In addi-
tion, φ(e) should be computed I/O efficiently without introducing
much extra I/O or memory cost. To achieve this, we first define the
edge degree number as follows:

Definition 5.1: (Edge Degree Number degree(e,G)) For a given
graph G and an edge e = (u, v), the edge degree number of e,
denoted by degree(e,G), is the minimum degree of u and v in G,
i.e., degree((u, v), G) = min{d(u,G), d(v,G)}. 2

We also use degree(e) to represent degree(e,G) when it is self-
evident. Based on Definition 5.1, the following proposition holds:

Proposition 5.1: Given a graph G and an edge e ∈ E(G), we
have degree(e,G) ≥ φ(e,G). 2

According to Proposition 5.1, we can compute φ(e,G) for any
e ∈ E(G) using the following equation:

φ(e,G) = degree(e,G) (2)
It is clear that φ(e,G) can be easily computed with no extra I/O

and memory costs. Fig. 4 (b) shows a comparison of |G|, |Gk|, and
|k-PG| on the uk-2005 dataset when k decreases from 100 to 2 in
Top-Down. Here, the k-PG is obtained based on the φ(e) in Eq. 2.
As shown in the figure, |Gk| decreases as k decreases. For |k-PG|,
it increases as k decreases when k is large. After reaching a peak
point with k = 50, |k-PG| decreases as k decreases. Notably, the
peak size of the k-PG is only around 5% of |G|, which is much
smaller than |G|. This indicates that degree(e,G) is a good upper
bound of φ(e,G). In Fig. 4, we use the same notationGk to denote
the input graph before processing a certain connectivity number k
for Bottom-Up and Top-Down, but the specific |Gk| values with
the same k value for Bottom-Up and Top-Down are different. This
is because we process k in different orders: Gk for Bottom-Up is
the subgraph constructed by Eφ≥k(G) while Gk for Top-Down is
the subgraph constructed by Eφ≤k(G).

Based on the above discussion, a global upper bound for φ(e)
can already result in a good k-PG in Top-Down. Therefore, to
save I/O cost, we will not recompute φ(e) for each k value as we
do in the Bottom-Up algorithm.

5.2 The Top-Down Decomposition Algorithm
In this subsection, we focus on how to implement Top-Down in

an I/O efficient manner.

Algorithm 5 Top-Down(Graph G)

1: compute φ(e) for all e ∈ E(G);
2: sort all edges e inE(G) on disk by non-increasing order of φ(e);
3: k = maxe∈E(G){φ(e)};
4: G′k ← ∅;
5: while k > 1 do
6: k-PG← G′k;
7: for all edge e with φ(e) = k by sequential scanningG on disk do
8: E(k-PG)←E(k-PG) ∪ {e} ;
9: Eφ=k ← E(Mem-Decom(k-PG, k));
10: G′k−1← CE-Mem(k-PG, Eφ=k);
11: k ← k − 1;

A Basic Solution. Given a graph G, suppose φ(e) has been com-
puted for all e ∈ E(G), a straightforward solution for Top-Down
is to strictly follow the framework in Algorithm 2 as follows: We
process k in decreasing order. For each k, we compute the k-PG
using RE(Gk, Eφ<k(Gk)) by scanning Gk once on disk. Then we
compute Eφ=k on the k-PG in memory. Lastly, we compute Gk−1

using CE(Gk, Eφ=k) by scanning Gk once again on disk.
I/O Cost Reduction. Recall that in our Top-Down algorithm,
Gk = CE(G,Eφ>k), and we use a global φ(e) for all e ∈ E(G).
Based on this, we can sort all edges e ∈ E(G) in non-increasing
order of φ(e) on disk. It is easy to see that the edges inGk for each
k value are stored sequentially on disk. Therefore, to compute Gk,
we do not need to explicitly materialize Gk on disk. On the other
hand, if we compute the k-PG using RE(Gk, Eφ<k(Gk)), we still
need to scan Gk once again on disk. To save the I/O cost when
computing the k-PG, we can utilize the following proposition:

Proposition 5.2: Given a graph G, suppose k-PG = RE(CE(G,
Eφ>k), Eφ<k), for any 2 ≤ k < kmax, we have:

E(k-PG) = E(CE((k + 1)-PG, Eφ=k+1) ∪ Eφ=k. 2

To compute the k-PG by Proposition 5.2, we define a new graph:
G′k = CE((k + 1)-PG, Eφ=k+1).

Suppose we have computed (k + 1)-PG. We can compute the set
Eφ=k+1 in the (k + 1)-PG and compute the graph G′k+1 using
CE((k+1)-PG, Eφ=k+1). According to Proposition 5.2, the edges
in the k-PG can be computed as E(k-PG) = E(G′k) ∪ Eφ=k.
Note that the edges e ∈ E(G) are sorted in non-increasing order of
φ(e), and we process all k values in decreasing order. Therefore,
Eφ=k can be easily obtained using sequential scan on disk when
processing the corresponding k value.

Based on the above discussion, our Top-Down algorithm is
shown in Algorithm 5. We first compute φ(e) for all e ∈ E(G)
using Eq. 2 (line 1), and sort all edges e ∈ E(G) by non-increasing
order of φ(e) on disk (line 2). Since kmax is unknown, we com-
pute an upper bound of kmax as kmax = maxe∈E(G){φ(e)}. We
initialize k to be kmax (line 3) and G′k to be ∅ (line 4). Then
we process all k values iteratively in decreasing order of k. In
each iteration (lines 6-11), we first compute the k-PG using E(k-
PG) = E(G′k) ∪ Eφ=k. To do this, we initialize k-PG to be G′k
(line 6) and scan all the edges e ∈ E(G) with φ(e) = k sequen-
tially on disk (line 7). For each such edge e, we add e into E(k-
PG) (line 8). After computing the k-PG, we can compute Eφ=k
by invoking Mem-Decom(k-PG, k) in memory. Lastly, we com-
pute G′k−1 using CE(k-PG, Eφ=k) in memory (line 10) and move
to process the next k (line 11). Here, CE-Mem is the in-memory
version of the CE-Disk procedure in Algorithm 4 (see Section 4.2).

Example 5.1: Fig. 6 shows a running example of Top-Down on the
graph in Fig. 2. The degree number of (v0, v2), (v0, v3), (v1, v3),
(v1, v4), (v9, v15), (v10, v15) is 2. The degree number of (v2, v7),
(v3, v7), (v4, v7), (v5, v7), (v6, v7) is 5. The degree number of
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Figure 6: Top-Down Example

(v8, v9), (v8, v10) and (v9, v10) is 7, and the degree number of
the remaining edges is 6. We start from k = 7, and 7-PG con-
sists of (v8, v9), (v8, v10), and (v9, v10), and Eφ=7 = ∅. The
6-PG is shown on the left of Fig. 6 (a). We compute Eφ=6, whose
edges are shown with bold lines, and contract them. The contracted
graph G′5 is shown in Fig. 6 (a). Then we move to handle k = 5.
We add the edges with degree(e) = 5 and obtain the 5-PG. Af-
ter computing Eφ=5 based on 5-PG, we contract Eφ=5 and ob-
tain G′4 (Fig. 6 (b)). As there are no edges with degree(e) be-
ing 4 or 3, Eφ=4 = Eφ=3 = ∅ and G′4 = G′3 = G′2. When
k = 2, we obtain 2-PG by adding the edges with degree(e) = 2
into G′2 and compute Eφ=2(2-PG) (Fig. 6 (c)). The corresponding
Eφ=2 = {(v0, v2), (v0, v3), (v1, v3), (v1, v4), (v6, v8), (v5, v10),
(v9, v15), (v10, v15)}. 2

Complexity Analysis. The peak memory usage and I/O complex-
ity of Top-Down (Algorithm 5) are shown below:

Theorem 5.1: Given a graph G, let M td(G) be the peak memory
used in Top-Down (Algorithm 5), we have:

M td(G) = O(max2≤k≤kmax{|Eφ≤k,φ≥k(G)|}). 2

Here, |Eφ≤k,φ≥k(G)}| is the size of the k-PG. According to
our discussion in Section 5.1, the size of the k-PG is usually much
smaller than |G|. Therefore, M td(G) is usually much smaller than
the memory consumed by the in-memory algorithm.

Theorem 5.2: Given a graph G, let Ibu(G) be the number of I/Os
used in Top-Down (Algorithm 5), we have:

Itd(G) = O(scan(|E(G)|) + sort(|E(G)|)). 2

Comparing Theorem 5.2 with Theorem 4.2, the I/O cost of Top-
Down to scan edges is smaller than it is for Bottom-Up. However,
Top-Down consumes extra I/O cost to sort all edges in G.

Discussion. Algorithm 5 exhibits the worst case behaviour when
the input graph is a clique. In this case, the k-PG computed in line 8
is exactly G when k = kmax. In this case, M td(G) = O(|E(G)|)
and Itd(G) = O(scan(|E(G)|) + sort(|E(G)|)).

6. HYBRID DECOMPOSITION
In this section, we discuss our Hybrid algorithm. As discussed in

Section 3.3, Hybrid combines Top-Down and Bottom-Up to seek
more opportunities to reduce the size of the k-PG. Hybrid gener-
ally follows the Top-Down algorithm, and for each k-PG computed
by Top-Down, Hybrid tries to apply the Bottom-Up algorithm to
further reduce the size of the k-PG instead of loading the k-PG in
memory. Note that according to the discussion in Section 5.1, the

Algorithm 6 Hybrid(Graph G)

1: compute φ(e) for all e ∈ E(G);
2: sort all edges e inE(G) on disk by non-increasing order of φ(e);
3: k = maxe∈E(G){φ(e)};
4: G′k ← ∅ on disk;
5: while k > 1 do
6: for all edge e = (u, v) with φ(e) = k by sequential scanningG on disk do
7: add edge (u, v) inG′k on disk;
8: compute k-PG by invoking Bottom-Up(G′k) (Algorithm 4);
9: Eφ=k ← E(k-PG)
10: G′k−1← CE-Disk(G′k , k-PG);
11: k ← k − 1;

k-PG in Top-Down is usually much smaller thanG. Therefore, ap-
plying Bottom-Up to further reduce the size of the k-PG will not
incur much additional I/O cost. On the other hand, as introduced
in Section 2, the Mem-Decom algorithm is usually memory inten-
sive. Reducing the size of the k-PG is critical to the scalability of
ECC decomposition. Therefore, Hybrid aims to reduce the size of
the k-PG without introducing much extra I/O cost.

The Hybrid algorithm is shown in Algorithm 6. The algorithm
follows the framework of Algorithm 3. Line 1-3 is the same as Al-
gorithm 5, which computes φ(e) for all e ∈ E(G), sorts edges
according to φ(e), and initializes k. Unlike Algorithm 5, the
graph G′k in Hybrid is stored on disk. The algorithm iteratively
processes all k values in decreasing order of k. In each itera-
tion (lines 6-11), the algorithm updates G′k on disk by adding all
edges e with φ(e) = k using sequential scan (lines 6-7). Then,
instead of computing Eφ=k on G′ directly, the algorithm invokes
Bottom-Up(G′k) (Algorithm 4) to compute the k-PG (line 8) and
according to the discussion in Section 3.3, the k-PG contains ex-
actly the set of edges in Eφ=k (line 9). Lastly, the algorithm com-
putes the graph G′k−1 on disk by invoking CE-Disk(G′k,k-PG)
(line 10) and moves to process the next k (line 11). The procedure
CE-Disk was introduced in Section 4.2.
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Figure 7: Hybrid Example when Processing G′6

Example 6.1: Fig. 7 shows a running example of Hybrid on the
graph in Fig. 2. Here, we only show the steps to process G′6 which
is the same as 6-PG in Fig. 6. We invoke Bottom-Up with G′6
as the input graph. For k = 2, we compute the corresponding
G2
cert(G

′
6) and 2-PG of G′6, which is shown in Fig. 7 (a). We can

then obtain Eφ=2(G′6). After removing Eφ=2(G′6), we get G3 of
G′6, which consists of two separate subgraphs and can be handled
individually. We then continue to handle k = 3, 4, 5 and obtain
Eφ=6, whose edges are marked with bold lines in Fig. 7 (b). When
Eφ=6 is obtained, we contract Eφ=6 and obtain G′5 (Fig. 7 (c)). 2
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Complexity Analysis. The peak memory usage and I/O complex-
ity of Hybrid (Algorithm 6) are shown below:

Theorem 6.1: Given a graph G, let Ghyk = RE(CE(G, Eφ>k),

Eφ<k), and Mhy(G) be the peak memory used in Hybrid (Algo-
rithm 6), we have:

Mhy(G) = O(max2≤k≤kmaxM
bu(Ghyk )). 2

Here, Mbu(Ghyk ) is the memory used to process Ghyk in Bottom-
Up (Algorithm 4). Compared to Theorem 4.1, since Mbu(Ghyk ) ≤
Mbu(G), Hybrid outperforms Bottom-Up w.r.t. memory usage.
Compared to Theorem 5.1, since Mbu(Ghyk ) < O(|Ghyk |), Hybrid
also outperforms Top-Down w.r.t. memory usage.

Theorem 6.2: Given a graph G, let Ghyk = RE(CE(G, Eφ>k),

Eφ<k), and Ihy(G) be the number of I/Os used in Hybrid (Algo-
rithm 6), we have:
Ihy(G) = O(scan(|E(G)|)+sort(|E(G)|)+

∑kmax
k=2 Ibu(Ghyk )). 2

Here, Ibu(Ghyk ) is I/O cost to process Ghyk in Bottom-Up (Algo-
rithm 4). Compared to Theorem 5.2, Hybrid consumes an extra I/O
cost of O(

∑kmax
k=2 Ibu(Ghyk )) over Top-Down. However, as dis-

cussed in Section 5.1, Ghyk is usually much smaller than graph G.
Therefore, the extra I/O cost is usually small.

Discussion. Similar to Top-Down (Algorithm 5), Hybrid (Algo-
rithm 6) exhibits the worst case behaviour when the input graph
is a clique. In this case, G′k computed in line 7 is exactly G
when k = kmax. In this case, Mhy(G) = O(|E(G)|) and
Ihy(G) = O(k2max · scan(|E(G)|) + sort(|E(G)|)).

7. PERFORMANCE STUDIES
In this section, we present our experimental results. All our ex-

periments are conducted on a machine with an Intel Xeon 2.9 GHz
CPU (8 cores) and 32 GB main memory running Linux (Red Hat
Enterprise Linux 6.4, 64bit).

DatasetG Type |V (G)| |E(G)| Avg Degree
DBLP Citation 986,324 6,707,236 13.60

LiveJournal Social 4,847,571 68,993,773 28.47
Orkut Social 3,072,441 117,185,083 76.28

uk-2005 Web 39,459,925 936,364,282 47.46
it-2004 Web 41,291,594 1,150,725,436 55.74

twitter-2010 Social 41,652,230 1,468,365,182 70.51
sk-2005 Web 50,636,154 1,949,412,601 76.99

Table 2: Datasets used in Experiments

Datasets. We use seven different types of real-world graphs with
different properties for testing (see Table 2). Of these, LiveJournal
and Orkut are downloaded from SNAP (http://snap.stanford.edu/),
and the others are downloaded from WEB (http://law.di.unimi.it/).

Algorithms. We implement and compare five algorithms:
• Random-Decom: In-memory algorithm based on [5].
• Exact-Decom: In-memory algorithm based on [9].
• Bottom-Up: Algorithm 4 (Section 4).
• Top-Down: Algorithm 5 (Section 5).
• Hybrid: Algorithm 6 (Section 6).

All algorithms are implemented in C++ and compiled with
GNU GCC 4.8.2. Random-Decom and Exact-Decom are the
in-memory algorithms used for ECC decomposition by applying
the k-ECC computation algorithm in [5] and [9] respectively for
all k values. The source code of [5] and [9] was obtained from
the authors. A simple heuristic used in [8] is applied in both
Random-Decom and Exact-Decom, which computes k-edge con-
nected components in an increasing order of k and takes the k-edge

Alg
Graph DBLP LiveJournal Orkut

time mem time mem time mem
Random-Decom 3890s 931.02M - - - -
Exact-Decom 18.9s 636.52M 1090.8s 5.98G 1.3 hrs 15.4G
Bottom-Up 38.1s 135.9M 2677.2s 752.5M 4.0 hrs 4.4G
Top-Down 21.9s 66.6M 1451.3s 643.8M 1.0 hrs 2.0G
Hybrid 22.0s 66.57M 1711.5s 598.7M 1.1 hrs 1.9G

Table 3: Comparison with In-Memory Algorithms

connected components as the input for computing (k+1)-edge con-
nected components. In Bottom-Up, Top-Down and Hybrid, we
use [9] as Mem-Decom. For each test, we set the maximum run-
ning time as 48 hours. For all experiments, we compare the peak
memory usage, the total processing time, and the total number of
I/Os. However, since the curves for the total number of I/Os are
similar to these of the total processing time, we omit the results for
the total number of I/Os due to space limitations.

Exp-1: Comparison with In-memory Algorithms. In this exper-
iment, we compare the total processing time and peak memory us-
age of the five algorithms on three datasets, DBLP, LiveJournal and
Orkut. The results are shown in Table 3. If a test can not terminate
in the time limit, or fails as a result of out of memory exception, we
mark the corresponding cell with ’-’.

Generally, the processing time and peak memory usage increase
as the size of the graph increases. Random-Decom spends the most
time and consumes the most memory of these five algorithms. It
can only complete the ECC decomposition on the smallest dataset
DBLP. The reason for Random-Decom’s long processing time is
the large number of iterations involved, which is the fundamental
step of [5], during processing.

For the remaining four algorithms, Exact-Decom consumes
much more memory than our proposed algorithms. For example,
on Orkut, it consumes 3.5, 7.7, and 8.1 times more memory than
Bottom-Up, Top-Down and Hybrid respectively. This is because
Exact-Decom keeps the whole graph in memory during process-
ing. Top-Down runs fastest among our proposed algorithms. This
is because apart from sorting the input graph once, Top-Down only
scans the input graph once in total. The processing time of Hybrid
is close to Top-Down (18% more on LiveJournal and 10% more on
Orkut), and Hybrid consumes the least memory. The reason for this
is that Hybrid uses Bottom-Up to reduce peak memory usage. On
DBLP, Hybrid does not show significant improvement, since the
memory usage of Top-Down is already very small. Bottom-Up
takes less memory than Exact-Decom because the size of Gkcert
and k-PG used in Bottom-Up is much smaller than |G|. Of our
proposed algorithms, however, it takes the most time and memory
on these three datasets. This is because Bottom-Up needs to scan
Gk multiple times for a certain k, and the size of Gkcert is usually
bigger than the k-PG used in Top-Down and Hybrid. Remark-
ably, on Orkut, Top-Down and Hybrid outperform Exact-Decom
on processing time (1.0 hours, 1.1 hours and 1.3 hours respec-
tively). This is the result of the cost sharing technique used in our
proposed algorithms to reduce redundant computations.

Exp-2: Performance on Big Graphs. In this experiment, we
compare the total processing time and peak memory usage of our
proposed algorithms on four big real datasets: uk-2005, it-2004,
twitter-2010 and sk-2005. The results are shown in Table 4. Since
both Random-Decom and Exact-Decom run out of memory on all
four big graphs, we only compare our proposed algorithms.

On these four datasets, Top-Down runs fastest and the process-
ing time of Hybrid is close to Top-Down. However, compared
with the saved memory, the extra time cost for Hybrid is usually
small. For example, on the largest dataset sk-2005, Hybrid takes
9.6% more time than Top-Down but consumes 21% less memory
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Alg
Graph uk-2005 it-2004 twitter-2010 sk-2005

time mem time mem time mem time mem
Bottom-Up 15.56 hrs 9.34G 32.17 hrs 12.93G - - - -
Top-Down 5.90 hrs 3.45G 11.01 hrs 5.62G 34.87 hrs 7.22G 16.17 hrs 10.03G
Hybrid 6.52 hrs 2.97G 12.06 hrs 4.03G 35.01 hrs 6.81G 17.73 hrs 7.92G

Table 4: Performance on Big Graphs
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Figure 8: Vary |V | (Scalability)
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Figure 9: Vary |E| (Scalability)

than Top-Down. Of the three algorithms, Bottom-Up takes more
processing time and memory than the other two. For example, on
uk-2005, the processing time and peak memory usage of Bottom-
Up are respectively 2.64 and 2.70 times more than Top-Down, and
Bottom-Up cannot finish the decomposition on twitter-2010 and
sk-2005. Note that although Bottom-Up is slower and consumes
more memory than Top-Down and Hybrid, it is still useful for the
following two reasons: First, Bottom-Up is used as a subroutine
of Hybrid, and by exploiting Bottom-Up, Hybrid consumes less
memory than Top-Down, as shown in Table 4. Second, in some
applications, such as [19], a user may be interested in the k-ECCs
with a small k, for example, k ≤ 5. Bottom-Up is very suitable for
these applications whereas Top-Down and Hybrid need to explore
all the possible k values from kmax to 2 to compute these k-ECCs.

Exp-3: Scalability Testing. We vary |V | and |E| from 20% to
100% of two large datasets it-2004 and sk-2005 and test the scala-
bility of our proposed algorithms. The results are shown in Fig. 8
and Fig. 9.

As shown in Fig. 8, both the processing time and peak memory
usage increase for our proposed algorithms when |V | increases.
This is because as |V | increases, the maximum size of k-PG (and
also Gkcert for Bottom-Up) for each algorithm also increases. Of
all the algorithms, Bottom-Up consumes the most time and mem-
ory while Top-Down takes the least processing time and Hybrid
consumes the least memory, which is consistent with our com-
plexity analysis. In Fig. 8 (a) and (c), the gap in processing time

0

5

10

15

20

25

2 4 8 16 32 64 128 256 kmaxP
ro

ce
ss

in
g 

T
im

e 
(h

rs
)

Bottom-Up
Top-Down

Hybrid

(a) uk-2005 (Time)

0

3

6

9

12

15

2 4 8 16 32 64 128 256 kmax

P
ea

k 
M

em
or

y 
(G

B
)

Bottom-Up
Top Down

Hybrid

(b) uk-2005 (Peak Memory)

0

12

24

36

48

2 8 32 128 512 kmaxP
ro

ce
ss

in
g 

T
im

e 
(h

rs
)

Bottom-Up
Top-Down

Hybrid

(c) it-2004 (Time)

0

4

8

12

16

20

2 8 32 128 512 kmax

P
ea

k 
M

em
or

y 
(G

B
)

Bottom-Up
Top-Down

Hybrid

(d) it-2004 (Peak Memory)
Figure 10: Performance for Each k

between Top-Down and Hybrid remains stable as |V | increases,
while the gap in peak memory usage increases more sharply as |V |
increases (Fig. 8 (b) and (d)). This is because, for Top-Down, as
|V | increases, the number of edges with φ(e) ≥ k and φ(e) < k
for each k-PG also increases. Hybrid eliminates this kind of edges
and obtains a smaller k-PG without much extra cost. In Fig. 8 (a)
and (b), Bottom-Up takes much more processing time and mem-
ory than Top-Down and Hybrid, and Fig. 8 (c) and (d) show that
when |V | > 60%, Bottom-Up cannot finish the decomposition.

Fig. 9 shows that, when |E| increases, both the processing time
and peak memory usage increase for all algorithms. For Top-Down
and Hybrid, the processing time on it-2004 (Fig. 9 (a)) and sk-2005
(Fig. 9 (c)) is very close while the difference in peak memory usage
increases as |E| increases (Fig. 9 (b) and (d)). This is because
Hybrid can obtain a smaller k-PG by eliminating the edges with
φ(e) ≥ k and φ(e) < k. Bottom-Up takes the most processing
time and memory and cannot finish the decomposition when |E| >
40% on sk-2005 (Fig. 9 (c) and (d)).

Exp-4: Performance for Each k. In this experiment, we compare
the cumulative processing time and peak memory usage as k in-
creases for Bottom-Up, and decreases for Top-Down and Hybrid
on uk-2005 and it-2004. The results are shown in Fig. 10.

Fig. 10 (a) shows that for Bottom-Up, as k increases, the pro-
cessing time grows sharply at first (from k = 2 to k = 64), and
then keeps stable (from k = 64 to k = kmax). This is because
initially, Gk is too large to be processed in memory and Bottom-
Up needs to scan Gk on disk to compute Gkcert and k-PG; as k
increases, more edges with φ(e) < k are removed and Gk can
be processed in memory. All the operations are then performed
in memory. For the same reason, the processing time of Bottom-
Up demonstrates a similar trend on it-2004 (Fig. 10 (c)). For the
peak memory usage, in Fig. 10 (b), as k increases, it increases
and reaches the peak point when k = 16. Thereafter, it remains
unchanged. This is because the maximum size of Gkcert usually
determines the peak memory usage of Bottom-Up. According to
Proposition 4.2, E(Gkcert) ≤ (k + 1) × (|V (Gk)| − 1), there-
fore, when k is small, |V (Gk)| is large and the decreasing rate of
|V (Gk)| is slower than the increasing rate of k. As a result, the
size of Gkcert increases. At some certain k, Gkcert reaches the peak
point and after that, although k still increases, |V (Gk)| becomes
small and the peak size of Gkcert remains unchanged. Bottom-Up
has a similar trend on it-2004 (Fig. 10 (d)).
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Fig. 10 (a) shows that for Top-Down, the processing time re-
mains stable at first (from kmax to 256) and then grows fast (from
256 to 2) as k decreases. The reason is that the degree of the
graph follows a power-law distribution and the edges with 2 ≤
degree(e) ≤ 256 constitute the majority of the edges of the graph.
Therefore, the size of corresponding k-PG with 2 ≤ k ≤ 256 is
also large. Consequently, the cumulative processing time grows
fast when k decreases from 256 to 2. As the size of k-PG also
determines the peak memory usage of Top-Down, peak memory
also remains stable when k decreases from kmax to 256 and then
grows fast when k decreases from 256 to 2, as shown in Fig. 10
(b). We make a similar observation on it-2004 for processing time
(Fig. 10(c)) and peak memory usage (Fig. 10(d)). As Hybrid fol-
lows a similar framework to Top-Down, it exhibits similar trends
to Top-Down in Fig. 10. The effectiveness of reducing Hybrid’s
memory is evident when k becomes small. For example, it is evi-
dent when k < 64 in Fig. 10 (b) and when k < 256 in Fig. 10 (d),
while the corresponding processing time is close to that of Top-
Down in Fig. 10 (a) and Fig. 10 (c).

8. RELATED WORK
We review the related work from two categories, namely, cohe-

sive subgraph models and I/O efficient graph algorithms.
Cohesive Subgraph Models. Cohesive subgraph computation is
an important problem in network analysis and there are many dif-
ferent models of cohesive subgraph in the literature. One of the
earliest graph models is the clique model [18]. As clique is often
too restrictive for many applications, more clique relaxation models
have been proposed. The n-clique model [17] requires the distance
between any two nodes in the subgraph to be at most n. The quasi-
clique model can be either a relaxation on the density [1] or the
degree [21]. Other models are also studied in the literature. k-core
[22] is the largest subgraph of a graph in which the degree of each
node is at least k. The k-truss [15] model, triangle k-core [27]
model and DN-Graph [24] model are defined based on triangles.
A k-mutual-friend subgraph model is introduced in [31]. k-edge
connected component computation is studied in [26, 32, 5, 9].
I/O Efficient Graph Algorithms. With the increase in graph size,
several graph algorithms focusing on I/O efficiency have been pro-
posed in the literature. In [11], Cheng et al. describe an I/O effi-
cient algorithm for the core decomposition problem in massive net-
works. Zhang et al.[29] study an I/O efficient algorithm to compute
the strongly connected components in a graph in the semi-external
model and extend the algorithm to the external memory model in
[28]. I/O efficient algorithms for the triangle enumeration problem
are presented in [14, 16]. And I/O efficient algorithms for the max-
imal clique enumeration problem are proposed in [12, 13]. The I/O
efficient algorithm for the k-truss problem is investigated in [23].
A connectivity index for massive-disk resident graphs is studied
in [3]. An I/O efficient semi-external algorithm for the depth first
search is proposed in [30].

9. CONCLUSION
In this paper, we study the problem of ECC graph decomposi-

tion. We propose I/O efficient techniques to reduce the size of the
graph to be loaded into memory and explore possible cost sharing
when computing k-ECCs for different k values. We introduce two
elegant graph reduction operators to reduce the memory size and
three novel algorithms to reduce the CPU and I/O costs. We con-
duct extensive experiments using seven real datasets to demonstrate
the efficiency of our approach.
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