
Scaling Probabilistic Databases

Hernán Blanco
University of Antwerp, Belgium

hernan.blanco@uantwerpen.be

Supervised by Martin Theobald
University of Ulm, Germany
martin.theobald@uni-ulm.de

ABSTRACT
Probabilistic databases, which have been widely studied over
the past years, lie at the expressive intersection of databases
and probabilistic graphical models, thus aiming to provide
efficient support for the evaluation of probabilistic queries
over uncertain, relational data.

Several Machine Learning approaches, on the one hand,
have recently investigated the issue of distributed probabilis-
tic inference but do not support relational data and SQL.
Conventional database engines, on the other hand, do not
handle probabilistic data and queries, nor any form of un-
certain data management. With this project, we aim to
fill this prevalent gap between the two fields of Databases
and Machine Learning by scaling probabilistic databases to
a distributed setting, which is a topic that so far has not
been addressed in the literature. The proposed PhD disser-
tation topic provides a number of intriguing and challenging
aspects, both from a theoretical and a systems-engineering
perspective.

1. INTRODUCTION
Managing uncertain data via probabilistic databases

(PDBs) has evolved as an established field of research in
recent years. The field meanwhile encompasses a plethora
of applications, which are ranging from scientific data man-
agement, sensor networks, data integration, to knowledge
management systems [13, 12]. PDBs lie at the intersection
of databases and probabilistic graphical models. While clas-
sical database approaches benefit from a mature and scal-
able infrastructure for the management of relational data,
probabilistic databases aim to further combine these well-
studied data management strategies with inference tech-
niques known from graphical models such as Bayesian Net-
works and Markov Random Fields. PDBs adopt powerful
query languages from relational databases, including Rela-
tional Algebra, the Structured Query Language (SQL), and
logical query languages such as Datalog.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org.
Proceedings of the VLDB 2015 PhD Workshop

The Trio probabilistic database system [7] was the first
system that explicitly addressed the integration of data man-
agement via SQL, provenance (aka. “lineage”) management
via Boolean formulas, and efficient probabilistic inference.
The data model which was considered for Uncertainty and
Lineage Databases (ULDBs) [1] was the first probabilis-
tic database approach that was shown to provide a closed
and complete probabilistic extension to the relational model
which supports all of the core relational (i.e., SQL-based)
operations over this kind of uncertain data.

A key in making probabilistic inference scalable to the
extent that is needed for modern data management appli-
cations lies (without considering parallelization techniques
yet) in the identification of tractable query classes and the
adaptation of known inference techniques from graphical
models to a relational data setting. While for specific classes
of queries, probabilistic inference can directly be coupled
with the relational operations [9, 12], the performance may
very quickly degenerate when the underlying independence
assumptions among the data objects do not hold. Despite
the polynomial runtime complexity for the data compu-
tation step that is involved in finding answer candidates
to probabilistic queries, the confidence computation step,
i.e., the actual probabilistic inference, for these answers is
known to be of exponential cost already for fairly simple
SQL queries. Consequently, much of the recent research in
PDBs has focused on establishing a classification of query
plans for which confidence computations are either of poly-
nomial runtime or are #P-hard [2, 12]. Thus, strategies for
efficient confidence computations and early pruning of low-
confidence query answers remain a key challenge also for the
scalable management of uncertain data via PDBs.

2. STATE-OF-THE-ART
Recent work on efficient confidence computations in PDBs

has addressed this problem mainly from two ends, namely
by restricting the class of queries that are allowed, i.e., by
focusing on so-called safe query plans [12], or by considering
a specific class of tuple-dependencies, commonly referred to
as read-once functions [11]. Intuitively, safe query plans de-
note a class of queries for which confidence computations
can directly be coupled with the relational operators and
thus be performed by an extensional query plan. On the
other hand, read-once formulas denote a class of Boolean
lineage formulas which can be factorized in polynomial time
into a form where every variable in the formula (each repre-

1



senting a database tuple) appears at most once, thus again
permitting efficient confidence computations.

While safe plans clearly focus on the characteristics of the
query structure, and read-once formulas focus on the logi-
cal dependencies among individual data objects, top-k-style
pruning approaches [4, 8] have been proposed as an alter-
native way to address confidence computations in PDBs.
These approaches aim to efficiently identify the top-k most
probable answers, using lower and upper bounds for their
marginal probabilities, without the need to compute the ex-
act probabilities of these query answers. In [4], a form of
first-order lineage formulas (based on a restricted class of
first-order logic) is proposed, which allows to fully integrate
the data and confidence computation steps in a probabilis-
tic database setting. PrDB [10] is one of the most generic
PDB approaches in the field, aiming to significantly widen
the opportunities to include richer probabilistic models by
allowing uncertainty at both tuple and attribute level as
well as tuple correlations. It also achieves improvements in
terms of fast inference by implementing a self-developed al-
gorithm based on bisimulation. However, also PrDB does
not address the problem of distribution and parallelization,
where an enormous potential for scalability lies.

On the other hand, recent trends in relational databases
clearly focus on “Big Data” management and “Cloud Com-
puting”. Distributed database engines like Apache’s Cas-
sandra, HIVE, or HBase aim to achieve an even better scal-
ability to many petabytes of data by going for distributed
file systems and by performing SQL queries via iterative
and largely synchronous communication workflows based on
Google’s MapReduce or Apache’s Hadoop frameworks.

There currently exists no distributed probabilistic database
system. A number of systems brought up by the Machine
Learning and Artificial Intelligence communities, such as
CMU’s GraphLab [6], MIT’s FactorIE, Microsoft’s Infer.NET
(MSR Cambridge), and the recently released Amazon Ma-
chine Learning and AMPLab’s KeystoneML platforms fo-
cus on purely graph-based and partly also on distributed
approaches. However, all of these employ their own APIs
and do not natively support relational data or SQL. From a
more classical (i.e., deterministic) database perspective, we
have recently seen distributed engines like SciDB or Berke-
ley’s BOOM project, which were designed from scratch to
be massively scalable (and which, in the first case, origi-
nally even had the support for uncertain data as part of
its core design goals), but they ultimately do not support
probabilistic or otherwise uncertain data.

3. NOVEL CONTRIBUTIONS
In this project, we advocate for the development of a radi-

cally new, scalable, and massively distributed infrastructure
for probabilistic databases. The goal is to investigate how far
the advantages of mature database technologies can be car-
ried over to a distributed and probabilistic setting. We pro-
pose a probabilistic data(-base) model, seeking to combine
both the generic semantics of a relational backend with par-
allelization opportunities for probabilistic inference based on
graphical models. Our intended research will specifically fo-
cus on the core functionalities of a database in terms of effi-
cient query processing over a distributed, persistent storage
layer with parallel query routing whenever possible. We will
further focus on adapting existing techniques for probabilis-

Slave 1 Slave 2

x1
x3

x2

x6

x4

x5 x7

x8

x9

R1 A B

x1 a1 b1
x2 a2 b2
x3 a3 b3

R2 B C

x4 b1 c1
x5 b2 c3
x7 b3 c2

R3 C D

x6 c1 d2
x8 c1 d1
x9 c2 d1

Figure 1: A sample factor graph. The red circles represent
variable nodes which are database items (instantiated in relations
R1, R2 and R3); the blue squares represent factor nodes. The
data is distributed across two cluster slaves by minimizing the cut
between the two partitions of the factor graph.

DIS(R1) DIS(R2) DIS(R3)

B
DMJ

C
DHJ

(a) (b)

Figure 2: (a) A representation of a distributed query execu-
tion: distributed index scans over the tree base relations R1, R2

and R3 from Figure 1, a distributed merge join on B, and a
distributed hash join on C. (b) The results retrieved from eval-
uating the query represented in Figure 2(a), each record holding
its respective lineage expression.

tic inference based on variable elimination and asynchronous
message passing.

3.1 A Unifying Data Model
Specifically, in this PhD project we advocate for the in-

vestigation of a distributed factor graph model as being the
core data model for the intended (both distributed and prob-
abilistic) database infrastructure. Factor graphs provide a
generic data model for capturing various kinds of proba-
bilistic graphical models and have successfully been applied
to related (but non-distributed) probabilistic settings in the
past. A factor graph (see Figure 1) is a bipartite graph
G(X,Φ) that consists of a set of variable nodes X = {x1, . . . ,
xm} and a set of factor nodes Φ = {φ1(X1), . . . , φn(Xn)},
where each Xs ⊆ X is a subset of variables which are as-
sociated with a factor function φs : Xs → R, such that
G(X,Φ) =

∏
i φi(Xi).

Variable nodes will represent data items of mutable (usu-
ally binary) state, which are connected to factor nodes in
order to model weighted dependencies between the possi-
ble states of the variable nodes. This generic graphical
model provides a very flexible and scalable representation
model, which can easily be serialized into relational data.

2



Slave 1 Slave 2

⋀ ⋀

⋀ ⋀ ⋀

l1 l2 l3

x1 x3 x4 x6 x7 x8 x9

x2 x5

Distributed factor graph index

Lineage

Distributed
factor graph

Figure 3: A representation of the complete, both distributed
and probabilistic, setting obtained from the query results in Fig-
ure 2(b). It illustrates the combined data model: the directed
acyclic graph (DAG) structures at the top represents the three
lineage formulas obtained from the query evaluation, l1, l2 and
l3; the bottom part shows their connection to the factor graph
from Figure 1.

Factor graphs subsume both tuple-independent probabilis-
tic database approaches (where a factor node is connected
to exactly one variable node, representing its marginal prob-
ability) and current state-of-the-art probabilistic database
[10] approaches based on either undirected graphical mod-
els, such as Markov Random Fields, or directed ones, like
Bayesian Networks (where a factor node may be connected
to multiple variable nodes in order to also express tuple cor-
relations or conditional probabilities).

While such a factor graph is the basis of our data model,
thus encapsulating the static probabilistic interactions be-
tween all data items, one of the novelties that we pursue
on our work is to combine it with a data lineage model, in
order to include a dynamic uncertainty layer on top of the
factor graph. This way, we would provide a very generic
uncertainty model in which we consider the probability dis-
tribution obtained from coupling both the intrinsic distri-
bution of the given dataset (i.e., the factor graph), and the
distribution generated dynamically during query processing
with respect to the query expression (i.e., the lineage).

More formally, we will define lineage as a formula which
captures the logical dependencies between a query answer
and the facts from which it was derived (see Figure 3). As
it was previously mentioned, first-order logic formulas have
already been explored to express lineage; however, in this
paper, for the sake of simplicity and following the majority
of literature, we consider propositional formulas to represent
lineage. A number of lineage models have been proposed in
the database community in order to track data that is trans-
formed by means of relational operations, such as sequences
of updates and queries. These models vary in the kind of
data (relational data, complex objects, XML), the class of
queries (Relational Algebra, SQL, Datalog, XQuery), and
the level of granularity of the recorded information. The

underlying commonality in all these models is that the lin-
eage information is typically generated via annotations of
the individual data items.

A major goal to be accomplished in our project is to ex-
plore and develop a compilation technique to represent the
kinds of formulas that we obtain through the lineage calcu-
lation in a succinct way. To this end, data structures like
OBDDs (Ordered Binary Decision Diagrams) and related
knowledge-compilation approaches such as SDDs (Senten-
tial Decision Diagrams) [3] are state-of-art representation
models for propositional formulas. However, they might not
be directly adaptable to the lineage expressions obtained
from query evaluations, and potentially expensive formula
transformation costs must be taken into account.

3.2 Distributed Database Setting
However, as emphasized already in previous sections, ef-

ficient computation of marginal probabilties over a set of
random variables remains a major computational challenge.
For this reason, our goal is to implement such a probabilistic
setting in a distributed fashion. Thus, we expect to obtain
the benefits from a highly parallelized query execution and
from applying distributed inference algorithms to achieve an
improved performance on the marginalization process.

Given this overview, both data partitioning and indexing
are clearly the first two issues that are to be addressed in or-
der to enable query evaluations with asynchronous commu-
nication patterns and execution of the inference algorithms.
In this sense, it must be taken into account that the factor
graph adds another degree of complexity to the partition-
ing task. The partitioning algorithm must consider not only
the data items but also their underlying correlations (i.e.,
factors connecting the variables in the factor graph). Oth-
erwise, the communication among the compute nodes might
heavily increase during inference computation time.

Several approaches to address these problems can be fol-
lowed; currently, the focus of our research is on extending
TriAD [5] – a fast, distributed RDF engine – in order to
support the combined probabilistic data model that we are
proposing. TriAD implements a replicated index with all
possible triplet permutations (as many other RDF stores),
and a hash-based, horizontal partitioning. In our adapta-
tion, the factor graph is currently partitioned based on a
horizontal form of data partitioning: each factor node is lo-
cated at the slave where there are more variable nodes (i.e.,
data items) connected to it. Thus, the factor nodes are
distributed by minimizing the amount of cut edges, thus de-
creasing the communication between slaves while performing
probabilistic inference calculations.

On the other hand, and in order to solve the problem
of the factor graph indexing, our purpose is to manage an
in-memory distributed index based on distributed pointers,
keeping direct references to the data items and factors, in
such a way that unnecessary index look-ups can be avoided.

Regarding the query evaluation in a distributed proba-
bilistic setting, besides the implementation of distributed re-
lational operators (TriAD performs distributed index scans,
distributed merge and hash joins and projections; a basic
example is shown in Figure 2(a)), a key challenge consists
of compactly encoding and propagating the lineage infor-
mation along with the intermediate and final query answers
through the compute network, and to embed this into a
flexible communication protocol. To accomplish this, new

3



augmented relational operators are to be implemented, al-
lowing us to trace and construct the lineage formula of each
individual query answer at query execution time.

3.3 Distributed Inference Algorithms
In order to take advantage of such a distributed system,

we intend to develop probabilistic inference algorithms that
specially take advantage of a decoupled, asynchronous exe-
cution layer. Concerning this, several implementations have
been already discussed in previous sections. However, query
processing and inference in probabilistic databases requires
much more fine-grained, asynchronous communication pat-
terns than what is available via the MapReduce paradigm.
To this end, the Message Passing Interface (MPI) is an al-
ternative framework for the exchange of messages among
compute nodes – it is also used as basis for the GraphLab
communication protocols [6], among others. The communi-
cation layer of MPI is tightly embedded into TCP/IP net-
work protocol, allowing for the direct communication be-
tween two or more compute nodes via socket connections.
Although it implies a higher level of effort, many graph algo-
rithms and probabilistic inference techniques based on the
variable elimination or the belief propagation algorithms are
all much more suitable to such asynchronous communication
patterns than to synchronous and long-running MapReduce
iterations. Moreover, since we pursue a hybrid graphical
model, we need distributed inference solutions for the com-
bination between the undirected factor graph and the lin-
eage structure, which conforms, as shown in Figure 3, to a
directed acyclic graph (DAG).

4. CONCLUSION
We propose a project that aims to be highly innovative

as it attempts to bridge the gap among PDBs and – and
specially in a distributed setting – current Machine Learn-
ing approaches, which we believe has not been adequately
investigated in the literature so far. To achieve our goals,
we present, schematically, the following three main frontiers
we intend to study.

• A combined, graph-oriented probabilistic model is pro-
posed, which combines a static factor graph with a dy-
namic form of data lineage. We argue that this com-
bined data model allows us to apply our approach to
very generic problem settings, but at the same time
it even more challenges us to investigate scalable solu-
tions for query evaluation and probabilistic inference.

• Fitting such a probabilistic model into a distributed
database system is presented as a core matter in our
project. By employing main-memory-based, distribu-
ted index structures for the underlying factor graph,
we intend to provide an appropriate distributed setup
to scale out query evaluations under this data model.

• We consider several lines of research for the implemen-
tation of fast, distributed, asynchronous inference al-
gorithms under our data model. Based on the Mes-
sage Passing Interface, we aim to adapt and enhance
the performance of existing inference techniques such
as variable elimination and belief propagation.

5. REFERENCES
[1] O. Benjelloun, A. D. Sarma, A. Y. Halevy,

M. Theobald, and J. Widom. Databases with

uncertainty and lineage. VLDB J., 17(2):243–264,
2008.

[2] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance
in databases: Why, How, and Where. Foundations and
Trends in Databases, 1(4):379–474, 2009.

[3] A. Darwiche. SDD: A new canonical representation of
propositional knowledge bases. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pages 819–826, 2011.

[4] M. Dylla, I. Miliaraki, and M. Theobald. Top-k query
processing in probabilistic databases with
non-materialized views. In 29th IEEE International
Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013, pages 122–133,
2013.

[5] S. Gurajada, S. Seufert, I. Miliaraki, and
M. Theobald. TriAD: a distributed shared-nothing
RDF engine based on asynchronous message passing.
In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, pages 289–300, 2014.

[6] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
GraphLab: A framework for Machine Learning in the
cloud. PVLDB, 5(8):716–727, 2012.

[7] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom,
P. Agrawal, O. Benjelloun, A. D. Sarma, R. Murthy,
and T. Sugihara. Trio-One: Layering uncertainty and
lineage on a conventional DBMS (demo). In CIDR
2007, Third Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings, pages 269–274, 2007.

[8] D. Olteanu and H. Wen. Ranking query answers in
probabilistic databases: Complexity and efficient
algorithms. In IEEE 28th International Conference on
Data Engineering (ICDE 2012), Washington, DC,
USA (Arlington, Virginia), 1-5 April, 2012, pages
282–293, 2012.

[9] A. D. Sarma, M. Theobald, and J. Widom. Exploiting
lineage for confidence computation in uncertain and
probabilistic databases. In Proceedings of the 24th
International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages
1023–1032, 2008.

[10] P. Sen, A. Deshpande, and L. Getoor. PrDB:
managing and exploiting rich correlations in
probabilistic databases. VLDB J., 18(5):1065–1090,
2009.

[11] P. Sen, A. Deshpande, and L. Getoor. Read-once
functions and query evaluation in probabilistic
databases. PVLDB, 3(1):1068–1079, 2010.

[12] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[13] G. Weikum and M. Theobald. From information to
knowledge: harvesting entities and relationships from
web sources. In Proceedings of the Twenty-Ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2010, June 6-11, 2010,
Indianapolis, Indiana, USA, pages 65–76, 2010.

4


