
The shortest path is not always a straight line

Leveraging semi-metricity in graph analysis

Vasiliki Kalavri
KTH Royal Institute of

Technology
Stockholm, Sweden

kalavri@kth.se

Tiago Simas
Telefonica Research

Barcelona, Spain
tiago.simas@telefonica.com

Dionysios Logothetis
Facebook

Menlo Park, CA, USA
dionysios@fb.com

ABSTRACT
In this paper, we leverage the concept of the metric backbone
to improve the efficiency of large-scale graph analytics. The
metric backbone is the minimum subgraph that preserves
the shortest paths of a weighted graph. We use the metric
backbone in place of the original graph to compute vari-
ous graph metrics exactly or with good approximation. By
computing on a smaller graph, we improve the performance
of graph analytics applications on two different systems, a
batch graph processing system and a graph database.

Further, we provide an algorithm for the computation of
the metric backbone on large graphs. While one can com-
pute the metric backbone by solving the all-pairs-shortest-
paths problem, this approach incurs prohibitive time and
space complexity for big graphs. Instead, we propose a
heuristic that makes computing the metric backbone prac-
tical even for large graphs. Additionally, we analyze several
real datasets of different sizes and domains and we show
that we can approximate the metric backbone by removing
only first-order semi-metric edges; edges for which a shorter
two-hop path exists.

We provide a distributed implementation of our algorithm
and apply it in large scale scenarios. We evaluate our algo-
rithm using a variety of real graphs, including a Facebook
social network subgraph of ∼50 billion edges. We measure
the impact of using the metric backbone on runtime per-
formance in two graph management systems. We achieve
query speedups of up to 6.7x in the Neo4j commercial graph
database and job speedups of up to 6x in the Giraph graph
processing system.

1. INTRODUCTION
Graph analysis is an invaluable tool in several domains,

such as Online Social Network (OSN) analysis and web an-
alytics. Many analytical applications encode metrics of dis-
tance or similarity in the edge weights [9]. Consider, for
instance, the graph in Figure 1 that represents a social net-
work with the link weights representing the social proxim-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 9
Copyright 2016 VLDB Endowment 2150-8097/16/05.

ity of the relationship. Scientists may then analyze these
weighted relationships and calculate metrics, such as node
centrality [14], to infer influential users, find optimal paths
to propagate information, discover communities [34] or de-
tect fraud. Weighted graphs are also important in rec-
ommendations, where weights represent similarity between
users or user-item preferences.

As graphs grow bigger, these analytical tasks become chal-
lenging. Even with the use of specialized graph management
systems [37, 36, 27], several graph metrics are hard to com-
pute. For instance, betweenness centrality requires the com-
putation of all-pairs shortest distances, an operation that
incurs high overhead with regard to both computation and
storage. Previous work has attempted to address the chal-
lenges of computational overhead with approximation [13,
31] and reduce the storage overhead with compression tech-
niques [12, 16, 23].

This paper proposes to leverage the concepts of semi-
metricity [45] and the metric backbone, introduced in [20],
for efficient large-scale graph analysis. In a weighted graph,
semi-metric edges are direct links for which there exists an
indirect shorter path. In the example of Figure 1, the dashed
lines represent such semi-metric edges. The metric backbone
is the subgraph of a weighted graph that includes no semi-
metric edges. In Figure 1, the solid lines represent the metric
backbone of the depicted social graph. Effectively, the met-
ric backbone is a reduced representation of a graph, that
preserves information about shortest paths. This property
has been used to improve recommendation algorithms [46,
44, 48] and more recently, to improve the modularity in com-
munity detection [49].

In this work, we further explore how the performance of
various large-scale graph analysis tasks can benefit from the
concept of the metric backbone. In particular, we apply the
metric backbone concept in the context of large-scale graph
analysis systems, such as graph databases [3] and batch pro-
cessing systems [1, 37]. First, we show that, for applications
that depend explicitly on the calculation of shortest paths,
we can get exact answers, but significantly improve perfor-
mance by computing on the reduced metric backbone in-
stead. Second, even when shortest paths are not explicitly
used, such as when performing reachability queries, the met-
ric backbone can still yield correct answers faster, by reduc-
ing the amount of paths that must be explored. Third, we
study algorithms, for which the metric backbone does not
yield exact answers, but an approximation. Here, we con-
sider PageRank and show that executing the algorithm on
the metric backbone produces a good approximation, while

672

A
E

2

C 4
2

D

B
3

10

1

Figure 1: An example graph representing a social
network. The edge weights represent the proximity
of the social tie. Dashed lines represent semi-metric
edges, indicating there is a shorter, indirect path
between two nodes.

considerably improving efficiency.
Despite its usefulness, the metric backbone has not been

used in large-scale graph analysis yet. This is mainly due
to the fact that the calculation of the backbone itself, on
big graphs, is challenging. Computing the metric backbone
requires solving the APSP (All-Pairs-Shortest-Paths) prob-
lem and storing O(N2) paths, which is prohibitive for large
graphs.

In this paper, we address this challenge in two ways. First,
we provide an algorithm for the calculation of the backbone,
that does not require the computation of APSP. Our algo-
rithm starts by detecting and removing only those semi-
metric edges that violate the triangle inequality. Subse-
quently, it iteratively labels metric edges by performing short
breadth-first searches. Second, we show that even an ap-
proximation of the metric backbone, where only the semi-
metric triangles have been removed, still reduces the size of
the original graph significantly, improving performance.

This paper makes the following contributions:

• We analyze a variety of real graphs and show that
they exhibit high semi-metricity, even at the first level
of transitivity (Section 2).

• We categorize the types of applications which benefit
from the metric backbone (Section 2).

• We propose an algorithm for calculating the metric
backbone, which does not require the solution of APSP
(Section 3).

• We show that the computation of the backbone is
practical for large-scale scenarios and provide an open
source implementation of the algorithm, on top of the
Giraph graph processing system (Section 4).

• We apply the approach inside two graph management
systems and evaluate their efficiency with real datasets.
First, we show that integrating the metric backbone in-
side the the Neo4j graph database can speed up typical
graph queries by up to 6.7x. Second, we improve the
performance of several graph applications in Giraph,
reducing execution time by up to 6x and communica-
tion by up to 70% (Section 5).

The rest of the paper is structured as follows. In Section 2
we give an overview of our approach and motivate it with a
list of real-world examples. Section 3 presents the algorithm
for the computation of the metric backbone, while in Sec-
tion 4 we describe a scalable implementation. In Section 5,
we perform an extensive evaluation on algorithm scalabil-
ity and performance impact. Section 6 outlines the related
work, and in Section 7 we conclude.

2. BACKGROUND AND MOTIVATION
We start by describing the concept of the metric backbone.

To motivate its use in graph analysis, we first discuss how
different graph analysis tasks may benefit from the concept
at the algorithm level. Then, we analyze a variety of real
data sets, to validate that graphs exhibit high degree of semi-
metricity, making this approach effective in real scenarios.
Further, we outline how we can apply the concept in graph
management systems.

2.1 The metric backbone
The metric backbone is introduced in [20], primarily to

improve the accuracy of community detection algorithms [49].
To describe it more formally, let us first introduce the nec-
essary notation. Let G = (V,E) be a graph, where V is
the set of vertices and E ⊆ V × V is the set of edges, with
(u, v) ∈ E denoting an edge from u to v. We use d(u, v) to
denote the weight of an edge (u, v), representing a distance.
The weight may represent any application-defined distance
metric imposed on the graph, such as communication la-
tency or euclidean distance. Finally, given an acyclic path
p, d(p) denotes the total distance of the path.

The utility of the metric backbone is based on the role
of semi-metric edges in a graph. In a weighted graph, we
say that a direct edge between two nodes is semi-metric, if
there exists an indirect path between these two nodes, with
a shorter distance.

Definition 1. An edge (u, v) is nth-order semi-metric if
there exists an alternative path, u, x1, ..., xn, v, with n + 1
edges (u, x1), ..., (xn, v) ∈ E, such that d(u, v) > d(u, x1) +
... + d(xn, v).

For instance, in Figure 1, edge CE is 1st-order semi-metric
and edge AD is 2nd-order semi-metric. The metric backbone
is essentially a subgraph of the original graph that contains
no semi-metric edges.

Definition 2. Given a weighted graph, where weights repre-
sent non-negative distance, the metric backbone is the min-
imum subgraph that preserves the shortest paths of the orig-
inal graph.

For instance, in Figure 1 the solid lines represent the met-
ric backbone of the depicted social graph.

The utility of the backbone is not limited to weighted
graphs where weights represent distances. Often, instead
of a distance metric, relations in graphs are naturally char-
acterized by a similarity metric [49, 15]. For instance, the
Jaccard index [30] is a popular similarity metric, that takes
into consideration the number of common neighbors between
two nodes in a graph. Alternatively, in the context of an
OSN, similarity is sometimes related to the amount of in-
teraction between two users, like the number of messages
exchanged. In such cases, we can transform similarity to
distance, through appropriate functions [49, 15], and still
take advantage of the metric backbone for analysis1.

Once we have computed the metric backbone, we can use
it to calculate metrics based on shortest distances, since it
maintains this information. Additionally, recent work has
shown that removing semi-metric edges from a graph also

1While there are various functions available, a simple and com-
monly used function to convert a similarity metric x to distance
is ϕ(x) = 1

x
− 1.

673

Graph |V | |E| metric %

Facebook2 190M 49.9B Custom 26.5%
Twitter [32] 40M 1.5B Jaccard 39%
Tuenti [4] 12M 685M Jaccard 59%
LiveJournal [8] 4.8M 34M Jaccard 40%

NotreDame [7] 0.3M 1.5M
Jaccard 45%
Adamic 29%

DBLP [52] 318K 1M
Jaccard 23%
Adamic 9%

Twitter-ego [38] 81K 1.7M
Jaccard 57%
Adamic 39%

Movielens [2] 1.6K 1.9M Jaccard 88%

Facebook [41] 1K 143K
#messages 78%

message size 77%
US-Airports [19] 0.5K 6K #passengers 72%
C-Elegans [50] 0.3K 2.3K #connections 17%

Table 1: The percentage of semimetric edges on var-
ious real graphs under different similarity metrics.
In the small Facebook dataset, we use the number
of messages or size of messages exchanged between
users to measure similarity. In the US-Airports
graph we measure similarity as the number of pas-
sengers that travel between cities.

allows us to perform community detection [49] or recom-
mendations [44] with improved accuracy.

2.2 Semi-metricity in real graphs
The utility of the metric backbone is based on the obser-

vation that many real-world graphs exhibit high degree of
semi-metricity. As it has been shown in various contexts,
especially in social networks, indirect connections are often
stronger than direct ones. For instance, OSN interactions
between users, a common metric of social proximity [28],
are often more frequent between users who are not directly
connected [11, 51]. In fact, this principle has been used, for
example, to predict information propagation paths [54], to
improve link prediction in OSNs, to provide better recom-
mendations and even to design more efficient storage sys-
tems that back OSNs [11].

In general, different real-world graphs present different de-
grees of semi-metricity. Semi-metricity also varies with the
distance metric imposed on the graph. To study the prac-
ticality of our approach, we analyze a variety of real-world
graph datasets, measuring the degree of semi-metricity. We
present results for graphs in several domains, such as OSN,
web, authorship, air traffic and biological graphs. We mea-
sure semi-metricity under various commonly used metrics,
such as the Jaccard [30] and the Adamic-Adar [5] metrics.

In Table 1, we describe the datasets we analyzed and sum-
marize the results. The degree of semi-metricity ranges from
9% to 88% depending on the dataset and metric. The Movie-
lens [2] movie preference graph exhibits the highest semi-
metricity, while among the analyzed OSN graphs, Tuenti [4]
has the highest semi-metricity of 59%. Further, we see that
the same graph may exhibit different semi-metricity for dif-
ferent distance metrics. For instance, the Jaccard similarity

2A subgraph of the Facebook social network representing
a geographic area. The graph is weighed with a custom
similarity score that integrates a number of user features.

metric [30] typically results in more semi-metric edges than
the Adamic-Adar metric [5].

Further, in Figure 2 we plot the percentage of semi-metric
edges for different orders of semi-metricity, for some of the
networks of Table 1. Notice that, in most of the graphs, the
vast majority of the semi-metric edges are 1st-order semi-
metric. In other words, there are few indirect paths with
three or more edges that are shorter than any direct edges.
Previous work has also identified that the strength of indi-
rect social connections decreases with the length [25, 17].

1 2 3 4 5 6
Order of semi-metricity

0

20

40

60

80

100

%
 s

em
i-m

et
ric

 e
dg

es Facebook-#messages
Facebook-message-size
MovieLens
US-Airports
C-Elegans

Figure 2: Percentage of semi-metric edges over their
order of semi-metricity. For most of the graphs, the
majority of edges are 1st-order semi-metric edges.

This analysis reveals an opportunity. First, based on Ta-
ble 1, we see that in practice, we can run a variety of analyt-
ical tasks on a graph that is significantly reduced in size, in
some cases, with more than half the edges removed. In Sec-
tion 5, when we apply the concept in large-scale graph man-
agement systems, even seemingly modest degrees of semi-
metricity can have a significant impact on application per-
formance. Second, the analysis of Figure 2 shows that we
can compute a good approximation of the metric backbone
by removing only the 1st-order semi-metric edges. We use
this intuition in Section 3, to guide the design of the al-
gorithm for the computation of the metric backbone. This
approximation is not the optimal subgraph that gives us
the shortest paths, but it is very close to the optimal. Note
that the approximate metric backbone has the same proper-
ties as the exact metric backbone and it generates the same
shortest paths distribution.

2.3 Algorithm classification
The calculation of graph metrics may benefit from the

metric backbone in different ways. Here, we divide graph
metrics in two classes, depending on how we can exploit
the metric backbone for their calculation, and give exam-
ples for each class. Note that here, we consider the met-
rics abstractly; the classification does not depend on the
framework or model in which the corresponding algorithms
may be programmed and executed. We discuss framework-
specific impact in Section 2.4.

We summarize the classification in Table 2. Class A con-
sists of algorithms that we can run unmodified on the metric
backbone and get exactly the same answer, as on the orig-
inal graph. Examples of such algorithms include the cal-
culation of shortest distances or algorithms that depend on
computing shortest distances, like betweenness centrality.
The metric backbone maintains also the connectivity of the

674

Class Description Examples

A
Algorithms we can run unmodified
and produce exact result.

Shortest weighted paths, betweeness centrality, closeness centrality, con-
nected components, radius, reachability queries.

B
Algorithms we can run unmodified
and produce an approximation.

PageRank, eigenvector centrality, random walks, community detection,
clustering.

Table 2: A classification of graph algorithms and metrics that may be computed on the metric backbone.
For each class we provide a list of example algorithms.

graph, therefore, we can compute algorithms like connected
components and reachability queries.

In Class B, we include algorithms that we can run unmod-
ified on the metric backbone, but may return an approxima-
tion of the metric they are intended to calculate. Examples
in this category include PageRank and various community
detection algorithms [49, 24]. To give an intuition why we
can calculate fairly accurate approximations for such algo-
rithms, let us consider PageRank. PageRank is essentially a
diffusion process in a network with a damping factor. The
damping factor guarantees, regardless of the network topol-
ogy, that the process will always converge. High damping
means that the process will converge in few hops, and low
damping means that it will converge in a more wide hop pro-
cess. Since the metric backbone contains only edges where
the flow is high, working as the way of shortest (stronger)
communication, we can assume that the main diffusion pro-
cess ultimately goes through the metric backbone. We em-
pirically validate the accuracy of PageRank approximation
when using the metric backbone in Section 5.

The metric backbone reduces the information and natu-
rally, there are graph metrics for which the metric backbone
may yield highly inaccurate answers. For instance, we can-
not use the metric backbone to calculate the unweighted
shortest distances, as it will overestimate the distance for
all the pairs of nodes connected by semi-metric edges.

Finally, note that this is not meant to be an exhaustive
list of the algorithms we can or cannot use with the metric
backbone. We believe that the concept of the metric back-
bone opens up an opportunity to define more metrics and
characterize how to benefit from it.

2.4 Applications
While the benefit of the metric backbone is not specific to

a computation model or framework, it manifests in distinct
ways when used in the context of graph management sys-
tems. In this paper, we use the metric backbone to improve
the performance of two types of systems, graph databases
and distributed batch processing systems.

Graph databases. Graph databases are used to store
and query large graphs. They are optimized for traversals,
reachability and pattern matching queries [3]. For example,
users can query for paths that satisfy criteria, such as length
or the properties of the nodes. For several queries, the metric
backbone preserves the semantics. At the same time, execut-
ing a query on the metric backbone only, reduces the path
search space and may provide significant query speedups.
While, in this paper, we apply this technique manually, by
re-writing queries to use the metric backbone, we envision
that a closer integration with automatic query re-writing
will allow for more optimizations and a more user-friendly
interface. We evaluate the impact in Section 5.3.

Batch processing systems. Several of these graph met-
rics are often programmed on top of large-scale graph pro-
cessing systems, such as Pregel [37, 1] and Graphlab [36]. In
such systems, graph algorithms are implemented as parallel
per-vertex computations and typically, vertices communi-
cate by exchanging messages. This communication usually
occurs along the edges of the graph. The CPU and mem-
ory requirements, in such systems, depend on the number of
messages that have to be processed, which is typically pro-
portional to the number of the edges of the graph. In Section
5.4, we validate that by reducing the edges of a graph, we
reduce communication overhead and resource requirements,
eventually improving runtime performance.

Graph compression The metric backbone can also be
used as a lossy compression mechanism, as the amount of
semi-metric edges directly translates to storage reduction.
The last column of Table 1 corresponds to size reduction,
when the backbone is used in the place of the original graph.

2.5 Discussion
For algorithms that do not depend on the edge weights

of a graph, it might not be clear whether they could ben-
efit from the metric backbone. Actually, iterative applica-
tions that use the graph structure to propagate information,
might require more iterations to converge, when run on top
of the metric backbone.

For example, let us consider the Connected Components
problem. In its typical distributed implementation, in every
iteration, a node receives the ids of its neighbors, adopts the
minimum of these ids and, if its value has changed since the
previous iteration, it propagates the new value to its neigh-
bors. Computation stops when none of the nodes changes
value. This computation does not utilize the edge weights of
the graph, but only the graph structure. The number of it-
erations necessary for convergence is equal to the maximum
graph diameter + 1. When removing edges to generate the
metric backbone, the absolute paths between some nodes
become longer, i.e. the edges removed might be shortcuts
in the unweighted graph. Thus, by removing them, we in-
crease the graph diameter and consequently, the number of
iterations required for convergence.

However, as we show in Section 5, such applications can
still benefit from the metric backbone. Even if the algorithm
does not depend on the edge weights, when removing a large
amount of edges, we notably decrease the communication
required, thus, speeding up execution.

3. COMPUTING THE BACKBONE
In this section, we describe the algorithm for computing

the metric backbone. We show how to implement it in an
efficient and scalable manner in Section 4. The algorithm we
propose in this paper assumes a static graph that does not
change over time. We believe that incremental maintenance

675

A
E

2

C 4
2

D

B
3

10

1

A
E

2

C
2

D

B
3

10

1

A
E

2:
m

C
2: m

D

B
3:
m

10: ?

1:
m

A
E

C

D

B
2

3

2

Phase 1 Phase 2

Phase 3

BFS

A
E

2

C
2

D

B
3 1

Metric Backbone

Figure 3: The three phases of the backbone calculation. In the first phase, the algorithms removes 1st-order
semi-metric edges, in this case edge CE, marked with a dotted line. In the second phase, the algorithm
identifies metric edges, within the two-hop neighborhood of each node. Here, edges AB, BC, CD and DE
are identified as metric, while edge AD remains unlabeled. In the third phase, the algorithm discovers all
remaining higher-order semi-metric edges, by running a BFS for each unlabeled edge (in this case AD).

of the backbone is an important topic and we we plan to
address it in future work. In the Appendix, we provide a
brief description of an incremental algorithm and explain
how changes in the original graph affect the backbone.

In the rest of this paper, we consider undirected graphs
with symmetric relations. We focus on undirected graphs
as they appear naturally in the scenarios we examined. For
instance, commonly used similarity metrics, like Adamic-
Adar, are symmetric. Note, however, that the concept of the
metric backbone applies to directed graphs with asymmetric
relations too. For a detailed description of the conditions
under which an edge in a directed graph is semi-metric, we
refer the reader to [49].

3.1 Naive algorithm
The most straight-forward approach is to identify semi-

metric edges through multiple breadth-first searches: for
each edge (u, v) that we want to test for semi-metricity, we
start a breadth first search from node u and we accumulate
path weights, while visiting new nodes. During the BFS,
if vertex v is visited, we check whether the weight of the
newly discovered path is lower than d(u, v). If yes, then
(u, v) is semi-metric. Otherwise, we stop exploring towards
this direction. If the BFS finishes without encountering ver-
tex v, then there is no alternative path from u to v, and
thus, (u, v) is metric. This process is essentially equivalent
to solving the APSP problem.

This approach incurs high overhead and does not scale to
large graphs. Even if we start several BFSs in parallel, a
lot of communication and substantial storage is required to
keep track of the visited paths and their weights.

Next, we present a three-phase algorithm, that uses opti-
mizations and empirical heuristics to considerably speed up
the computation of the metric backbone. We show that, by
using simple scalable steps, we can identify the majority of
the semi-metric edges and significantly prune the paths that
ultimately need to be explored by a BFS.

3.2 Core algorithm
We divide the algorithm in three phases. In the first

phase, we discover and remove all the 1st-order semi-metric
edges. In the second phase, we take the induced subgraph
and identify metric edges within the two-hop neighborhood

of each node. Finally, we discover remaining semi-metric
edges with breadth-first searches and remove them to pro-
duce the metric backbone. Figure 3 illustrates the algorithm
phases using the network example of Section 2.

We divide the algorithm in these three phases for differ-
ent reasons. First, as we will show, we can easily parallelize
and scale the detection of 1st-order semi-metric edges, by
detecting triangles. Specifically, in Section 4.1.1, we show
how to implement this phase on top of a distributed graph
processing system. Second, as we already saw in the analy-
sis results of Section 2.2, the largest fraction of semi-metric
edges are typically 1st-order semi-metric. This allows us to
significantly reduce the size of the graph early in the process
and provide a fair and practical approximation of the metric
backbone, after having executed just the first phase. Third,
the second phase can exploit the knowledge that there are
no 1st-order semi-metric edges to efficiently discover metric
edges. Next, we describe the three phases in detail.

In the first phase, for every triangle in the graph, we
test whether one of its edges violates the triangle inequality.
Such edges are by definition semi-metric, and we can remove
them from the graph. Triangle enumeration is a well-studied
problem in graph theory and several algorithms have been
proposed for its solution [29, 47, 18]. Here, we use a vari-
ation of the node-iterator algorithm to demonstrate the re-
moval of first-order semi-metric edges. Algorithm 1 shows
the pseudocode for this phase.

Algorithm 1 Detect semi-metric edges in triangles.

1: Input: the set of vertices, V and the set of edges, E
2: for all v ∈ V . Iterate over all vertices
3: for all x, y ∈ neighbors(v)
4: if x, y ∈ E . Check if there exists a triangle
5: if d(x, y) + d(y, v) < d(x, v)
6: remove (x, v)
7: remove (v, x)

In the second phase, we reverse the logic of the algorithm
and aim to identify metric edges. Each node exploits in-
formation in its two-hop neighborhood to reason about the
semi-metricity of its edges. The initialization of this phase
is based on the following proposition:

676

Proposition 1. The lowest weight edge of every vertex in
a graph, belongs to the metric backbone.

Let v be a vertex in G and (v, u1), (v, u2), ..., (v, uk) be
v′s edges, in increasing weight order. If the edge with the
lowest weight, (v, u1), is semi-metric, then there exists a
path p = (v, ux, ..., u1), such that d(p) < d(v, u1). This
cannot be true, since d(v, u1) ≤ d(v, ux), ∀x 6= 1.

For example, consider node C of the network in Figure 1.
We can easily see that its lowest-weight edge, CD, belongs
to the metric backbone: any indirect path between C and
D would contain either edge CB or edge CE and thus, have
a larger weight than the direct edge.

After each node has marked its lowest-weight edges as
metric, it checks whether it can reason about the semi-
metricity of the rest of its edges, by comparing their weights
to the minimum weights of its two-hop paths, which contain
metric edges. This process is shown in Figure 4. Node u de-
cides whether edge e1 is metric, by checking the weights of
the two-hop paths along its metric edges, m1 and m2. Any
alternative path would include edges e2 or e3, which already
have a larger weight than e1. If u discovers that the mini-
mum two-hop paths containing its metric edges have longer
distance than the direct edge e1, then e1 is metric.

m1
m2

e1

e2 e3

u

x3
y2

m1, m2: metric

d(e1) < d(e2) < d(e3)

x2

x1

y1

y3

Figure 4: The second phase of the algorithm. Edge
indices are ordered by increasing weight value. u
has already discovered that m1 and m2 are metric.
The minimum paths containing its metric edges are
shown with dashed lines. If edge e1 has a lower
weight than both these paths, then e1 is metric.

Proposition 2. Given a node with metric edges m1,m2, ...,mk

and unlabeled edges e1, e2, ..., el, in increasing weight or-
der, edge e1 is metric if its weight is lower than all the
weights of the node’s two-hop paths, which contain edges
m1,m2, ...,mk.

The proof for Proposition 2 is given in the Appendix.
Algorithm 2 shows the pseudocode for the second phase.

We assume a partial ordering on the edge weights and that a
node’s access to its edges respects this order. We represent
the edges of a node v as an ordered set, Uv, with two addi-
tional methods, first and remove. If the set is not empty,
a call to first will return the edge in the set with the min-
imum weight. If the set contains more than one edge with
the minimum weight, first will return all of them. A call
to remove will return the same edge(s) as a call to first,
while also removing them from the set.

When no further local metric edges can be found, we pro-
ceed to the third phase, where we characterize the remain-
ing unlabeled edges, by performing breadth first search. For

each unlabeled edge (u, v), we start a BFS from node u. If
the BFS discovers an indirect path from u to v with a lower
weight than the weight of the direct edge, then (u, v) is
semi-metric. Otherwise, if the BFS finishes without finding
a shorter indirect path, then (u, v) is metric. We present the
pseudocode for the third phase in Algorithm 3. The method
bfs(u, v) returns the set of all indirect paths, starting from
node u and ending in node v.

Algorithm 2 Identify local metric edges.

1: Input: the set of vertices, V and the set of edges, E
2: M ← ∅ . Metric edges found so far
3: for all v ∈ V . Iterate over all vertices
4: Uv ← Ev . All edges are initially unlabeled
5: W ← ∅ . Set of weights for comparison
6: metric← TRUE
7: M ←M ∪ (Uv.remove) . See Proposition 1
8: while Uv 6= ∅
9: e← Uv.remove

10: for all m ∈M
11: x← m.target . The target node of m
12: wx = d(v, x) + d(Ux.first) . The min 2-hop
13: . path weight, that includes m
14: W ←W ∪ wx

15: for all w ∈W
16: if d(e) > w
17: metric← FALSE
18: break
19: if metric . All 2-step paths were larger
20: M ←M ∪ e . e is metric
21: W ← ∅
22: else
23: return M . Cannot label further edges

Based on the results of Figure 2, we expect the majority
of metric edges to be identified during the first phase. More-
over, since most of the semi-metric edges are discovered dur-
ing the first phase, we also expect the BFSs to finish early.
Indeed, in the same figure, we observe that this is true for
all the networks we analyze. In the worst case, a total of 6
hops is required to label all the edges of the graph.

Algorithm 3 Characterize remaining unlabeled edges

1: Input: the set of unlabeled edges, U
2: for all (u, v) ∈ U
3: label←METRIC
4: Pu ← bfs(u, v) . Indirect paths from u to v
5: for all p ∈ P
6: if d(p) < d(u, v) . Shorter indirect path found
7: label← SEMIMETRIC
8: break
9: if label = SEMIMETRIC

10: remove(u, v)
11: else
12: label←METRIC

3.3 Complexity analysis discussion
While our algorithm does not lower the worst-case com-

plexity of the naive algorithm, our heuristic makes the com-
putation practical for large-scale graphs. Here, we analyze
the conditions under which it is faster than solving APSP.

677

Let U be the set of vertices which are sources of unlabeled
edges, after removing semi-metric triangles. U is the upper
bound of the number of BFSs we have to run, after semi-
metric triangle removal. The worst-case complexity of the
metric-backbone algorithm is complexity of semi-metric tri-
angles + complexity of computing shortest paths (or BFSs)
on U. The worst-case complexity of basic triangle listing al-
gorithms is Θ(E∗dmax), where dmax is the maximum vertex
degree [33]. This leads to Θ(E ∗V) in the worst case. Thus,
computing the metric backbone has a worst-case complex-
ity of Θ(E ∗ V) + O(U3). If the graph is highly metric,
U ≈ V , and the worst case is equivalent to running APSP,
i.e. O(V 3). If the graph is highly semi-metric (and most of
the semi-metric edges are discovered in the first step), then
U � V and the practical run time is much lower.

4. IMPLEMENTATION
To be usable in real scenarios, the computation of the

metric backbone must be practical for large graphs. We
have implemented the computation of the backbone on top
of the Pregel programming model [37], and specifically the
Apache Giraph system [1]. Pregel-like platforms [1, 37, 36,
27] are widely adopted and are common components of data
centers We have made the implementation of the algorithm
available as open source 3.

4.1 Vertex-centric implementation
Here, we describe our vertex-centric implementation in

Giraph. It consists of three phases: (i) detection of the 1st-
order semi-metric edges (ii) iterative labeling of local metric
edges and (iii) labeling of all remaining metric edges.

4.1.1 Phase 1: Detect semi-metric triangles
This phase is based on the BSP-model algorithm for trian-

gle detection, as described in [22] for a weighted, undirected
graph with total ordering on the vertex IDs. The algorithm
consists of four supersteps and discovers each triangle ex-
actly once. In the first superstep, each vertex propagates
its ID to neighbors with higher IDs. For example, if vertex
5 is a neighbor of vertices 1 and 6, it only propagates its
ID to vertex 6. In the second superstep, each vertex iter-
ates over received messages and augments each one with (1)
its own ID and (2) the edge weight connecting this vertex
with the message sender. It then propagates the augmented
messages to all neighbors with higher IDs. In the third su-
perstep, each vertex checks whether each of the received
messages forms a triangle. If a triangle is found, the vertex
compares the edge distances to discover whether there ex-
ists a semi-metric edge. If a semi-metric edge is found, it is
marked for removal. In the final superstep, all marked edges
are removed.

4.1.2 Phase 2: Identify local metric edges
This phase consists of three supersteps. The first super-

step is executed once, while steps two and three are executed
in an alternate fashion, until no further metric edges can be
discovered.

1. Mark the lowest-weight local edges as metric: Each
vertex marks its lowest-weight edges as metric (according to
Proposition 1). Then, it sends a message with its ID and
the edge weight, along the identified metric edges.

3Implementation available at http://grafos.ml

Graph % of unlabeled edges

Tuenti [4] 1.17
LiveJournal [8] 4.36

NotreDame-web [7] 9.09
DBLP [52] 8.08

Twitter egonet [38] 1.15

Table 3: Percentage of unlabeled edges, after the
second phase of the mertric backbone algorithm.

2. Send lowest alternative path distance to metric edges:
Vertices which have received a message are endpoints of met-
ric edges found in the previous superstep. Thus, these ver-
tices mark opposite-direction edges as metric. Then, every
vertex sends one message along all its metric edges. For
metric edge (u, v), the message contains the distance of the
shortest two-hop path, that passes through u and contains
(u, v). This distance is computed by adding the weight of
(u, v) and the smallest weights of the rest of u’s edges.

3. Check lowest-weight unlabeled edge In the third super-
step, each vertex checks whether it can reason about the
semi-metricity of its smallest-weight unlabeled edge. If all
of the weights in the received messages are larger than the
weight of this edge, then both this edge and the opposite-
direction edge can be safely marked as metric.

4.1.3 Phase 3: Label remaining metric edges
In order to characterize the remaining unlabeled edges,

we initiate parallel breadth-first searches. For every unla-
beled edge (u, v), u propagates a message to its neighbors
to explore paths that have weight lower than the weight of
(u, v). After one initialization superstep the computation
iteratively runs custom breadth-first searches, until no un-
labeled edges remain. During the initialization superstep,
each vertex gathers its unlabeled edges. For each unlabeled
edge, it creates a message and propagates it along all edges
that have weight lower than the unlabeled edge weight. In
the next supersteps, each vertex performs the following com-
putation until convergence. Upon receiving a message, it
checks whether it is the target of the message edge. If it is,
then this edge is labeled as semi-metric. Otherwise, it prop-
agates the message to neighbors that could produce shorter
paths, making sure not to forward the message back to its
source. Note that, the percentage of unlabeled edges for
which we need to execute a BFS is usually very small. For
the networks we analyze, the percentage of unlabeled edges,
after executing the second step of the algorithm, is under
10% in all cases, and as low as 1% for the Twitter and
Tuenti graphs. We present these results in Table 3. Also,
since most of the semi-metric edges have already been dis-
covered, the majority of the BFSs terminate after only a few
steps.

4.2 Spreading the communication overhead
The first phase of the metric backbone algorithm has

computational complexity equivalent to the one of triangle
enumeration in undirected graphs. Even though there ex-
ist several heuristics that significantly reduce the practical
computation time [10, 43, 22], the memory requirements in
a message-passing system like Giraph, might still be fairly
high. In order to avoid memory problems, we apply a sim-
ple, yet practically effective optimization in this phase.

678

We make the observation that the computations for de-
tecting semi-metric edges can be performed completely in-
dependently. None of the parts of the algorithm require any
message aggregation or combining. Thus, in order to reduce
the communication load, we spread the algorithm execu-
tion into several identical superstep-groups, which we call
megasteps. Each megastep contains the three supersteps
of the first phase of the algorithm, as described in 4.1.1.
Throughout the program execution, we keep all vertices ac-
tive. However, during each megastep, only some of the ver-
tices execute the computation, while the rest remain idle.
Since all computations are independent from each other,
there is no need to maintain or transfer any state across
supersteps. When all vertices have executed their computa-
tion, we have encountered all first-order semi-metric edges.
Note that for this optimization to work, we do not remove
any edges before all vertices have completed their computa-
tion phase. Instead, when we encounter a semi-metric edge,
we simply put a mark on it. We then remove semi-metric
edges during a single finalization superstep.

In our implementation, we decide which vertices to acti-
vate in which megastep, based on their numeric vertex IDs.
More sophisticated load balancing methods might yield bet-
ter performance. In our evaluation, we varied the number
of megasteps for each the of the experiments. Intuitively,
the number of megasteps should increase with the graph
size, but it also depends on the amount of available mem-
ory. For example, we found that, for our experimental setup,
10 megasteps result in a fairly fast execution for finding first-
order semi-metric edges in the Livejournal dataset, while we
used 100 megasteps for the Tuenti network.

5. EVALUATION
We evaluate our approach in different respects. First, we

measure the performance or our algorithm and show that it
is orders of magnitude faster than APSP. Second, we show
that even when computing the exact backbone incurs high
overhead, we can compute a backbone approximation by
removing only 1st-order semi-metric edges, to scale to large
graphs. Third, we measure the impact on the performance
on different graph management systems. We evaluate this
using a variety of real-world data sets and graph queries.

5.1 Comparing to APSP
Here, we compare the overhead of our algorithm with that

of APSP. Computing APSP on a distributed platform like
Giraph is a challenging task. To perform this computation,
every vertex must compute and store |V | distances, resulting
in excessive communication and memory overhead. Instead,
we implement APSP in two possible ways. The first ap-
proach computes Single-Source Shortest Paths (SSSP) for
each vertex individually, in successive jobs. The second
approach runs multiple instances of Multi-Source Shortest
Paths (MSSP) 4. MSSP batches a configurable number of
simultaneous SSSPs in the same physical job, improving ef-
ficiency.

First, we run 100 instances of SSSP from different sources
and average the execution time. Second, we run MSSP us-
ing 1% of the vertices as sources. Because of the time it
takes to run the entire APSP computation, we estimate the
total time by projecting the measured time to the entire

4Our implementation of MSSP is available as open source.

Graph SSSP MSSP

DBLP [52] 120 11
Twitter-ego [38] 177 14

Table 4: Ratio of the projected execution time of (1)
SSSP from all vertices and (2) MSSP for all vertices
of the input graphs over the total execution time of
our algorithm for computing the metric backbone.

graph. We compare the projected execution times with the
total execution time of our algorithm for the Twitter-egonet
and DBLP graphs. Running APSP for larger graphs was
impossible with our available computing resources.

We show the results in Table 4. The projected execution
times for SSSP are in the order of months, while the pro-
jected execution times for MSSP are in the order of days.
Instead, our algorithm was able to compute the metric back-
bone in 8 hours for the DBLP graph and 2 hours for the
Twitter graph.

5.2 Scalability
Even though computing the exact backbone can incur

high overhead, we can still compute a backbone approxima-
tion in a scalable manner by removing only 1st-order semi-
metric edges. As we show in Section 2, the first phase of our
algorithm removes the majority of semi-metric edges, practi-
cally providing a good approximation for many applications.
Here, we show that this phase affords a scalable implemen-
tation on top of distributed graph processing frameworks,
such as Giraph. We measure execution time as the size of
the graph increases. In the experiments following, we use
this backbone approximation to measure speedup of graph
analysis applications.

We apply our algorithm on synthetic graphs constructed
with the Watts-Strogatz model [50], using Giraph’s built-in
graph generator. The generator produces unweighted graphs
with high clustering coefficient and low average path length.
Using synthetic graphs for these experiments allows us to
gradually increase the number of vertices and edges in a
controlled manner, still working with a graph that resembles
a real-world social network or web-graph characterized by
small-world properties. Even though the synthetic graphs
do not have edge weights, the execution time of this phase
depends only on the size of the graph and the number of
triangles. Edge weights impact only the the number of edges
removed at the end (see Section 4.1.1). Edge removals have
a constant overhead that does not affect scalability. We
configure the generator so that vertices have 30 edges on
average and set the model rewiring probability to 0.3. We
performed this experiment on an AWS cluster consisting of
32 r3.4xlarge instances (16 vCPUs, 122GB memory).

We show the result in Figure 5. As the graph size in-
creases from 240 million to 3.8 billion edges, the running
time increases almost linearly. On the largest graph, which
has a size of 123GB and 4.6 billion triangles, the compu-
tation finishes in 14 minutes. This is the largest graph we
could process on the 32 compute nodes due to the mes-
sage overhead. Further, in Section 5.4, we provide results
on a ∼50 billion-edge subgraph of the Facebook social net-
work, demonstrating that our algorithm is practical for even
larger graphs. In Table 5, we also provide the execution time
of semi-metric triangle detection for the real-world graph

679

Graph |E| Size (GB) Time (s)

Twitter [32] 1.5B 72 3792
Tuenti [4] 685M 33 1305

LiveJournal [8] 34M 1.6 62
NotreDame-web [7] 1.5M 0.07 25
Twitter egonet [38] 1.7M 0.08 32

DBLP [52] 1M 0.05 20

Table 5: Execution runtime of semi-metric triangle
detection and removal for real-world graphs.

Graph % of size reduction

Tuenti [4] 59.14
LiveJournal [8] 39.66

NotreDame-web [7] 16.67
DBLP [52] 22.62

Twitter egonet [38] 57.14

Table 6: The Neo4j relationship store size reduc-
tion when 1st-order semi-metric edges have been
removed from the graph.

datasets we consider in this paper. The table shows the
number of edges and size in GB of each graph. This ex-
periment was performed on an Amazon EC2 cluster of 16
r3.2xlarge instances (8 vCPUs, 61GB memory).

0 500 1000 1500 2000 2500 3000 3500 4000

#Edges (millions)

0

200

400

600

800

1000

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Figure 5: Scalability evaluation of the backbone al-
gorithm. The figure shows execution time of the
first phase for synthetic graphs of increasing size.

5.3 Graph databases
Here, we want to measure the impact on query latency

and storage reduction by using the backbone transparently
in a graph database. We load the original graph in the
Neo4j database and then run two different queries: (i) we
run a shortest path query for 1000 randomly selected pairs
of nodes in the graph, (ii) we run a connected components
query 10 times. For both queries we measure the average
latency. We perform this measurement for different graphs.
Subsequently, we start another instance of the database,
where we load the graph after removing 1st-order semi-
metric edges, and repeat the same experiment. We run this
experiment on an Intel Xeon E5530 2.40GHz server with
128GB of RAM, running Ubuntu 2.6.38.

Table 6 shows the size reduction of the Neo4j database
when we use the approximate backbone for query evaluation.
We see that for highly semi-metric graphs, the database files
have close to 60% less storage requirements.

LiveJournal Twitter Notredame DBLP
0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

Connected components

SSSP

Figure 6: Query speedup on the Neo4j graph
database. Graphs in the x-axis are ordered from
larger to smaller.

Graph Spearman Coefficient

Facebook 0.98
Tuenti [4] 0.98

LiveJournal [8] 0.95
NotreDame-web [7] 0.76

DBLP [52] 0.98
Twitter egonet [38] 0.97

Table 7: The Spearman correlation coefficient be-
tween (a) the ranking computed by PageRank on
the original weighted graph and (b) the ranking
computed by PageRank on the same graph, after
removing first-order semimetric edges.

Figure 6 shows the speedup when we execute the queries
on the approximate metric backbone compared to the orig-
inal graph for all the workloads. First, we observe the high-
est speedups occur for the shortest path query. Second, the
larger the graph, the higher the speedup. For the three
smaller graphs, the speedup ranges from 1.51 to 2.7, while
for the LiveJournal graph the speedup is 6.7.

Notice that the connected components query does not con-
sider the edge weights, connectivity. For smaller graphs
the speedup is 1.01. However, for larger graphs we still
measured significant performance improvement, with the
speedup ranging from 1.30 to 1.5.

In general, even in a highly optimized system such as
a commercial graph database, we still derive a significant
speedup by applying the backbone approach transparently.
We believe that integrating the approach inside the system
can yield even higher speedups.

5.4 Distributed graph analytics
Reducing the edges of a graph impacts directly the perfor-

mance of algorithms developed on top of distributed graph
processing systems, such as Pregel and Graphlab. In such
systems, programs are typically communication intensive
and communication coincides with the edges of the graph.
Further, reducing the size of a distributed graph also re-
duces the runtime memory requirements of such systems,
which may indirectly affect performance as well.

In this section, we measure how removing semi-metric
edges from a graph improves the performance of different
applications, developed on the Apache Giraph graph pro-
cessing system. We run three applications on the original
graph and on the graph with no 1st-order semi-metric edges;
Connected Components (CC), Single-Source-Shortest-Paths

680

(SSSP), and weighted PageRank (15 iterations). For each
application, we measure (a) the runtime speedup, and (b)
the total amount of messages sent. For PageRank, we also
compute the Spearman correlation coefficient of the result-
ing rankings, shown in Table 7. We perform this experiment
on an Amazon EC2 cluster with 16 r3.2xlarge instances5.

Facebook Tuenti LiveJournal Twitter Notredame DBLP

1

2

3

4

5

S
p
e
e
d
u
p

Connected Components

SSSP

PageRank

Figure 7: Runtime speedup on Apache Giraph.
Graphs in the x-axis are ordered from larger to
smaller. Bars are overlayed, not stacked.

Facebook Tuenti LiveJournal Twitter Notredame DBLP

10

20

30

40

50

60

70

%
 M

e
ss

a
g
e
 R

e
d
u
ct

io
n Connected components

SSSP

PageRank

Figure 8: Communication reduction on Apache Gi-
raph. Graphs in the x-axis are ordered from larger
to smaller.

In Figure 7, we plot the runtime speedup for different
applications. Bars are overlayed, not stacked. The white
bars show the speedup S1 = To/(Tb + T), where To is the
time to run the analysis on the original graph, Tb is the time
to calculate the backbone approximation, that is, remove
the 1st-order semi-metric edges, and T is the time to run
the analysis on the backbone approximation. The gray bars
show the speedup S2 = To/T that considers only the time
to run the analysis on the two graphs. This is the speedup
after the overhead of our algorithms gets amortized.

For more compute-intensive applications, such as PageR-
ank, the total runtime, including the removal of semi-metric
edges, is typically lower than running the application on the
original graph. For SSSP, this is also true for the Tuenti and
Livejournal datasets. In some cases, though, if we consider
only one run of the analysis, the overhead of our approach
exceeds the analysis runtime on the original graph. This is
true for the Facebook and DBLP datasets, and all instances
of the Connected Components experiment.

Note, however, that computing the backbone is intended
to be run once and re-used multiple times across applica-
tions, so S2 represents the practical speedup we see in the
5The analysis on the Facebook graph was run on an exper-
imental cluster with 50 machines, each with 16 cores and
10Gbs Ethernet.

applications. For example, approximating betweenness cen-
trality in a graph requires running multiple SSSP instances
with different source vertices. For such an application, the
overhead of removing semi-metric edges gets amortized after
only the first two runs of the analysis in the worst case.

With regard to graph semi-metricity, as expected, we no-
tice larger gains for highly semi-metric graphs. Tuenti, Live-
journal, Twitter, and Notredame (40-60% semi-metric) give
better speedups than Facebook and DBLP (23-27% semi-
metric). With regard to application complexity, we observe
a higher benefit for more compute-intensive applications.
We see the highest speedup for PageRank, which runs close
to six times faster for the Tuenti graph. We believe that this
is because, in contrast to the SSSP and CC applications, in
PageRank, all the nodes communicate with all their neigh-
bors, in every iteration (in SSSP and CC nodes do not send
outgoing messages to their neighbors, if their value does not
change). The shortest paths application also benefits sig-
nificantly, running about two times faster on average. Not
surprisingly, connected components experiences the lowest
speedup, since it does not make use of the edge weights.
Even so, for a highly semi-metric graph, such as Tuenti, the
benefit is substantial.

Figure 8 shows the communication reduction, when run-
ning the same three applications, for the different networks.
For SSSP and PageRank, we observe tremendous commu-
nication reduction, ranging from 30% to 70%, in terms of
messages exchanged, throughout the application execution.
Even for connected components, the reduction is remark-
able, ranging from 10% to 50%.

6. RELATED WORK

Complex network analysis. The concept of semi-metricity
in weighted graphs has been first used in complex network
analysis. Semi-metricity was introduced in weighted graphs
by Rocha [45, 46], showing that semi-metric edges in a
weighted graph encode some latent information between a
pair of nodes, which may be useful for information discov-
ery [45, 46, 48, 44, 49]. Simas et al. introduce in [49] a
new mathematical framework to the study of networks in
general and specifically semi-metric networks. In [49] Simas
et al. introduce the concept of distance backbones, a gener-
alization of the metric backbone. In this work they present
a few examples of how distance backbones, including the
metric backbone, can be useful in network analysis, such as
improving modularity in community detection.

Graph compression and query optimization. In [39, 6],
the authors examine the problem of producing minimal graph
representations, while preserving the graph’s reachability
properties. Their goal is to reduce the memory used for
storing the graph and potentially improve the efficiency of
certain algorithms that contain reachability queries. More
recent works on graph compression, [12], [16], look into spe-
cific techniques for compressing web graphs and social net-
works. These provide methods that preserve the information
of the original graph. In these cases, graph decompression
is necessary for query evaluation. On the other hand, [23],
proposes a query-preserving graph compression method, rel-
ative to reachability and graph pattern queries. Similar to
our work, the query can be directly issued on the compressed

681

graph representation. The authors also provide a method for
incrementally maintaining the compressed graph structure,
for dynamic graphs. The proposed algorithms summarize
nodes, based on equivalence relations for each query class.
Compression algorithms are also studied in [40, 35]. These
works explore ways to minimize graph representation over-
head and offer several algorithms, both sequential and dis-
tributed, for lossless and lossy graph compression. However,
their main goal is reducing the graph sizes, while providing
guarantees on decompression accuracy.

Graph compression is also closely related to graph query
optimization. [53] provides a graph indexing technique that
speeds up search in large graphs. It leverages shortest-
paths information, but does not generate a reduced graph
representation. The indexes encode neighborhood shortest-
paths information, which is used to prune the graph search
space. The technique is mostly targeted to graph isomor-
phism queries.

If we view the metric backbone as a reduced graph rep-
resentation, there are two fundamental differences between
our work and aforementioned works. First, our method does
not collapse graph vertices; the metric backbone preserves
all the vertices of the original graph. Second, none of these
works take into account the weights when compressing the
graph. Regarding the motivation of our work, an important
difference is that we are mainly concerned with the chal-
lenge of scalability and we provide a distributed implemen-
tation of the metric backbone algorithm. Moreover, existing
works focus on optimizing reachability and graph matching
queries. In contrast, we go a step further and evaluate the
metric backbone in the context of graph analytics and iter-
ative graph processing.

Spanners and Sparsifiers. Spanners [42, 21] and sparsi-
fiers [26] are approximate graph structures that are used
to approximate graph distances and shortest paths. They
have been mostly used in streaming algorithms as sketches
or graph summaries. In this context, the metric backbone
can be considered equivalent to the minimum 1-Spanner. A
spanner guarantees that distances can be approximated with
a certain maximum multiplicative error. On the contrary,
the metric backbone preserves all shortest paths and gives
the exact shortest distances. Thus, it can be used in appli-
cations that cannot tolerate errors on the graph distances.

7. CONCLUSION
Several real-world weighted graphs exhibit high degree of

semi-metricity; direct edges between nodes are not always
the shortest path. The metric backbone captures this prop-
erty, allowing us to compute several graph metrics more ef-
ficiently. When used in the context of graph management
systems, even modestly semi-metric graphs reduce the size
of the original graph enough to allow for runtime speedups
of up to 6 times.

Traditionally, the computation of the metric backbone re-
quired the solution of the APSP problem. Here, we have
proposed an algorithm that can compute the metric back-
bone, avoiding the computation of APSP. Further, we have
showed that we can approximate the metric backbone by
just removing 1st-order semi-metric edges. This allows us
to scale the computation of the metric backbone, making its
use practical in large scale scenarios.

Finally, while in this paper we have used the metric back-
bone to improve the performance of graph algorithms trans-
parently, one can use the concept to re-design certain al-
gorithms explicitly on top of the backbone. For instance,
we can compute shortest paths more efficiently by intelli-
gently choosing which nodes to traverse. We believe that
the metric backbone and distance backbones, in general, of-
fer a framework for the design of such algorithms and we
plan to investigate this in the future.

8. REFERENCES
[1] Apache Giraph Project. http://giraph.apache.org/.

[2] The movielens dataset.
http://grouplens.org/datasets/movielens.

[3] Neo4j Graph Database. http://neo4j.com.
[4] The Tuenti Social Network. http://www.tuenti.com.

[5] L. A. Adamic et al. Friends and neighbors on the Web.
Social Networks, 25(3):211–230, July 2003.

[6] A. V. Aho, et al. The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[7] R. Albert, et al. Internet: Diameter of the World-Wide
Web. Nature, 401(6749):130–131, Sept. 1999.

[8] L. Backstrom, et al. Group formation in large social
networks: membership, growth, and evolution. In ACM
SIGKDD’06, Aug. 2006.

[9] A. Barrat, et al. The architecture of complex weighted
networks. Proceedings of the National Academy of Sciences
of the United States of America, 101(11):3747–52, Mar.
2004.

[10] J. W. Berry, et al. Why do simple algorithms for triangle
enumeration work in the real world? In Conference on
Innovations in Theoretical Computer Science, pages
225–234. ACM, 2014.

[11] J. Blackburn, et al. The power of indirect ties in
friend-to-friend storage systems. IEEE International
Conference on Peer-to-Peer Computing, Sept. 2014.

[12] P. Boldi, et al. Layered label propagation: A
multiresolution coordinate-free ordering for compressing
social networks. In ACM WWW’11, pages 587–596, 2011.

[13] P. Boldi et al. In-Core Computation of Geometric
Centralities with HyperBall: A Hundred Billion Nodes and
Beyond. In IEEE International Conference on Data
Mining Workshops, pages 621–628. IEEE, Dec. 2013.

[14] U. Brandes. A Faster Algorithm for Betweenness
Centrality. Journal of Mathematical Sociology, 2001.

[15] S. Chen, et al. On the similarity metric and the distance
metric. Theoretical Computer Science,
410(24-25):2365–2376, May 2009.

[16] F. Chierichetti, et al. On compressing social networks. In
ACM SIGKDD’09, pages 219–228. ACM, 2009.

[17] N. A. Christakis et al. Connected: The Surprising Power of
Our Social Networks and how They Shape Our Lives. 2009.

[18] S. Chu et al. Triangle listing in massive networks and its
applications. In ACM SIGKDD’11, pages 672–680, 2011.

[19] V. Colizza, et al. Reaction-diffusion processes and
metapopulation models in heterogeneous networks. Nature
Physics, 2007.

[20] T. M. L. M. De Simas. Stochastic Models and Transitivity
in Complex Networks. PhD thesis, Indiana University, 2012.

[21] F. F. Dragan, et al. Spanners in sparse graphs. Journal of
Computer and System Sciences, 77(6):1108 – 1119, 2011.

[22] D. Ediger et al. Investigating graph algorithms in the bsp
model on the cray xmt. In IPDPS Workshops, pages
1638–1645. IEEE, 2013.

[23] W. Fan, et al. Query preserving graph compression. In
ACM SIGMOD’12, pages 157–168, 2012.

[24] S. Fortunato et al. Random walks on directed networks:
the case of pagerank. International Journal of Bifurcation
and Chaos, 17(07):2343–2353, 2007.

682

[25] N. Friedkin. Horizons of observability and limits of informal
control in organizations. Social Forces, 62(1):54 – 77, 1983.

[26] W. S. Fung, et al. A general framework for graph
sparsification. In ACM Symposium on Theory of
Computing, pages 71–80, New York, NY, USA, 2011. ACM.

[27] J. E. Gonzalez, et al. GraphX: Graph Processing in a
Distributed Dataflow Framework. In USENIX Symposium
on Operating Systems Design and Implementation, 2014.

[28] M. Granovetter. The strenght of weak ties. American
Journal of Sociology, 78(6):1360–1380, May 1973.

[29] A. Itai et al. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978.

[30] P. Jaccard. The Distribution of the Flora in the Alpine
Zone. New Phytologist, 11(2):37 – 50, 1912.

[31] U. Kang, et al. Centralities in Large Networks: Algorithms
and Observations. SIAM International Conference on Data
Mining.

[32] H. Kwak, et al. What is Twitter, a social network or a news
media? In International Conference on World Wide Web.
ACM Press, Apr. 2010.

[33] M. Latapy. Main-memory triangle computations for very
large (sparse (power-law)) graphs. Theor. Comput. Sci.,
407(1-3):458–473, Nov. 2008.

[34] I. Leung, et al. Towards real-time community detection in
large networks. Physical Review E, 79(6):066107, June
2009.

[35] X. Liu, et al. Distributed graph summarization. In ACM
CIKM’14, pages 799–808, 2014.

[36] Y. Low, et al. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. The
VLDB Endowment, Aug. 2012.

[37] G. Malewicz, et al. Pregel: a system for large-scale graph
processing. In ACM SIGMOD International Conference on
Management of Data, 2010.

[38] J. McAuley et al. Learning to Discover Social Circles in
Ego Networks. In Advances in Neural Information
Processing Systems, 2012.

[39] D. M. Moyles et al. An algorithm for finding a minimum
equivalent graph of a digraph. Journal of the ACM
(JACM), 16(3):455–460, 1969.

[40] S. Navlakha, et al. Graph summarization with bounded
error. In ACM SIGMOD International Conference on
Management of Data, pages 419–432, 2008.

[41] T. Opsahl. Triadic closure in two-mode networks:
Redefining the global and local clustering coefficients.
Social Networks, 35(2):159–167, May 2013.

[42] D. Peleg et al. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989.

[43] L. Quick, et al. Using pregel-like large scale graph
processing frameworks for social network analysis. In
International Conference on Advances in Social Networks
Analysis and Mining, pages 457–463, Washington, DC,
USA, 2012.

[44] L. Rocha, et al. MyLibrary@LANL: Proximity and
Semi-metric Networks for a Collaborative and
Recommender Web Service. In ACM International
Conference on Web Intelligence, 2005.

[45] L. M. Rocha. Proximity and semi-metric analysis of social
networks. In Internal Report of Advanced Knowledge
Integration In Assessing Terrorist Threats LDRD-DR
Network Analysis Component. LAUR, pages 02–6557, 2002.

[46] L. M. Rocha. Semi-metric behavior in document networks
and its application to recommendation systems. Soft
Computing Agents: A New Perspective for Dynamic
Information Systems, 83:137, 2002.

[47] T. Schank et al. Finding, counting and listing all triangles
in large graphs, an experimental study. In Experimental
and Efficient Algorithms, pages 606–609. Springer, 2005.

[48] T. Simas et al. Semi-metric Networks for Recommender
Systems. IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, 2012.

[49] T. Simas et al. Distance closures on complex networks.
Network Science, 3:227–268, 6 2015.

[50] D. Watts et al. Collective dynamics of ’small-world’
networks. Nature, 1998.

[51] C. Wilson, et al. User interactions in social networks and
their implications. In ACM European Conference on
Computer Systems, page 205, Apr. 2009.

[52] J. Yang et al. Defining and Evaluating Network
Communities based on Ground-truth. In IEEE
International Conference on Data Mining, May 2012.

[53] P. Zhao et al. On graph query optimization in large
networks. Proc. VLDB Endow., 3(1-2):340–351, Sept. 2010.

[54] X. Zuo, et al. The Influence of Indirect Ties on Social
Network Dynamics. In International Conference on Social
Informatics, Nov. 2014.

APPENDIX
Proofs. We prove Proposition 2, using the notation of Section 2.1.

Proof. Let edge e1 of Figure 4 be the edge in consideration and
let v be the label of its target node. According to the proposition,

d(e1) < d(m1) + d(x1) (1)

and
d(e1) < d(m2) + d(y1) (2)

We will assume that e1 is semi-metric and prove that this cannot
be true. If e1 is semi-metric, then there exists a path p, from v
to u, which does not contain e1, has length at least two and its
weight is lower than the weight of e1, i.e.

d(p) < d(e1). (3)

Obviously, this path cannot contain e2 and e3, since d(e1) <
d(e2) < d(e3). Thus, p passes through m1 or m2. If p passes
through m1, then its lowest weight possible would be d(m1) +
d(x1). According to 1, e1 has a weight smaller than the lowest
possible weight of a path passing through m1, thus, equation 3
cannot be true. We arrive at the same contradiction assuming
that p passes through m2. Therefore, e1 is metric.

Incremental maintenance of the metric backbone. We
only consider single edge removals and edge additions. Extending
these to edge weight changes and node additions or removals, is
straight-forward. Note that the edges that change from semi-
metric to metric (or vice-versa), in one of the above cases, do not
cause further changes in the metric backbone, since all weights
remain unchanged.

Edge Removal : If the edge to be removed is semi-metric, the
metric backbone does not change. The edge can be simply re-
moved from the original graph. If the edge to be removed is
metric, some of the semi-metric edges might now become met-
ric. Note that the metric edges do not get affected. Let (u, v)
be the metric edge to be removed. A semi-metric edge (x, y)
is potentially affected by the removal of (u, v) if there is a path
p = (x, ..., u, v, ...y) in G, such that d(p) < d(x, y). Thus, the only
edges that might be affected are the semi-metric edges in indirect
paths from u to v. We check these edges with the following steps.
First, remove edge (u, v) from G. Then, for every semi-metric
edge in all remaining paths from u to v, execute the backbone
algorithm, starting from phase 2.

Edge Addition: When adding an edge (u, v) to the original
graph, we first check whether this edge is semi-metric. In order
to do so, we can easily find the current shortest path from u to v,
using the metric backbone. If the weight of the new edge is larger
than the current shortest path, then this edge is semi-metric and
the metric backbone does not change. If the edge weight of the
new edge is lower than the current shortest path from u to v,
then the edge is metric. In this case, some of the metric edges
of the backbone might become semi-metric, if a shorter path is
introduced through the new edge. Again, the only edges that we
need to consider are the ones on the indirect paths from node u
to node v.

683

