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ABSTRACT
Developing efficient and scalable algorithms for Latent Dirichlet
Allocation (LDA) is of wide interest for many applications. Previ-
ous work has developed an O(1) Metropolis-Hastings (MH) sam-
pling method for each token. However, its performance is far from
being optimal due to frequent cache misses caused by random ac-
cesses to the parameter matrices.

In this paper, we first carefully analyze the memory access be-
havior of existing algorithms for LDA by cache locality at docu-
ment level. We then develop WarpLDA, which achieves O(1) time
complexity per-token and fits the randomly accessed memory per-
document in the L3 cache. Our empirical results in a wide range of
testing conditions demonstrate that WarpLDA is consistently 5-15x
faster than the state-of-the-art MH-based LightLDA, and is faster
than the state-of-the-art sparsity aware F+LDA in most settings.
Our WarpLDA learns a million topics from 639 millions of doc-
uments in only five hours at an unprecedented throughput of 11
billion tokens per second.

1. INTRODUCTION
Topic modeling provides a suite of statistical tools to discover la-

tent semantic structures from complex corpora, with latent Dirich-
let allocation (LDA) [7] as the most popular one. LDA has found
many applications in text analysis [8, 36], data visualization [18,
22], recommendation systems [14], information retrieval [29] and
network analysis [11, 13]. LDA represents each document as an
admixture of topics, each of which is a unigram distribution of
words. Since exact inference is intractable, both variational Bayes
(VB) and Markov Chain Monte Carlo (MCMC) methods have been
developed for approximate inference, including mean-field varia-
tional Bayes [7], collapsed variational Bayes [26], collapsed Gibbs
sampling (CGS) [16] and expectation propagation [23]. Among
these methods, CGS is most popular due to its simplicity and avail-
ability for fast sampling algorithms [30, 20, 32].

Entering the Big Data era, applications often require large-scale
topic modeling to boost their performance. For example, Wang et
al. [28, 32] show that learning 1 million topics can lead to signifi-
cant performance gain on various tasks such as advertisement and
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Table 1: Memory hierarchy in an Intel Ivy Bridge CPU. L1D
denotes L1 data cache, and ∗ stands for per core.

L1D L2 L3 Main memory
Latency (cycles) 5 12 30 180+
Size 32KB∗ 256KB∗ 30MB 10GB+

recommendation. Other recent endeavours on learning large topic
models often contain billions of documents, millions of topics, and
millions of unique tokens [28, 32, 21]. Various fast sampling algo-
rithms have been proposed for LDA, reducing the time complexity
of sampling the topic assignment per-token from O(K) to O(1),
where K is the number of topics [30, 21, 32].

Although many efforts have been spent on improving the per-
token sampling complexity, little attention has been paid to exam-
ine the cache locality, another important dimension to improve the
overall efficiency. For all the aforementioned algorithms, the cache
locality is not getting better; in fact some are even getting worse
(See Table 2 for details). The running time of LDA is often dom-
inated by random memory accesses, where the time consumption
is roughly proportional to the latency of each access. As shown
in Table 1, the latency of accessing different levels of the memory
hierarchy varies greatly, and accessing a higher-level cache can be
orders of magnitude faster than accessing a lower-level cache or the
main memory. As we will show in Sec. 3, when processing a single
document, the random accesses of previous LDA algorithms spread
across either an O(KV ) topic-word count matrix or an O(DK)
document-topic count matrix, whereD is the number of documents
and V is the vocabulary size. As K, V and D can all exceed one
million in large-scale applications, both matrices exceed tens of gi-
gabytes in size, which is too large to fit in any cache, resulting in
unsatisfactory memory efficiency. Moreover, this size is difficult
to reduce for CGS because both matrices need to be accessed for
sampling a single token.

In this paper, we propose to reduce the latency of random ac-
cesses of LDA by reducing the size of the randomly accessed mem-
ory. Based on a careful analysis of existing algorithms, we de-
velop WarpLDA1, a novel sampling algorithm based on Monte-
Carlo Expectation Maximization (MCEM) that preserves the O(1)
time complexity per-token and has some carefully designed re-
ordering strategy to achieve an O(K) size of randomly accessed
memory per-document, which is small enough to fit in the L3 cache.
As the L3 cache is at least six times faster than the main memory
(See Table 1), this results in a significant performance gain. An-
other nice property of WarpLDA is that it simplifies the system de-
sign. We present an implementation of WarpLDA in a distributed

1The name comes after Warp Drive, the faster-than-light propul-
sion system in Star Trek.
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and memory-efficient way, with a carefully designed computational
framework based on distributed sparse matrices.

Extensive empirical studies in a wide range of settings demon-
strate that WarpLDA consistently converges 5-15x faster than the
state-of-the-art Metropolis-Hastings based LightLDA [32] and in
most settings, faster than the state-of-the-art sparsity aware F+-
LDA [31] for learning LDA models with thousands to millions top-
ics. WarpLDA scales to corpora of billion-scale documents, and
achieves an unprecedented 11 billion tokens per second throughput
with 256 machines.

Outline: Section 2 introduces some basics of LDA, Section
3 provides the memory efficiency analysis of existing algorithms.
Section 4 introduces the WarpLDA algorithm, and Section 5 pro-
vides system design and implementation details. Experiments are
presented in Section 6. Section 7 concludes.

2. BACKGROUNDS

2.1 Basics of LDA
Let wd = {wdn}Ld

n=1 denote the collection of Ld words in doc-
ument d and W = {wd}Dd=1 be a corpus of D documents. Let V
denote the vocabulary size. Latent Dirichlet Allocation [7] is a hi-
erarchical Bayesian model, which models the distribution of a word
as a mixture of K topic distributions, with the shared mixing pro-
portion for all the words within the same document. Formally, each
topic k is a V -dim word distribution φk, which follows a Dirichlet
prior φk ∼ Dir(β1) with parameter β; and the generative process
of LDA for each document d is:

Draw a K-dim topic mixing proportion: θd ∼ Dir(α),

For each position n ∈ {1, . . . , Ld}:

Draw a topic assignment: zdn ∼ Mult(θd),
Draw a word: wdn ∼ Mult(φzdn),

where Mult(·) is a multinomial distribution (or categorical distri-
bution), and α are Dirichlet parameters. Let Φ = [φ1 · · ·φK ] be
the K × V topic matrix. We further denote Θ = {θd}Dd=1 and
Z = {zd}Dd=1, where zd = {zdn}Ld

n=1. Let ᾱ =
∑K
k=1 αk and

β̄ = V β. In this paper, we define token as an occurrence of a
word, e.g., “apple” is a word, and each of its occurrence is a token.
When we say “all tokens of word w” we mean all the occurrences
of w, which may have different topic assignments and we use zw
to denote the topic assignments of all tokens of word w.

To train LDA, one must infer the posterior distribution (or its
marginal version) of latent variables (Θ,Φ,Z) given (W,α, β).
Unfortunately, exact posterior inference is intractable. Thus ap-
proximate techniques including variational Bayes and Markov Chain
Monte Carlo (MCMC) methods are adopted. As mentioned before,
Collapsed Gibbs Sampling (CGS) [16] is most popular because
of its simplicity and the availability of fast sampling algorithms.
Given (W,α, β), CGS integrates out (Θ,Φ) by conjugacy and
iteratively samples zdn from the local conditional distribution:

p(zdn=k|Z¬dn, wdn=w,W¬dn) ∝ (C¬dndk +αk)
C¬dnwk +β

C¬dnk +β̄
, (1)

where Cdk =
∑Ld
n=1 I(zdn = k) is the number of tokens that are

assigned to topic k in document d; Cwk =
∑D
d=1

∑Ld
n=1 I(zdn =

k,wdn = w) is the number of times that word w has topic k;
Ck =

∑
d Cdk =

∑
w Cwk. 2 The superscript or subscript ¬dn

stands for excluding (zdn, wdn) from the corresponding count or
2We distinguish different counts by their subscripts.

Algorithm 1 Metropolis-Hastings algorithm
Require: Initial state x0, p(x), q(x̂|x), number of steps M

for t← 1 to M do
Draw x̂ ∼ q(x̂|xt−1)

Compute the acceptance rate π = min{1, p(x̂)q(xt−1|x̂)

p(xt−1)q(x̂|xt−1)
}

xt =

{
x̂ with probability π
xt−1 otherwise

end for

collection. We further define Cd to be the D × K matrix formed
by Cdk, and Cw to be the V × K matrix formed by Cwk, with
cd and cw being their particular rows indexed by d and w, and Kd,
Kw being the number of non-zero entries of the corresponding row.
Let the global topic count vector ck = (C1, . . . , CK)>.

By sampling in a collapsed space, CGS often converges faster
than a standard Gibbs sampler in a space with all the variables. A
straightforward implementation of Eq. (1) is of complexity O(K)
per-token by naively enumerating all the K possible topic assign-
ments. This can be too expensive for large-scale applications where
K can be in the order of 106. Various fast sampling algorithms [30,
20, 32, 31] exist to speed this up, as we shall see in Sec. 3.

2.2 Sample from Probability Distributions
Before introducing the algorithm, we first describe some useful

tools to sample from probability distributions, which are used by
WarpLDA and other algorithms [32, 20].

Metropolis-Hastings (MH): Let p(x) be an (unnormalized) tar-
get distribution. We consider the nontrivial case that it is hard to
directly draw samples from p(x). MH methods construct a Markov
chain with an easy-to-sample proposal distribution q(x̂t|xt−1) at
each step t. Starting with an arbitrary state x0, MH repeatedly gen-
erates samples from the proposal distribution x̂t ∼ q(x̂t|xt−1), and
updates the current state with the new sample with an acceptance
rate πt = min{1, p(x̂t)q(xt−1|x̂t)

p(xt−1)q(x̂t|xt−1)
}. Under some mild condi-

tions, it is guaranteed that p(xt) converges to p(x) as t → ∞,
regardless of x0 and q(x̂|x) (See Alg. 1). In LDA, p(x) is the
distribution of topic assignment in Eq. (1), whose sampling com-
plexity isO(K), and q(x̂t|xt−1) is often a cheap approximation of
p(x), as will be clear soon.

Mixture of multinomials: If a multinomial distribution has the
form

p(x = k) ∝ Ak +Bk,

it can be represented by a mixture of two distributions,

p(x = k) =
ZA

ZA + ZB
pA(x = k) +

ZB
ZA + ZB

pB(x = k),

where ZA =
∑
k Ak and ZB =

∑
k Bk are the normalizing co-

efficients, and pA(x = k) = Ak
ZA
, pB(x = k) = Bk

ZB
are the

normalized mixture distributions. By introducing an extra binary
variable u, which follows a Bernoulli distribution Bern( ZA

ZA+ZB
),

and defining p(x|u = 1) = pA(x), p(x|u = 0) = pB(x), one can
confirm that p(x) is a marginal distribution of p(u)p(x|u). There-
fore, a sample from p(x) can be drawn via an ancestral sampler,
which first draws u ∼ Bern( ZA

ZA+ZB
) and then samples x from

pA(x) if u = 1 and from pB(x) if u = 0. This principle is useful
when both pA(x) and pB(x) are easy to sample from.

Alias Sampling: Alias sampling [27] is a technique to draw
samples from aK-dim multinomial distribution inO(1) afterO(K)
construction of an auxiliary structure called alias table. The alias
table hasK bins with equal probability, with at most two outcomes
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Table 2: Existing algorithms of LDA, whereK: number of topics,Kd: average number of topics per-document,Kw: average number
of topics per word, D: number of documents, V : size of vocabulary, SA: sparsity-aware algorithm, MH: MH-based algorithm.

Algorithm Type Amount of sequential accesses Number of random accesses Size of randomly accessed memory Order
O(per-token) O(per-token) per-document

CGS [16] - K - - doc
SparseLDA [30] SA Kd +Kw Kd +Kw KV doc
AliasLDA [20] SA&MH Kd Kd KV doc
F+LDA [31] SA Kd Kd DK word

LightLDA [32] MH - 1 KV doc
WarpLDA MH - 1 K doc&word

in each bin. The samples can be obtained by randomly selecting a
bin and then randomly selecting an outcome from that bin. Alias
sampling has been used in previous LDA algorithms [20, 32].

3. ANALYSIS OF EXISTING ALGORITHMS
We now describe our methodology to analyze the memory ac-

cess efficiency, and analyze of existing fast sampling algorithms of
LDA [30, 21, 32, 31] to motivate the development of WarpLDA.

3.1 Methodology
The running time of LDA is often dominated by random memory

accesses, whose efficiency depends on the average latency of each
access. As accessing main memory is very slow, modern computers
exploit locality to reduce the latency. If many memory accesses are
concentrated in a small area which fits in the cache, the latency will
reduce greatly, as shown in Table 1. We focus on the L3 cache in
this paper, which is about 30 megabytes in size, and is at least six
times faster than the main memory.

The size of randomly accessed memory is an important factor to
the latency, because a smaller memory region can fit in a higher-
level cache whose latency is lower. So we analyze the memory ac-
cess efficiency by the size of randomly accessed memory, more pre-
cisely, the size of possibly accessed memory region when sampling
the topic assignments for a document zd or a word zw, depending
on whether the sampling algorithm visits the tokens document-by-
document or word-by-word, which will be defined soon.

As we shall see soon, there are two main types of random ac-
cess encountered for LDA: (1) randomly accessing a matrix of size
O(KV ) or O(DK); and (2) randomly accessing a vector of size
O(K). As K, V and D can all exceed one million, the matrix
is typically tens of gigabytes in size even when it is sparse; but
the vector is megabytes or smaller in size, and fits in the L3 cache.
Therefore, it is reasonable to assume that random accesses to matri-
ces are not efficient, while random accesses to vectors are efficient.

Existing fast sampling algorithms for LDA follow CGS that we
introduced in Sec. 2.1, which iteratively visits every token of the
corpus, and samples the topic assignments based on the count ma-
trices Cd and Cw. The tokens can be visited in any order. Two
commonly used ordering are document-by-document which firstly
visits all tokens for document 1, and then visits all tokens for docu-
ment 2, and so on; and word-by-word which firstly visits all tokens
for word 1, and then visits all tokens for word 2, and so on. These
orderings determine which one of the two count matrices Cd and
Cw can be accessed efficiently, as we will see in Sec. 3.3.

3.2 Existing Fast Sampling Algorithms
We now summarize existing fast sampling algorithms [30, 20,

32, 31]. These algorithms can be categorized as being either sparsity-
aware or MH-based, and they have different factorizations to the
basic CGS sampling formula Eq. (1). For clarity all the ¬dn super-
scripts of CGS based algorithms are omitted.

Sparsity-aware algorithms utilize the sparse structure of the count
matrices Cd and Cw. For example, SparseLDA [30] has the fac-
torization Cwk Cdk+αk

Ck+β̄
+β Cdk

Ck+β̄
+ αkβ

Ck+β̄
and it enumerates all

non-zero entries of cw and cd to calculate the normalizing con-
stant of each term, which are

∑K
k=1 Cwk

Cdk+αk
Ck+β̄

,
∑K
k=1 β

Cdk
Ck+β̄

and
∑K
k=1

αkβ

Ck+β̄
respectively. AliasLDA [20] has the factorization

Cdk
Cwk+β

Ck+β̄
+ αk

Cwk+β

Ck+β̄
, where Cwk and Ck in the latter term are

approximated with their stale versions. AliasLDA enumerates all
non-zero entries of cd to calculate the normalizing constant of the
first term, and an alias table is used to draw samples from the latter
term in amortized O(1) time. Then, an MH step is used to correct
the bias of stale topic counts. F+LDA [31] has the same factoriza-
tion as AliasLDA but visits the tokens word-by-word, and use a F+
tree for the exact sampling of the latter term.

MH-based algorithms rely on some easy-to-sample proposal dis-
tributions to explore the state space {1, . . . ,K}. The proposal dis-
tributions are not necessarily sparse, and hence MH-based algo-
rithms can be applied to models whose p(zdn)’s do not have spar-
sity structures, e.g., MedLDA [35] or dynamic topic models [4].
For example, LightLDA [32] alternatively draws samples from two
simple proposal distributions qdoc ∝ Cdk + αk and qword ∝
Cwk+β

Ck+β̄
, and accepts the proposals by the corresponding acceptance

rate. The time complexity of sampling for a token is O(1). The
O(1) complexity of LightLDA has already reached the theoretical
lower bound, however its practical throughput is only roughly 4M
tokens per second per machine [32], due to its slow random access.

3.3 Analysis
All the aforementioned algorithms are not memory efficient be-

cause they have random accesses to large matrices. Specifically, the
main random accesses of these algorithms are to the count matrices
Cd and Cw. Ignoring all details of computing, we only focus on
the reading and writing to the count matrices Cd and Cw. When
sampling zdn for each token wdn, the memory access pattern to the
count matrices can be summarized as follows:

read Cdk and Cwk, for all k ∈ Kdn; update zdn;

write Cdzdn and Cwdnzdn ,

where k ∈ Kdn is a set. The existing algorithms differ in two as-
pects: (1) Ordering of visiting tokens: SparseLDA, AliasLDA and
LightLDA visit tokens document-by-document, while F+LDA vis-
its tokens word-by-word; and (2) SetKdn: The setKdn depends on
the sparsity structure of the proposal distribution. For SparseLDA,
Kdn is the set of non-zero topics of cw and cd; for AliasLDA and
F+LDA,Kdn is the set of non-zero topics of cd; and for LightLDA,
Kdn is the set of some samples from the proposal distribution.

We have two important observations, where the accesses can be
made efficient if only Cd or Cw is accessed, while the accesses are
inefficient if both Cd and Cw are accessed, as detailed below:
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Accessing either Cd or Cw: Without loss of generality, as-
sume only Cd is accessed. There will be lots of accesses to ran-
dom entries of the matrix Cd. However, these random accesses are
sorted by d, if the tokens are visited document-by-document. For
sampling the tokens in document d, only one row cd is accessed.
Therefore, the size of randomly accessed memory per-document is
onlyKd, which is the size of cd, and fits in the L3 cache. Moreover,
the rows except cd need not to be stored in the memory and can
be computed on-the-fly upon request, reducing the storage over-
head. Symmetrically, if only Cw is accessed, the accesses can be
restricted in a vector cw by visiting the tokens word-by-word. The
counts cw can be computed on-the-fly as well.

Accessing both Cd and Cw: Unfortunately, the accesses to
Cd and Cw are coupled in all the aforementioned algorithms, i.e.,
they need to access both Cd and Cw when sampling a token. If
the tokens are visited document-by-document, the accesses to Cw

are not sorted by w, and spread in the large matrix Cw whose size
is O(KV ). If the tokens are visited word-by-word, the accesses to
Cd are not sorted by d, and spread in the large matrix Cd whose
size is O(DK). Thus, all the existing algorithms have O(KV ) or
O(DK) size of randomly accessed memory, which is not efficient.

Table 2 summarizes the existing algorithms. Note that the amount
of sequential accesses is smaller than or equals to the amount of
random accesses for all the fast sampling algorithms. This justifies
our previous argument that the running time of LDA is dominated
by random accesses based on the fact that sequential accesses are
faster than random accesses.

WarpLDA addresses the inefficient memory access problem by
decoupling the accesses to Cd and Cw. Particularly, WarpLDA
first visits all tokens but only accesses Cd, and then visits all tokens
again but only accesses Cw. As we just showed, we can choose the
corresponding ordering of visiting the tokens so that the accesses
to both matrices can be restricted in the current row cd and cw,
without affecting the correctness of the algorithm.

4. WARPLDA
We now present WarpLDA, a novel MH-based algorithm that

finds a maximum a posteriori (MAP) estimate of LDA with an
O(1) per-token sampling complexity and an O(K) size of ran-
domly accessed memory per-document (or word), by a designed
reordering strategy to decouple the accesses to Cd and Cw.

4.1 Notations
We first define some notations to make presentation clear. Specif-

ically, we define a D × V topic assignment matrix X, where the
topic assignment zdn is put in the cell (d,wdn) (See Fig. 1 for an
illustration). Note that there might be multiple topic assignments
in a single cell because a word can appear more than once in a doc-
ument. Let zd be the collection of the Ld topic assignments in the
d-th row of X, with zdn being its n-th element. The ordering of
the elements in zd can be arbitrary because LDA is a bag-of-words
model and ignores word ordering. This definition of zdn is consis-
tent with that in Sec. 2.1, where zdn is the topic assignment of the
n-th token of document d. Again, let Z = Zd = {zd}Dd=1. Simi-
larly, let zw be the collection of the topic assignments in the w-th
column of X, with size Lw and zwn being its n-th element. Note
that Lw is the term frequency of word w, i.e., the number of times
that w appears in the entire corpus. Let Zw = {zw}Vw=1.

Besides a topic assignment, WarpLDA hasM topic proposals for
each token, denoted as z(i)

dn (or z(i)
wn), where i = 1, . . . ,M . Using

the above definition, we have z
(i)
d (or z

(i)
w ) for a document and Z

(i)
d

(or Z
(i)
w ) for the whole corpus.

iOS Android apple iPhone orange

3 3 3 3

Doc 1 1 1 1 3 3 2&3 1&1 1 4

2 2 7 2 2

Doc 2
iOS Android apple iPhone orange

3 3 1 1 2

Doc 3 3 1

2

𝐙𝑑

𝐙𝑤

𝐗：𝐷 × 𝑉

iOS3 Android3

apple1 iPhone1 apple1   iOS3

apple2 orange2

Figure 1: Data representation of WarpLDA. Left: documents,
the subscript of each token is its topic assignment zdn. Right:
the topic assignment matrix X, Zd and Zw. The & sign sepa-
rates multiple entries in one cell.

It is worth noting that most of these notations are for the ease
of presentation, and in the actual implementation we only store
Zw,Z

(i)
w and the global count vector ck (Sec. 5). The other vari-

ables, including X,Zd,Cd,Cw are either views of (Zw,Z
(i)
w ), or

can be computed on-the-fly.

4.2 MCEM Algorithm of LDA
As analysed above, in the original CGS Eq. (1) and existing fast

algorithms, it is difficult to decouple the access to Cd and Cw, be-
cause both counts need to be updated instantly after the sampling
of every token. We develop our efficient WarpLDA based on a new
Monte-Carlo Expectation Maximization (MCEM) algorithm which
is similar with CGS, but both counts are fixed until the sampling of
all tokens are finished. This scheme allows us to develop a reorder-
ing strategy to decouple the accesses to Cd and Cw, and minimize
the size of randomly accessed memory.

Specifically, WarpLDA seeks an MAP solution of the latent vari-
ables Θ and Φ, with the latent topic assignments Z integrated out:

Θ̂, Φ̂ = argmax
Θ,Φ

log p(Θ,Φ|W,α′, β′),

where α′ and β′ are the Dirichlet hyper-parameters. Asuncion et
al. [3] have shown that this MAP solution is almost identical with
the solution of CGS, with proper hyper-parameters. Our empirical
results in Sec. 6.3 also support this conclusion.

Computing log p(Θ,Φ|W,α′, β′) directly is expensive because
it needs to enumerate all the K possible topic assignments for each
token. We therefore optimize its lower bound as a surrogate. Let
q(Z) be a variational distribution. Then, by Jensen’s inequality, we
get the lower bound J (Θ,Φ, q(Z)):

log p(Θ,Φ|W,α′, β′) ≥Eq[log p(W,Z|Θ,Φ)− log q(Z)]

+ log p(Θ|α′) + log p(Φ|β′)

,J (Θ,Φ, q(Z)). (2)

We then develop an Expectation Maximization (EM) algorithm
[15] to find a local maximum of the posterior p(Θ,Φ|W,α′, β′),
where the E-step maximizesJ with respect to the variational distri-
bution q(Z) and the M-step maximizesJ with respect the to model
parameters (Θ,Φ), while keeping q(Z) fixed. One can prove that
the optimal solution at E-step is q(Z) = p(Z|W,Θ,Φ) without
further assumption on q. We apply Monte-Carlo approximation on
the expectation in Eq. (2),

Eq[log p(W,Z|Θ,Φ)− log q(Z)] ≈

1

S

S∑
s=1

log p(W,Z(s)|Θ,Φ)− log q(Z(s)),
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where Z(1), . . . ,Z(S) ∼ q(Z) = p(Z|W,Θ,Φ). We set the sam-
ple size S = 1 and use Z as an abbreviation of Z(1).
Sampling Z: Each dimension of Z can be sampled independently,

q(zdn = k) ∝ p(W,Z|Θ,Φ) ∝ θdkφwdn,k. (3)

Optimizing Θ,Φ: With the Monte-Carlo approximation,

J ≈ log p(W,Z|Θ,Φ) + log p(Θ|α′) + log p(Φ|β′) + const.

=
∑
d,k

(Cdk + α′k − 1) log θdk

+
∑
k,w

(Ckw + β′ − 1) log φkw + const.,

with the optimal solutions

θ̂dk ∝ Cdk + α′k − 1, φ̂wk =
Cwk + β′ − 1

Ck + β̄′ − V
. (4)

Instead of computing and storing Θ̂ and Φ̂, we compute and
store Cd and Cw to save memory because the latter are sparse.
Plug Eq. (4) to Eq. (3), and letα = α′− 1, β = β′− 1, we get the
final MCEM algorithm, which iteratively performs the following
two steps until a given iteration number is reached:

• E-step: Sample zdn ∼ q(zdn = k), where

q(zdn = k) ∝ (Cdk + αk)
Cwk + βw

Ck + β̄
. (5)

• M-step: Compute Cd and Cw by Z.

Note the resemblance between Eq. (5) and Eq. (1) intuitively justi-
fies why MCEM leads to similar results with CGS. The difference
between MCEM and CGS is that MCEM updates the counts Cd

and Cw after sampling all zdns, while CGS updates the counts
instantly after sampling each zdn. The strategy that MCEM up-
dates the counts after sampling all zdns is called delayed count up-
date, or simply delayed update. MCEM can be viewed as a CGS
with delayed update, which has been widely used in existing algo-
rithms [24, 1]. While previous work uses delayed update as a trick,
we hereby present a theoretical guarantee to converge to a MAP so-
lution. Delayed update is important for us to decouple the accesses
of Cd and Cw to improve cache locality, without affecting the cor-
rectness, as will be explained in Sec. 4.4. This MCEM formulation
is also used to build embarrassingly parallel AliasLDA [33].

4.3 Sampling the Topic Assignment
A naive application of Eq. (5) is O(K) per-token. We now de-

velop an MH algorithm for faster sampling.
Specifically, starting from an initial state z(0)

dn , we draw samples
alternatively from one of the two proposal distributions:

qdoc(zdn = k) ∝ Cdk + αk

qword(zdn = k) ∝ Cwk + β, (6)

and update the current state with the acceptance rates:

πdoc
k→k′ = min

{
1,
Cwk′ + β

Cwk + β

Ck + β̄

Ck′ + β̄

}
πword
k→k′ = min

{
1,
Cdk′ + αk′

Cdk + αk

Ck + β̄

Ck′ + β̄

}
. (7)

Similar as in Yuan et al.’s work [32], we can prove that this scheme
converges to the correct stationary distribution in Eq. (5).

Computing the acceptance rates only involves constant number
of arithmetic operations, so it isO(1). The proposal distributions in
Eq. (6) are mixture of multinomials mentioned in Section 2.2, with
the mixing coefficient Ld

Ld+ᾱ
.3 There are two possible methods to

draw samples from pA(zdn = k) ∝ Cdk in O(1) time: (1) Alias
sampling: Build a Kd-dim alias table for all the non-zero entries
of cd; and (2) Random positioning: Noticing that cd is the count
of zd, randomly select a position u ∈ {1, . . . , Ld}, and return zdu.
Alias sampling is also used to draw samples from pB(zdn = k) ∝
ak inO(1). Because both sampling from proposal distributions and
computing acceptance rates can be done in O(1), the algorithm is
O(1) per-token.

4.4 Reordering the Computation
As discussed above, the size of randomly accessed memory per-

document or word is an important factor that influences the effi-
ciency, but it is difficult to reduce for CGS due to the coupling of
the counts Cw and Cd. Thanks to the delayed update strategy in
MCEM, we are able to decouple the access to Cw and Cd, and
minimize the size of randomly accessed memory via a reordering
strategy. Below, we explain how to do the reordering in the E-step
and the M-step in turn.

E-step: The E-step samples the topic assignment zdn for each
token, while keeping the counts Cd,Cw and ck fixed. Consider the
sampling of a single topic assignment zdn with the MH algorithm.
For simplicity, we only consider the document proposal qdoc. Ac-
cording to the MH Alg. 1, starting with the initial state zdn, we do
the following in the i-th step (i = 1, . . . ,M ):
• Draw the topic proposals z(i)

dn according to Eq. (6), where
qdoc(z

(i)
dn = k) ∝ Cdk + αk;

• Update the current state zdn by the proposal z(i)
dn , with the

probability π, where π = min{1, Cwk′+β
Cwk+β

Ck+β̄

Ck′+β̄
}, accord-

ing to Eq. (7).
Both Cd and Cw need to be accessed to sample zdn in the above
procedure. Following our analysis in Sec. 3.3, there are inevitable
random accesses to matrices no matter whether we visit the tokens
document-by-document or word-by-word. Thanks to the delayed
update strategy in MCEM, we can address this problem by a re-
ordering strategy.

Delayed update makes Cd, Cw and ck fixed during the entire E-
step. Subsequently, the proposal distribution qdoc, which depends
solely on Cd and α, is fixed during the E-step. Therefore, we can
draw the topic proposals z(i)

dn at any time within the E-step, without
affecting the correctness. Particularly, we choose to draw the pro-
posals for all tokens before computing any acceptance rate. With
this particular ordering, the sampling of all the topic assignments
can be done in two separate steps:

1. Draw the topic proposals z(i)
dn for all tokens. This only ac-

cesses Cd and α.
2. Compute the acceptance rates and update the topic assign-

ments for all tokens. This only accesses Cw, ck and β.
Since each step only accesses Cd or Cw, following the analysis
in Sec. 3.3, we can make both steps memory efficient by carefully
choosing the ordering of visiting tokens. In the first step, tokens are
visited document-by-document. Therefore, when processing the d-
th document, only a small vector cd for the current document is
randomly accessed. In the second step, the tokens are visited word-
by-word, and when processing the w-th word, only a small vector
cw is randomly accessed. Because the vectors are small enough to
fit in the L3 cache, WarpLDA is memory efficient.

3Due to the symmetry we only consider qdoc.
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Word proposal: The word proposal qword can be treated simi-
larly as the doc proposal qdoc, by drawing the topic proposals for
all tokens before computing any acceptance rate. There are also
two separate steps for the sampling of all topic assignments: (1)
Draw the topic proposals z(i)

wn for all tokens (accesses Cw and β);
and (2) Compute the acceptance rates and update the topic assign-
ments for all tokens (accesses Cd, ck, α and β). These steps can
be done efficiently by doing the first step word-by-word and doing
the second step document-by-document.

An WarpLDA iteration first samples the topic assignments for
each token using the document proposal, and then samples again
using the word proposal, which involves four passes of the tokens
(two passes for each proposal). To improve the efficiency, these
four passes can be compressed to two passes. The document phase
visits tokens document-by-document, and do the operations that re-
quire cd, i.e., computing the acceptance rates for the word proposal
and drawing samples from the document proposal. Symmetrically,
the word phase visits tokens word-by-word, computes the accep-
tance rates for the document proposal, and then draws samples from
the word proposal.

M-step: Up to now, we discussed about how to do the sampling
of the topic assignments, i.e., the E-step of the MCEM algorithm.
The M-step, which updates the counts Cd, Cw and ck, need not
to be conducted explicitly, because the counts can be computed
on-the-fly. The only usage of the vector cd is when processing
document d in the document phase. Hence, it can be computed by
zd when processing document d, and discarded after the document
is finished. Similarly, the only usage of the row vector cw is when
processing word w in the word phase, and it can be computed on-
the-fly as well. Noticing ck =

∑
d cd =

∑
w cw, the count vector

ck can be accumulated when computing cd for each document.
The above facts also imply that we even need not to store Cw and

Cd, which simplifies the system design as we shall see in Sec. 5,
and again, justifies there are no random accesses to matrices — we
do not even store any of the matrices Cd and Cw.

5. SYSTEM IMPLEMENTATION
WarpLDA not only improves the cache locality but also simpli-

fies the distributed system design for training LDA on hundreds of
machines. In previous systems for distributed LDA, including pa-
rameter servers (PS) [1, 21] and model parallel systems [28, 32],
all workers collaboratively refine a globally shared count matrix
Cw. This adds additional complications to the system, such as
read/write locks or delta threads. WarpLDA is arguably simpler to
implement because its only globally shared object is a small vec-
tor ck which can be updated and broadcast-ed to each machine in
every iteration, and all the other data are local so that they can be
processed independently by each worker.

In this section, we discuss the design of the distributed sparse
matrix framework for WarpLDA. We then present techniques to
implement the framework in a memory efficient fashion. Some
application-level optimizations are also discussed.

5.1 Programming Model
We start the presentation of our framework for WarpLDA by ab-

stracting its data structure. In WarpLDA, the only data to manipu-
late are: 1) local per-token data, where each tokenwdn is associated
with M + 1 integers ydn , (zdn, z

(1)
dn , . . . , z

(M)
dn ), which are the

topic assignment and the topic proposals; and 2) global topic count
vector ck. The local per-token data are stored in a D × V matrix
Y, where each token wdn corresponds to an entry at the position

template <class Data>
interface SparseMatrix {

// Initialization
void AddEntry(int r, int c, Data data);
// Computation
void VisitByRow(Operation op);
void VisitByColumn(Operation op);
// User-defined function
interface Operation {

operator () (vector<Data>& data);
};

};

Figure 2: Interface of a distributed sparse matrix.

(d,wdn) with ydn as its data. The matrix Y has the same struc-
ture with X in Fig. 1, but is augmented in the sense that each entry
stores not only the topic assignment but also M proposals.

The main data structure of our framework is the distributed sparse
matrix Y of D × V cells, where each cell can have zero, one, or
multiple entries, corresponding to the tokens in LDA, and each en-
try stores some data, which are ydn for WarpLDA. The structure
of the matrix, i.e., the positions of the entries, is fixed, and only the
data of the entries are iteratively refined to the solution.

To help readers relate our presentation with the actual implemen-
tation, we use C++ notations in this section, e.g., Y[d][w] is the cell
at the d-th row and w-th column of Y. Let row[d] as the collection
of all entries in the d-th row, with row[d][n] being its n-th element.
Similarly, define the columns col[w], and col[w][n]. Let a.size be
the size of the collection a, such as row[d].size and col[d].size.
There are several methods to manipulate the matrix (See Fig. 2):
• AddEntry: add an entry to a given cell Y[d][w] with the

data data. This is called only at initialization time.
• VisitByRow: For each row d, update the data for each en-

try, given the data of all the entries in the current row row[d],
i.e., row[d] ← fr(row[d]), where fr(·) is a user defined
function.
• VisitByColumn: For each column w, update the data for

each entry, given the data of all the entries in the current col-
umn col[w], i.e., col[w] ← fc(col[w]), where fc(·) is an-
other user defined function.

To use the framework, users initialize the matrix via the AddEntry
method, and then call VisitByRow and VisitByColumn with
user defined functions for a number of times to refine the data of
the matrix towards the result.

For WarpLDA, the matrix Y stores the local per-token data ydn,
where each row is a document, and each column is a word. One can
verify that the topic assignments of the d-th document zd are stored
in the d-th row row[d], because row[d][n] = ydn = (zdn, z

(1)
dn , . . . ,

z
(M)
dn ). Similarly, zw are stored in col[w]. We firstly initialize

the matrix by adding an entry ydn to the cell Y[d][wdn] for each
token. The document phase can be implemented with a single
VisitByRow, where for each row (document), cd is calculated
with the topic assignments in row[d]; then the topic assignments
in row[d] are updated given the topic proposals and cd; and finally
new proposals are created given new topic assignments. 4 Simi-
larly, the word phase can be implemented by VisitByColumn.
The globally shared vector ck =

∑
w cw can be updated by a sim-

ple “reduce” operation, which aggregates the word-topic count vec-
tors cw, in the user defined function fc(·). Since updating ck can

4Refer to Alg. 2 in the Appendix for details.
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be implemented by the user, our framework does not handle the
global count vector ck but only Y.

A basic implementation of this framework is MapReduce. Each
entry is represented by a (d,w)→ Y[d][w] pair, and VisitByRow
is implemented by two steps: 1) take the entries (d,w)→ Y[d][w],
aggregate them by row, and emit the rows d→ row[d]; 2) take the
rows (documents) d→ row[d], do the update row[d]← fr(row[d])
and emit the individual entries (d,w) → Y[d][w]. VisitBy-
Column is implemented by two similar steps, but aggregate the en-
tries by column. This implementation is useful for industrial users
who want to build a simple distributed O(1) LDA on top of the
existing MapReduce framework. However, the shuffling overhead
of MapReduce is often too large and the performance is unsatisfac-
tory. Hence, we present a dedicated implementation.

5.2 Data Layout
The first problem we need to address is how the matrix is repre-

sented internally. VisitByRow (or VisitByColumn) requires
to provide row[d] (or col[w]) to the user defined functions, while
both row[d] and col[w] should be accessed efficiently, and the
change of either should reflect to the underlying matrix.

There are a number of formats for a sparse matrix. Two most
well-known examples are the Compressed Sparse Row (CSR) for-
mat and the Compressed Sparse Column (CSC) format. In the CSR
representation YCSR, the rows are stored continuously, and in the
CSC representation YCSC , the columns are stored continuously.

One possible data layout is storing both YCSR and YCSC . Af-
ter each VisitByRow or VisitByColumn operation, perform
a “transpose” operation to synchronize the change of one repre-
sentation to the other representation. By storing both YCSR and
YCSC , the user defined operation always has sequential accesses
to the data and hence is memory efficient. However, the transpose
operation requires an extra pass of data which is expensive.

In WarpLDA, we avoid explicitly transposing the matrix by only
storing YCSC . For accessing the rows of the matrix, we store
PCSR, which are pointers to the entries in YCSC . Since only one
copy of the data is stored, there is no need for explicitly transposing
the matrix. However, the rows are accessed by indirect memory
accesses. We now show these indirect memory accesses are still
memory efficient because the cache lines are fully utilized.

For each column col[w], we sort the entries by their row id.
Then, while in VisitByRow, the entries of a particular column
col[w] are always accessed monotonically, i.e., col[w][i] is always
accessed before col[w][j] for all i < j. When an entry col[w][i] is
accessed, the cache line containing it is fetched to the cache, which
also contains the next few entries (col[w][i+1], col[w][i+2], . . . ).
As long as the cache is large enough to store one cache line for
each column, the cache lines can stay in the cache until all the en-
tries on it are accessed. Thus, the cache lines are fully utilized.
Moreover, the size of the columns follows the power-law, because
they are term-frequencies of words in natural corpora [19]. There-
fore, the required cache size can be even smaller, comparable to the
number of columns which have most entries of the sparse matrix.
For example, in the ClueWeb12 corpus, the vocabulary size (num-
ber of columns) is 1,000,000, the first 10,000 words (columns) at-
tributes to 80% of the entries, and storing a cache line for these
words (columns) requires only 10000× 64B = 625KB.

5.3 Scaling out
WarpLDA can be scaled out to hundreds of machines to meet the

requirements of learning large models on massive-scale corpora.
We now present the key components for scaling out WarpLDA, in-
cluding task partitioning, data placement and communication.

Current: VisitByRow Next: VisitByColumn

Computing copy Receiving copy

worker1 1 1 1 1 2 3

worker2 2 2 2 1 2 3

worker3 3 3 3 1 2 3

worker1 worker2 worker3

Figure 3: Data partitioning. The number indicates the worker
each partition belongs to, the blue arrows are data flows dur-
ing communication, and the black arrows are the directions of
visiting data.

5.3.1 Multi-threading and NUMA
WarpLDA is embarrassingly parallel because the workers op-

erate on disjoint sets of data. To parallelize WarpLDA we only
need to invoke the user defined functions in parallel for different
rows and columns. In contrast, traditional frameworks such as
Yahoo!LDA [1] and LightLDA [32] need to update the count ma-
trix Cw in parallel, and require extra treatments such as read/write
locks and delta threads.

Modern computers have non-uniform memory access (NUMA),
where each main memory DIMM belongs to a specific CPU socket.
If one CPU needs to access data in the memory belongs to another
CPU socket, the data flows through another CPU socket, result-
ing in degraded performance. For better performance, WarpLDA
partitions the data YCSC by column and the pointers PCSR by
row, and bind each slice to a different CPU socket. In this way,
VisitByColumn accesses only the local data, but the indirect
memory accesses via PCSR in VisitByRow may flow through
other CPUs.

5.3.2 Fine-grained Distributed Computing
Distributed computing typically involves partitioning the task

and addressing the communications between workers. We take a
two-level partitioning strategy to overlap the computation and com-
munication, and propose a greedy approach for balanced partition-
ing on the challenging case where the length of columns are dis-
tributed as power-law. The communications are implemented with
MPI Ialltoall in Message Passing Interface (MPI).

Each VisitByRow and VisitByColumn involves a pass of
the matrix Y. To assign the task to different workers, we split the
D×V data matrix Y as P×P partitions, where P is the number of
MPI workers, and Pij is the (i, j)-th partition. In VisitByRow,
the data is partitioned by row, i.e., worker i has partitionsPi1, . . . , PiP
in its memory; in VisitByColumn, the data is partitioned by col-
umn, i.e., worker i has partitions P1i, . . . , PPi in its memory. Ex-
change of data happens only when the adjacent two operations are
different, i.e., one is VisitByRow and the other is VisitBy-
Column, in which case the partitions are sent to their correspond-
ing workers of the next operation after the current operation is fin-
ished. Because MPI requires both sending buffer and receiving
buffer, we maintain a computing copy and receiving copy of the
data. For example, in Fig. 3, the current operation is VisitByRow,
which can be conducted independently on each worker without any
communications, due to our partitioning strategy. After the current
VisitByRow is finished, we need to partition the matrix by col-
umn for the next VisitByColumn, so we send partition Pij from
worker i to worker j, with MPI Ialltoall. If the next operation
is VisitByRow instead, no communication is needed.

We can overlap the communication and computation by further
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Figure 4: Comparison of partition strategies on ClueWeb12.

divide each partition as B × B blocks, where B ∈ [2, 10] is a
small constant. During training, each of the blocks may be in one
of the four states: 1) not started; 2) computing; 3) sending; 4) fin-
ished. In each VisitByRow / VisitByColumn, workers scan
their blocks by row or column, and each block can be immediately
sent to the receiving copy after it is finished.

To minimize the wait time, the number of tokens within each
worker should be roughly the same, which implies that the sum
of the number of tokens of all partitions within each row or col-
umn should be roughly the same. Note that the rows / columns can
be treated independently: we partition the rows as P disjoint sets
R1, . . . , RP and the columns as disjoint sets C1, . . . , CP , so that
each set has roughly the same number of tokens. Given the parti-
tioning of rows and columns, the (i, j)-th partition Pij = Ri ∩Cj .

Balanced partitioning of the columns is challenging because the
term frequencies of words from a natural corpus, i.e., col[w].size,
can be very imbalanced because of the power-law [19]. For ex-
ample, the most frequent word in the ClueWeb12 corpus occupies
0.257% of all occurrences, after the removal of stop words. Con-
sidering each slice only have 1% of the tokens if there are 100
slices, this is a very large proportion, and random partitioning can
be highly imbalanced in this case. We propose a greedy algorithm
for balanced partitioning. First, all the words are sorted by their fre-
quency in a decreasing order. Then from the most frequent word,
we put each word (i.e., column) in the slice with the least num-
ber of total tokens. Because there are many low frequency words
(the long tail), this algorithm can produce very balanced results.
We compared the imbalance index of our greedy algorithm with
two randomized algorithms: static first random shuffle the words,
then partition so that each partition has equal number of words; dy-
namic allows each partition to have different number of words, but
the slices are continuous. Imbalance index is defined as

number of tokens in the largest partition
average number of tokens of each partition

− 1.

In the ideal case the imbalance index should be zero. Fig. 4 shows
the experimental results on the ClueWeb12 corpus, where we can
see that the greedy algorithm is much better than both randomized
algorithms. The imbalance index of the greedy algorithm grows
dramatically when the number of machines reach a few hundreds,
because the size of the largest column is so large that it is impossi-
ble to partition the columns in balance.

5.4 Application Level Optimizations
Besides system level optimizations, there are also some appli-

cation level optimizations (i.e., optimization for the user defined
function) for even better performance of WarpLDA. We describe
them in this subsection.

Sparse vectors as hash tables: When K is large, it is likely to
have Kd � K and Kw � K. It is more effective to use hash ta-
bles rather than dense arrays for the counts cd and cw, because the

Table 3: Statistics of various datasets, where T is the total num-
ber of words in the corpus.

Dataset D T V T/D
NYTimes 300K 100M 102K 332
PubMed 8.2M 738M 141K 90
ClueWeb12 (subset) 38M 14B 1M 367
ClueWeb12 639M 236B 1M 378

size of a hash table is much smaller than that of a dense array, thus
the cost of clearing the counts is smaller, and the size of randomly
accessed memory is smaller. We choose an open addressing hash
table with linear probing for hash collisions. The hash function
is a simple and function, and the capacity is set to the minimum
power of 2 that is larger than min{K, 2Ld} or min{K, 2Lw}. We
find that the hash table is almost as fast as a dense array even when
Ld > K. Although LightLDA [32] also uses hash tables to store
the counts, it is mainly for reducing the storage overhead instead
of improving cache locality, because its size of randomly accessed
memory is too large for the cache anyway.

Intra-word parallelism: For the most frequent words in the
corpus, Lw, i.e., the term frequency can be extremely large (e.g.,
tens of millions), so Lw � K. It is desirable to exploit intra-word
parallelism in this case. Making all the threads working at the same
column is beneficial for better cache locality, because only the cw
for one word needs to be stored in the cache. Moreover, it helps
balancing the load between workers in the case of col[w].size is
too large. We choose to exploit intra-word parallelism for words
which Lw > K. As the user defined function is itself parallel
in this case, we let the framework only invoke one user defined
function at a time.

To parallelize the user defined function, we compute the count
cw on each thread, aggregate the results, and construct the alias
table by a concurrent vector. Updating the topic assignments is
embarrassingly parallel.

6. EXPERIMENTS
We now present empirical studies of WarpLDA, by comparing it

with two strong baselines LightLDA [32] and F+LDA [31]. Light-
LDA is the fastest MH based algorithm, and F+LDA is the fastest
sparsity-aware algorithm. We compare with them in both time effi-
ciency and the quality of convergence.

6.1 Datasets and Setups
Table 3 summarizes the datasets. NYTimes and PubMed are

standard datasets from the UCI machine learning repository [2];
they consist of news articles and biomedical literature abstracts, re-
spectively. ClueWeb12 is a large crawl of web pages, and ClueWeb12
(subset) is a random subset of the full ClueWeb12.5

The experiments are conducted on the Tianhe-2 supercomputer.
Each node is equipped with two Xeon E5-2692v2 CPUs (2 × 12
2.2GHz cores), and 64GB memory. Nodes are connected with In-
finiBand, and single machine experiments are done with one node.

We set the hyper-parameters α = 50/K and β = 0.01. Follow-
ing the previous work [1, 32], we measure the model quality by the

5http://www.lemurproject.org/clueweb12.php/
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Figure 5: Convergence results on NYTimes (1st row: K = 103; 2nd row: K = 104) and PubMed (3rd row: K = 104; 4th row:
K = 105). Each column corresponds to an evaluation metric (Please see text for details). The x-axis of column 3 and 4 are distorted
for better resolution.
widely adopted log joint likelihood (log likelihood in short):

L = log p(W,Z|α, β) = log
∏
d

[
Γ(ᾱ)

Γ(ᾱ+ Ld)

∏
k

Γ(αk + Cdk)

Γ(αk)
]

∏
k

[
Γ(β̄)

Γ(β̄ + Ck)

∏
w

Γ(β + Ckw)

Γ(β)
].

6.2 Speed of Convergence
We first analyze the convergence behaviors. Fig. 5 presents the

single-machine results on the moderate-sized corpora, including
NYTimes (first two rows) and PubMed (last two rows). We com-
pare WarpLDA with a fixedM = 2 to both LightLDA and F+LDA.
Each algorithm is run for a fixed number of iterations. LightLDA is
sensitive with M because it affects the locality; We therefore pick
up theM that leads to fastest convergence over time for LightLDA,
which is M = 4 for the NYTimes dataset when K = 103, M = 8
for NYTimes whenK = 104,M = 8 for PubMed whenK = 104,
and M = 16 for PubMed when K = 105. A larger M leads to
longer running time per iteration, but the total number of iterations
decreases in order to converge to a particular log-likelihood.

To have a full understanding, a diverse range of evaluation met-
rics are considered, including log-likelihood w.r.t the number of
iterations (1st column), log-likelihood w.r.t running time (2nd col-
umn), the ratio of the iteration number of LightLDA (or F+LDA)
over that of WarpLDA to get a particular log-likelihood (3rd col-
umn), the ratio of running time of LightLDA (or F+LDA) over that
of WarpLDA to get a particular log-likelihood (4th column), and

finally the throughput w.r.t the number of iterations (5th column).
From the results, we have the following observations:
• WarpLDA converges to the same log-likelihood as other base-

lines (1st and 2nd columns), demonstrating the good quality;

• WarpLDA converges faster than F+LDA and LightLDA in
terms of running time (2nd column), despite that it needs
more iterations than the competitorsm to reach the same like-
lihood (1st column). Overall, WarpLDA is consistently 5-
15x faster than LightLDA in all evaluations, and is faster than
F+LDA when K ≤ 104;
• Finally, WarpLDA is efficient — WarpLDA achieves 110M

token/s throughput on these datasets with a single machine,
much higher than that reported in previous works [1, 32, 31],
which is typically less than 10M token/s.

Note that the convergence speed of F+LDA surpasses WarpLDA in
later stages for the PubMed dataset when K = 105. This is mainly
due to the difference between sparsity aware algorithms and MH-
based algorithms. As K and D are increasing, the vector cw be-
comes less concentrated so that MH-based algorithms require more
samples from qword to explore the state space, while the time com-
plexity of the (exact) sparsity aware algorithms depends only onKd

which is upper bounded by Ld.
To show that WarpLDA is memory efficient, we compare the L3

cache miss rate of WarpLDA with that of LightLDA and F+LDA
on the NYTimes and PubMed corpora. The cache miss rate is mea-
sured by PAPI. M is set to 1 for both WarpLDA and LightLDA.
From Table 4, we can see that the L3 cache miss rate of WarpLDA

752



0 0.5 1 1.5 2 2.5 3

x 10
4

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1
x 10

11

time (seconds)

lo
g 

lik
el

ih
oo

d

 

 

WarpLDA (M=4)
LightLDA (M=16)

Figure 6: Convergence on ClueWeb12
(subset), K = 104.
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Table 4: L3 cache miss rate comparison, M = 1.
Setting LightLDA F+LDA WarpLDA
NYTimes, K = 103 33% 77% 17%
NYTimes, K = 104 35% 53% 13%
PubMed, K = 104 38% 57% 13%
PubMed, K = 105 37% 17% 5%

is much lower than that of the competitors. This is reasonable
because the size of randomly accessed memory per-document for
WarpLDA fits in the L3 cache, while the competitors require to
randomly access a large matrix with tens-of-gigabytes in size.

For the distributed setting, WarpLDA (M = 4) and LightLDA
(M = 16) are compared on a 38-million-document ClueWeb12
(subset). Both algorithms are run on 32 machines. Fig. 6 presents
the results. We can see that WarpLDA is about 10x faster than
LightLDA to reach the same log-likelihood.

6.3 Quality of Solutions
Now we carefully analyze the quality of the solutions by Warp-

LDA, and show that the MCEM solution of WarpLDA is very sim-
ilar with the CGS solution of LightLDA. Comparing the updates
of LightLDA [32] and WarpLDA, we conclude that the differences
that may affect the quality of the solutions are: (1) delayed count
update: the counts Ck and Cd are updated instantly in LightLDA
but delayed in WarpLDA, (2) qword: For LightLDA qword ∝
Cwk+β

Ck+β̄
and for WarpLDA qword ∝ Cwk + β. Therefore, we

vary these factors to gain insight on how each factor influences the
convergence rate. We use the NYTimes corpus as an example and
set K = 103 and M = 1. The algorithms in comparison are

• LightLDA: LightLDA with M = 1, in which Cd is updated
instantly, and Cw is updated every 300 documents.

• LightLDA+DW: LightLDA, in which Cd is updated instantly,
and Cw is updated per iteration.

• LightLDA+DW+DD: LightLDA, in which both Cd and Cw

are updated per iteration.

• LightLDA+DW+DD+SP: LightLDA, in which both Cd and
Cw are updated per iteration, using WarpLDA’s qword.

• WarpLDA: WarpLDA, in which both Cd and Cw are up-
dated per iteration, using WarpLDA’s qword.

Fig. 7 shows the results, where all the algorithms require roughly
the same number of iterations to converge to a particular log-likeli-
hood, with the same M . This result shows that the delayed update

and simple proposal distributions of WarpLDA do not affect the
convergence much. Notice that the previous results in Fig. 5, where
WarpLDA requires more iterations than LightLDA to converge to a
particular log-likelihood, may look different from this result. This
is because LightLDA uses a larger M in Fig. 5.

Our observation that delayed update does not affect convergence
much seems to contradict with the previous observations for exact
sampling algorithms [1]. A possible reason is that for MH-based al-
gorithms (e.g., WarpLDA) the bottleneck of convergence is the ef-
ficiency of exploring p(zdn) instead of the freshness of the counts;
and thereby delayed update on the counts does not matter a lot.

We also analyze the impact ofM on the solution quality in Fig. 8.
We can see that as M gets larger WarpLDA converges faster. This
is probably because of the bias induced by the finite-length MH
chain. To keep the storage overhead small, we stick to a small M
such as 1, 2 or 4, which leads to a sufficiently fast convergence.

6.4 Scalability Results
Finally, we demonstrate that WarpLDA can scale up to handle

billion-scale documents on hundreds of machines.
Fig. 9(a) shows the multi-threading speedup result for WarpLDA

with M = 2 and K = 103 on the NYTimes dataset. The through-
put for a single core, a single CPU (12 cores), and 2 CPUs (24
cores) are 6M, 53M, and 104M tokens per second, respectively.
The speedup of the 24-core version against the single-core version
is 17x, which is good for such a memory intensive task. The 2-CPU
(24 cores) version is faster than the single CPU (12 cores) version
by 1.96x, indicating that our NUMA strategy is successful.

Fig. 9(b) shows the multi-machine speedup result for WarpLDA
with M = 1 and K = 104 on the PubMed corpus. The throughput
for 16 machines is 13.5x faster than the single machine version,
demonstrating the good scalability.

To show our capacity of learning large-scale topic models, we
learned K = 106 topics on the 639-million-document ClueWeb12
corpus, on 256 machines. The hyper-parameter β is set to 0.001 for
finer grained topics, M = 1, and the number of iterations is 900.
The convergence results are shown in Fig. 9(c). We can see that the
run produces meaningful results in 5 hours.6 Fig. 9(d) shows the
throughput is an unprecedentedly 11G tokens/s with 256 machines.

7. CONCLUSIONS AND FUTURE WORK
We first analyze the memory efficiency of previous fast algo-

rithms for LDA by the size of randomly accessed memory per-
document, and conclude they are inefficient because of frequent

6The learned 1 million topics are available at http://ml.cs.
tsinghua.edu.cn/˜jianfei/warplda.html.
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Figure 9: Scalability results. a) multi-threading speedup on NYTimes, K = 103, M = 4; b) distributed speedup on PubMed,
K = 104, M = 1; c, d) convergence and throughput on ClueWeb12, K = 106, MH = 4.

random accesses to large matrices. We then propose WarpLDA, an
efficient algorithm for LDA which only requires to randomly ac-
cess vectors that fit in the L3 cache, while maintaining the O(1)
time complexity. WarpLDA builds on an MCEM algorithm that
enables delayed updates to decouple the accesses to Cd and Cw,
by some carefully designed ordering of visiting tokens. To imple-
ment WarpLDA in a memory efficient and scalable way, we design
and implement a framework that supports manipulating the rows
and columns of a distributed sparse matrix.

Extensive empirical studies in a wide range of testing condi-
tions demonstrate that WarpLDA is consistently 5-15x faster than
the state-of-the-art MH-based algorithms, and is faster than state-
of-the-art sparsity-aware algorithms in most settings. WarpLDA
achieves an unprecedentedly 11G token per second throughput which
allows to train billion-scale corpora in hours.

In the future, we plan to combine WarpLDA with other promis-
ing directions of scaling up LDA and apply it to more sophisticated
topic models to learn various types of topic structures.

Stochastic learning: Stochastic algorithms explore the statisti-
cal redundancy of a given corpus, and estimate the statistics (e.g.,
gradient) of the whole corpus by a random subset. When the es-
timation has low variance, faster convergence is expected. Exam-
ples include stochastic variational inference (SVI) [17], streaming
variational Bayes [9], and stochastic gradient Riemann Langevin
dynamics (SGRLD) [25]. These methods can be combined with
fast sampling algorithms, e.g. WarpLDA, to create fast stochastic
algorithms, e.g., Bhadury et al. combined SGRLD with LightLDA
to scale up dynamic topic models [4].

GPU accelerations: There are some works on GPU accelera-
tion for LDA [10, 34]. However, the algorithm they accelerate is
O(K). WarpLDA is a promisingO(1) option for GPU acceleration
due to its single instruction multiple data (SIMD) nature. 7

Non-conjugate topic models: Compared to the vanilla LDA,
non-conjugate topic models capture richer types of statistical struc-
tures, e.g., correlation of topics [5, 12], temporal dynamics of top-
ics [6, 4], or relationship to labels [38, 37]. These models typi-
cally have less sparsity structures to exploit, making sparsity-aware
algorithms difficult to apply. We can still apply the MH-based
WarpLDA to these models as a fast sampler for topic assignments.
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APPENDIX
A. FULL CODE OF WARPLDA

Alg. 2 is the full pseudo-code of WarpLDA, with random posi-
tioning for sampling the document proposal and alias sampling for
sampling the word proposal.

Algorithm 2 The WarpLDA algorithm, where Dice(K) draws a
sample from {0, . . . ,K − 1}. Alias table is used for sampling
from Cw and positioning is used for sampling from Cd.

// Initialize
zdn ← Dice(K), ∀d, n
for iteration← 1 to I do

// Word phase: Cwk, πdoc, qword

for w ← 1 to V do
// Compute Cwk on the fly
Cwk ←

∑Lw
n=1 I(zwn = k), k = 1, . . . ,K

// Simulate qdoc chain with samples from last iteration
for n← 1 to Lw do

for i← 1 to MH do
s← z

(i−1)
wn , t← z

(i)
wn

π ← min{1, Cwt+β
Cws+β

Cs+β̄V
Ct+β̄

}
zwn ← t with probability π

end for
end for
// Update Cwk
Cwk ←

∑Lw
n=1 I(zwn = k), k = 1, . . . ,K

urn← BuildAlias(Cw)

// Draw samples from qword

for n← 1 to Lw do
for i← 1 to MH do

z
(i)
wn ← urn.Draw()

end for
end for

end for
// Document phase: Cdk, πword, qdoc

for d← 1 to D do
// Compute Cdk on the fly
Cdk ←

∑Ld
n=1 I(zdn = k), k = 1, . . . ,K

// Simulate qword chain with samples from last iteration
for n← 1 to Ld do

for i← 1 to MH do
s← z

(i−1)
dn , t← z

(i)
dn

π ← min{1, Cdt+αt

Cds+αs

Cs+β̄
Ct+β̄

}
zdn ← t with probability π

end for
end for
// Draw samples from qdoc

for n← 1 to Ld do
for i← 1 to MH do

z
(i)
dn ←

{
z
d,Dice(Ld)

with probability Ld
Ld+ᾱ

Dice(K) otherwise
end for

end for
end for

end for
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