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Interest in Modern HW?

…IN RESEARCH
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Interest in Modern HW?

Compute Units Memory Networking
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Interest in Modern HW?

…in commercial DB settings

• some developments (acceleration models, …)

• last disruptive development: >10 years back!

Why was In-Memory Computing development disruptive?



5

Disruptiveness

…novel technology
and hardware

…novel types of
DB(!!!) applications

Disruptions in Data Management always require two ingredients
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Disruptiveness (2)

2009

Why was In-Memory Computing development disruptive?

 enabler for HTAP = OLTP & OLAP
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UseCase - Hybrid Transactional Processing

STATISTICS

 203m active accounts (1st Quarter 2017)

 Online payments in 200+ countries (1st Quarter 
2017)

 6.1 billion payment transactions in 2016

TRANSACTIONAL DATA VOLUME

 500 million FTs
 500 million business partner
 100 million transaction per day
 ~321 million sub ledger documents per day
 6 million PDAs per day
 6 million VDAs per day
 150 million VDAs in incoming layer
 150.000 cash entries per day
 …

Material provided by Tim Crum (PayPal) and Frank Renkes (SAP SE)

Accounting, Reconciliation, and Reporting application

OLTP OLAP

 All on a single HANA box (48 TB)
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Accounting, Reconciliation,
and Reporting 

“Traditional Apps“

Data Management 
System

Applications

Hardware



9

The DB Sandwich

Accounting, Reconciliation,
and Reporting 

“Traditional Apps“ Machine Learning

Data ScienceInternet-of-Things

Accounting, Reconciliation,
and Reporting 

“Traditional Apps“

Data Management 
System



10

Outline

Compute Units Memory Networking

Characteristics / Opportunities / Challenges

?
What is the design space? / What might be a hypothetical HW blueprint?
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Outline

Compute Units

Compute Unit Diversity
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Compute Unit Diversity

Multi-Core Multi-Sockets BigLITTLE dGPU/APU Xeon Phi FPGA ASIC

…

Traditional CPU-World Emerging Compute Unit Variety

PERFORMANCE, PERFORMANCE, 
PERFORMANCE!!!

• specialized data structures 
and algorithms

• parallel programming models 
and compiler support

• data and operator placement 
strategies

FOCUS ON

CPU-style
processor

GPU,
FPGA,
ASIC,

…

DRAM

Heterogeneous Computing
by offloading „simple tasks“
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Compute Unit Diversity

Multi-Core Multi-Sockets BigLITTLE dGPU/APU Xeon Phi FPGA ASIC

…

Traditional CPU-World Emerging Compute Unit Variety

https://www.nvidia.com/en-us/data-center/tesla-v100/ https://www.top500.org/featured/systems/
asci-white-lawrence-livermore-national-laboratory/

Nvidia V100 (2017) IBM ASCI White (2000)

Number of Processor Cores 3584 8192 (512 nodes x 16 IBM Power3)

Double-Precision Performance 7.5 TeraFLOPS 7.2 TeraFLOPS

NVIDIA NVLink™ v2 Interconnect Bandwidth 2x150 GB/s N/A

PCIe x16 Interconnect Bandwidth 2x16 GB/s N/A

Memory Capacity 16 GB 6 TB DRAM
(Power 3 w/ 16 MB L2 cache)

Max. overall data transfer speed 900 GB/s ?

Weight 450 gramm 106 tons

Energy consumption 300W 3 MW

Material provided by Norman May (SAP SE)
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…but: we are hitting the „Energy Wall“

Energy WallMemory Wall

QUESTIONS:
1) Does it matter and is there an impact on database systems    

(regarding energy savings without

compromising performance)?

2) Why should the DB community care about it?
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Energy Awareness
POWER BREAKDOWN HASWELL-EP
 19% static
 81% dynamic

INITIAL EVALUATION

HARDWARE CONFIGURATION KNOBS

Core

LLC
MC MCMCMC

HT

Core
…

Uncore Clock

Core 
Clock

Core 
Clock

Core

LLC
MC MCMCMC

Core
…

Uncore Clock

Core 
Clock

Core 
Clock

HT HT HT HT HT HT HT

Linux Governour Query Load

OBSERVATIONS:
1) There are opportunities

2)   There are many knobs to tune

 load dependent
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…but: workload knowledge makes a difference

20%

Index Scan Column Scan

40%

Uncore
Frequency

Average Core 
Frequency Number of

Active Cores
same performance /
most energy efficient configuration

There is potential in energy saving without compromising performance! 



17

Energy Savings

YCSB benchmark

energy 
savings

Linux Governour

Query Load

DB-controlled
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Energy Awareness

How far can we push it?

Is this disruptive?

40%

Mohammad Shahrad, David Wentzlaff: Towards Deploying Decommissioned Mobile Devices as Cheap Energy-Efficient Compute Nodes. HotCloud 2017
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Basic RISC Instruction Set

Application-Specific Instruction Set

Instruction Set

Application-Specific States

Application-Specific Registers

Basic Registers

Register Files

Instruction
fetch

Load-Store 
Unit 0

Load-Store 
Unit 1

Data Prefetcher
Interconnect

Local Instruction 
Memory

Local Data 
Memory 0

Local Data 
Memory 1

Extended Tensilica LX5 Processor

64 bit

128 bit

128 bit

HW/SW-CoDesign

• Offloading DB-specific instructions
• Energy efficient design for near-memory deployment
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Tomahawk DBA Primitives
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+ development is going on

…more on Friday
11:40am – 12pm
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Tomahawk DBA: Sorted Set Intersection
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DBA_2LSU_EIS w/ partial loading DBA_1LSU_EIS w/ partial loading

DBA_2LSU_EIS w/o partial loading DBA_1LSU_EIS w/o partial loading

DBA_1LSU 108Mini
Final processor

+1 Load-Store unit

Data bus: 
32->128 bit

+ Partial loading

+ Extended ISA
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Tomahawk DBA: Sorted Set Intersection
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Relative Area Consumption
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Big 
Core
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Tomahawk DBA: Sorted Set Intersection

~ ±x%

Relative Area Consumption
(DBA_2LSU_EIS)

>>

>>

Big 
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Big
Core

Big
Core

Big
Core

Big
Core

Big 
Core

FPGAGPU GPU

Big
Core

FPGAGPU

Little
Cores

Little 
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GPU

Little 
Cores

DB 
ISA

Little
Cores

DB 
ISA
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Summary - Compute Unit Diversity

Multi-Core Multi-Sockets BigLITTLE dGPU/APU Xeon Phi FPGA ASIC

…

Traditional CPU-World Emerging Compute Unit Variety

Opportunities Challenges

Performance 
through parallelism

Life cycle

Programming Model

Energy Awareness

Increased system complexity

…
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Outline

Memory Diversity

Memory
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Memory Diversity

SRAM DRAM

Caches

1X 10X Latency

1X 100X Capacity

DRAM DIMMMCDRAM



28Material provided by David Wang (Samsung)
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Memory Diversity

SRAM DRAM

Caches

1X 10X Latency

1X 100X Capacity

… 

Disk

HDD: huge demand for extremely cheap cloud storage
( e.g. new form factors)

SDD: 
• large capacity (> 1PByte) and (relatively) high bandwidth
• significant development ahead
• still (relatively) poor latency

DEVELOPMENTS

DRAM DIMMMCDRAM
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Memory Diversity

SRAM DRAM NVRAM

Caches

1X 10X 100XLatency

1X 100X 1000XCapacity

Adapted from: M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory system using phase-change memory technology. In ISCA 2009

Merging Point between Storage and Memory

DRAM DIMMMCDRAM 3D XPoint FRAM MRAM PRAM

…
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Game Changer? Non-Volatile Memory (NVRAM)

ADVANTAGES

 … does not consume energy if not used

 … is persistent, byte-addressable

 … x-times denser than DRAM

DRAWBACKS

 … has higher latency than DRAM
- Read latency ~2x slower than DRAM

- Write latency ~10x slower than DRAM

 Number of writes is limited

m

Estimates provided by David Wang (Samsung)
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NVRAM as Transient Main Memory

DRAM as hardware-managed
cache for NVRAM NVRAM next to DRAM

NVRAMDRAM

Application

application 
address space

Virtual memory subsystem

NVRAM

DRAM

Application

application 
address space

Virtual memory subsystem

NVRAM operates in two modes
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NVRAM as Persistent Main Memory

application 
address
space

Application

Virtual memory subsystem

Disk

Buffer 
pool

Disk filesystem

file API

DRAM

file API

NVRAM

NVRAM-optimized filesystem

• SNIA recommends to access 
NVRAM via file mmap()

• NVRAM-optimized filesystem 
provides zero-copy mmap(), 
bypassing the OS page cache

 Linux ext4 and xfs already 
provide Direct Access support

mmap()

load/store

may result in single-level database, i.e. the persistent version == the working copy
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NVRAM as Universal Memory

Is this disruptive?

“…not fast enough to replace main memory…not 

cheap enough to replace flash” M. Stonebraker
https://www.nextplatform.com/2017/08/15/hardware-drives-shape-databases-come/

application 
address
space

Application

Virtual memory subsystem

Disk

Buffer 
pool

Disk filesystem

file API

DRAM

file API

NVRAM

NVRAM-optimized filesystem

mmap()

load/store

?

https://www.nextplatform.com/2017/08/15/hardware-drives-shape-databases-come/
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NVRAM as Universal Memory: Pros and Cons

CONS / THREADS

 NVRAM too expensive to fill the gap between DRAM and SSDs
 higher latency is directly visible for state-of-the-art data structures
 little control over when data is persisted  due to CPU cache eviction 

policy or memory reordering
 testing methods required to cover novel types of bugs

PROS / OPPORTUNITIES

 DRAM may be hitting scalability limits soon
 fits nicely into rack-scale architectural blueprints
 very limited performance degradations for the 

right data structure with matching access patterns
 provides near instant recovery!

(loading an X-TeraByte database into Main Memory is a pain!)

…more on Friday
11:40am – 12pm
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Programming and Testing Challenges

(DATABASE) DEVELOPERS ARE USED TO

 ordering operations at the logical level
(e.g., write undo log, then update primary data)

 fully controlling when data is made persistent
(e.g., log durability must precede data durability)

NVM INVALIDATES THESE ASSUMPTIONS

 little control over when data is made persistent
 writes need to be ordered at the system level

resulting in novel failure scenarios

Transient

Persistent

NVRAM Controller

NVRAM Device

CPU
Core Core

L3

L1

L2
L1

L2

Store Buffer Store Buffer

MOV MOVNT

How to ensure consistency of data structures in NVM?
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Example: Array Append Operation

void push_back(int val){
m_array[m_size] = val;
sfence();
clwb(&m_array[m_size]);
sfence();
m_size++;
sfence();
clwb(&m_size);
sfence();    

}
Array.push_back(2017);

0

m_size m_array

1

0 2017

1 2017

Corrupt!

What is in NVM?
PROS:
- low-level optimizations possible

CONS:
- programmer must reason about 

the application state
 harder to use and error prone

void push_back(int val){
TXBEGIN {

m_array[m_size] = val;
m_size++;

} TXEND
}

PROS:
- easy to use and to reason about

CONS:
- overhead due to systematic logging
- low-level optimizations not possible

à la software 
transactional memory
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NVM Performance Challenges

WHAT IS THE COST OF FLUSHING INSTRUCTIONS?
 Prototype hybrid NVM-DRAM storage engine
 TPC-C throughput relative to “without flushes”
 Flushes incur ~18% performance overhead

WHAT IS THE EFFECT OF HIGHER NVM LATENCIES?
 TPC-C throughput relative to “baseline NVM 

latency” (154ns)
 4x higher latency  ~32% performance penalty 

with or without flushes

NVM latency is the main performance-deciding factor

Flushes are expensive but agnostic to latency

Material provided by Ismail Oukid (SAP SE)

0%

20%

40%

60%

80%

100%

154 276 357 475 539 637

LATENCY [NS]

0%

20%

40%

60%

80%

100%

154 276 357 475 539 637

LATENCY [NS]

with flushes
without flushes
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Persistent Memory Leaks

Example: crash during a linked-list insertion

Novel class of memory leaks resulting from failures

void append(int val){
node *newNode = new node();
newNode->value = val;
persist(&(newNode->value));
m_tail->next = newNode;
persist(m_tail);
m_tail = newNode;
persist(&m_tail);

}
List.append(9);

5 12

m_tail

persistent allocation

Failure-induced 
persistent 

memory leak!

9
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Persistent Memory Leaks

Example: crash during a linked-list insertion

Novel class of memory leaks resulting from failures

void append(int val){
node *newNode = new node();
newNode->value = val;
persist(&(newNode->value));
m_tail->next = newNode;
persist(m_tail);
m_tail = newNode;
persist(&m_tail);

}
List.append(9);

5 12 9

m_tail

Failure-induced 
persistent 

memory leak!

persistent allocation

novel types of bugs and additional testing overhead

Thursday at 3:30PM
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Summary - Memory Diversity

3D XPoint

SRAM DRAM NVRAM

FRAM MRAM PRAMCaches

…
DRAM DIMMMCDRAM

Opportunities Challenges

Performance through 
more In-Memory data

Provide in-Memory solution for 
hard-to-partition OLTP 

databases, graph algorithms, …

Enables In-Memory DBs 
beyond the 100TByte range

Cost

R/W Symmetry

Write Endurance

Testing

Increased algorithmic 
complexity
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Outline

Network Diversity

Networking
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Network Diversity

On-Chip On-Board Cross-Board

Ring Network
Haswell-EP

Fully Connected
Fully Connected Fat Tree

Cross-Node

Infiniband, etc.

data locality is king, moving data is evil!!!

• key for separation of compute and memory
• core prerequiste for providing elasticity in database systems

…most critical component for data-centric systems
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Fast Networks: Infiniband & RDMA

PVLDB 2016
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Example: Distributed Radix Join
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Example: Memory Extensions

… many more similar approaches…

SIGMOD 2016
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…even more Memory Extensions

NSDI 2017

pathfinding projects towards Rack-scale computing
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…but still: Latency matters!!!

HPE SGI UV 3000

Up to 82% bandwidth penalty & factor of 10 latency penalty

sockets

sockets

Fat Tree 
Topology
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Solution ? - Accelerated Memory Operations

SGI Global Reference Unit (GRU)

Global Shared Memory & Cache Coherency 

Explicit Offloading

Socket-to-Socket Copy (4GByte chunks)

…more on Friday
1.10 pm -1.35 pm

requires cost-based decision during runtime!
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Network Developments

What is next?

Is this disruptive?

All-to-All topology, 
e.g. NUMAlink 7

?
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Network Diversity

On-Chip On-Board Cross-Board

Ring Network
Haswell-EP

Fully Connected
Fully Connected Fat Tree

Cross-Node

Infiniband, etc.

2D Mesh
Skylake-X

3D Mesh
2D Mesh
Photonics

Intel RSA
Rack-scale architecture

HP
The Machine
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Technology Advances in Network Technology
(cross-board)

antenna array

+ 3D stacking

(2.5mm x 3.0mm)
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Technology Advances in Network Technology
(cross-board)

3D Hyper-Fat Tree
Short-Range Wirelessantenna array

Butler Matrix

(cost-based) configurable topology
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Impact on Database System Design

?

The 3 Vs !!! 
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Design Space for DB Architectures

Volume
(scalability)

• Single query vs. overall 
system performance 

• Scheduling & data placement
• Concurrency control

Millions of cores?
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Design Space for DB Architectures

Volume
(scalability)

Variety
(heterogeneity)

• Single query vs. overall 
system performance 

• Scheduling & data placement
• Concurrency control

Millions of cores?

Scheduling a zoo?

• Impact on query optimization
• Impact on runtime
• Dealing with non-relational 

operators / application code 

Tomas Karnagel, René Müller, Guy M. Lohman: Optimizing GPU-accelerated Group-By and Aggregation. ADMS@VLDB 2015: 13-24
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Design Space for DB Architectures

Volume
(scalability)

Variety
(heterogeneity)

• Single query vs. overall 
system performance 

• Scheduling & data placement
• Concurrency control

Millions of cores?

• Impact on query optimization
• Impact on runtime
• Dealing with non-relational 

operators / application code 

Scheduling a zoo?

Today at 2:00PM
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Design Space for DB Architectures

Volume
(scalability)

Millions of cores?

Scheduling a zoo?

Variety
(heterogeneity)

Energy Awareness?
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Design Space for DB Architectures

Volume
(scalability)

Millions of cores?

Scheduling a zoo?

Variety
(heterogeneity)

Heat Manufacturing 
Process & Aging

Disturbance 
Errors

Radiation

Increasing (Multi-) 
Bit Flip Error Rates

Energy Constraints?
Resilience Constraints?
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Design Space for DB Architectures

Volume
(scalability)

Millions of cores?

Scheduling a zoo?

Variety
(heterogeneity)

Variability
(reconfiguration @ runtime)

Energy Constraints?
Resilience Constraints?

software-defined infrastructure
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Database Design Principles

Data-Centric Design

Fine-Grained Adaptivity

Self-Adaptation
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DB Design Principle: Data Centric Architecture

Big
Core

FPGAGPU

Little
Cores

Little 
Cores

Little
Cores

GPU

Little 
Cores

DB ISA

Little
Cores

DB ISA

GPU

Little
Cores

Little 
Cores

DB ISA

Board

Socket

Scalability Limiters

Latches in Data Structures

Remote Memory Accesses

DRAM

DRAM

Transaction-Oriented Architecture

Latency Penalty
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DB Design Principle: Data Centric Architecture

Big
Core

FPGAGPU

Little
Cores

Little 
Cores

Little
Cores

GPU

Little 
Cores

DB ISA

Little
Cores

DB ISA

GPU

Little
Cores

Little 
Cores

DB ISA

Board

Socket

Scalability Limiters

Latches in Data Structures

Remote Memory Accesses

Scalability Enablers

Factoring out Common Services

Partitions as 1st-Class Citizens

Hierarchical Communication

Transaction-Oriented Architecture

Data-centric Architecture
Local Coordinator

Workers

Board Communication

Interior Communication

… and some more!
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Application Code / 
Operator Code

DB Design Principle: Fine Grained Adaptivity

Big
Core

FPGAGPU

Little
Cores

Little 
Cores

Little
Cores

GPU

Little 
Cores

DB ISA

Little
Cores

DB ISA

GPU

Little
Cores

Little 
Cores

DB ISA

Board

Socket

? ? ?
? ? ?

? ? ?

?
?

?Physical Data 
Representation

Clear abstraction between

DB Engine Runtime
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Application Code / 
Operator Code

DB Design Principle: Fine Grained Adaptivity

Big
Core

FPGAGPU

Little
Cores

Little 
Cores

Little
Cores

GPU

Little 
Cores

DB ISA

Little
Cores

DB ISA

GPU

Little
Cores

Little 
Cores

DB ISA

Board

Socket

? ? ?
? ? ?

? ? ?

?
?

?Physical Data 
Representation

Clear abstraction between …  allows for

DB Engine Runtime

individual
code
variants

individual
data
representation
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DB Design Principle: System Adaptation

Big
Core

FPGAGPU

Little
Cores

Little 
Cores

Little
Cores

GPU

Little 
Cores

DB ISA

Little
Cores

DB ISA

GPU

Little
Cores

Little 
Cores

DB ISA

Board

Socket

DRAM

DRAM

DRAM

BoardBox

Storage Format

Energy Management

Data Placement

Compute Unit Selection

Hardware Reconfiguration

Resilience Compression

many more are needed!!!



… the End!
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Conclusion

OPPORTUNITIES ARE MANYFOLD

 We don’t have a choice!
- modern HW will be exploited for efficient data management

if not by „us“, then by other communities
 Extremely interesting research questions, but

- „there is no free lunch“ still holds!
- requires interdisciplinary research activities 

beyond DB system engine design

RECAP: DISRUPTIONS ALWAYS REQUIRE TWO INGREDIENTS:
 Novel technology
 Novel types of DB(!!!) applications Now we have both!!!

Now it‘s time for the next disruption!

Hardware developments are pushing system software development
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