
Managing ML Pipelines: Feature
Stores and the Coming Wave of

Embedding Ecosystems
VLDB 2021

Speakers

2

Laurel Orr
Stanford

Atindriyo Sanyal
Uber AI

Xiao Ling
Apple

Megan Leszczynski
Stanford

Karan Goel
Stanford

Modern ML Pipelines

ML pipelines help engineers build and deploy models

Standardization Easier to MaintainReproducibility

3

Engineer Workflow Today

STORE and
MANAGE

DATA

BUILD
MODEL and

TRAIN

Feature / Data
Engineering

Model Testing
/ Deployment

DEPLOY
and

MONITOR

Monitor

4

Engineer Workflow of Yesteryear (< 2017-8)

*Sculley, David, et al. "Hidden technical debt in machine learning systems." Neurips (2015)

STORE and
MANAGE

DATA

DEPLOY
and

MONITOR
5

“Pipeline Jungle*”

The “Pipeline Jungle” Experience

*Sculley, David, et al. "Hidden technical debt in machine learning systems." Neurips (2015)
6

The challenges to deploying a model:

- One-off feature definitions

- Lack of reproducibility

- Inconsistent storage

- No standard evaluations and
testing

- Difficult to detect and recover from
errors

- ...

The “Pipeline Jungle” Experience

7

Product
Recommender

Model
“More than 4.5 stars”

Popular Product Feature
Recommender

Models across Teams

Product
Recommender

Model

“More than 5K
purchases”

Product
Recommender

Model

“80% positive sentiment
reviews”

Feature Store Solution

STORE and
MANAGE

DATA

DEPLOY
and

MONITOR

Monitor

Systems to build, deploy, and monitor ML pipelines
with special focus on feature management.

FEATURE
MANAGEMENT

Feature Store

PART 1

8

Model Training
/ Deployment

Feature / Data
Engineering

Enter Self-Supervision

Paradigm where models learn embedding representations of
underlying training data without needed manually labels.

9

Self-Supervision Example: Transformers and MLM

Learn word embeddings by train a language model to predict a
masked word in a given context.

The dog enjoys eating MASK

Transformer
Model

The dog enjoys eating bones

Output word
embeddings

Input word
embeddings

Word embeddings encode contextual information. 10

Enter Self-Supervision

Paradigm where models learn embedding representations of the
underlying training data without manual labels.

Embeddings are then used in downstream models.

Embedding
Model

Downstream
ModelDownstream

ModelDownstream
ModelDownstream

Model
Embedding

11

Self-Supervision Example: Transformers

Learn word embeddings by train a language model to predict a
masked word in a given context.

The dog enjoys eating MASK

Transformer
Model

The dog enjoys eating bones

Output word
embeddings

Input word
embeddings

Word embeddings encode contextual information.

Used in downstream
sentiment analysis

12

Recall Feature Store Solution

STORE and
MANAGE

DATA

Feature / Data
Engineering

DEPLOY
and

MONITOR

Monitor

FEATURE
MANAGEMENT

Feature Store

13

Model Training
/ Deployment

Embedding Ecosystems

STORE and
MANAGE

DATA

Embedding
Training

Model Training
/ Deployment

DEPLOY
and

MONITOR

Monitor

Self-supervised embeddings, models that train them,
and downstream systems that use them.

EMBEDDING
MANAGEMENT

Embedding
Store

PART 2

14Reduction in engineer effort One embedding for multiple tasksHigher quality downstream systems

Feature Stores

15

Engineer Workflow of Yesteryear (< 2017-8)

“Pipeline Jungle*”
*Sculley, David, et al. "Hidden technical debt in machine learning systems." Neurips (2015)

STORE and
MANAGE

DATA

DEPLOY
and

MONITOR
16

Lack of Feature Management

STORE and
MANAGE

DATA

DEPLOY
and

MONITOR
17

Deployed Model
Deployed Model

Trained Model
Trained Model
Store and Manage

Trained Models

Deploy and Monitor
Served Models

0 cataloging,
monitoring of Features
across the organization.

0 Feature Quality
observability

pipelines

Training SDKs

Serving SDKs

pipelines

“Pipeline Jungle*”

Data Sources [Batch,
Streaming, Realtime]

Lack of Feature Management

STORE and
MANAGE

DATA

DEPLOY
and

MONITOR
18

Deployed Model
Deployed Model

Trained Model
Trained Model
Store and Manage

Trained Models

Deploy and Monitor
Served Models

pipelines

Training SDKs

Serving SDKs

pipelines

“Pipeline Jungle*”

Data Sources [Batch,
Streaming, Realtime]

Bespoke one-off
systems

Repeated work

Hard to manage
streaming inputs

Difficult to maintain
systems and correct

errors

Training Serving skew

Lack of Feature Management

19

Days/Weeks to make data
ML ready

Near 0 monitoring of
Features

High latency, unreliable
Feature serving in

production models at scale

1 3

● Materializing Features from
various data sources.

● Duplicating code while
materializing in training &
serving

● No guarantees of training-
serving parity

● No Feature health metrics
out of the box (due to the
various sources problem)

● No online-offline parity
monitoring, leading to
models performing poorly

● No feature drift monitoring

● No idea about Feature
impact on a model

● Poor Model latencies leading
to bad user experience.

● No dedicated dynamic
resource allocation for
feature engineering

● Multiple RPC calls at high
throughputs to fetch
features dramatically
increasing latencies

2

Feature Stores

STORE and
MANAGE

DATA

DEPLOY
and

MONITOR
20

Deployed Model
Deployed Model

Trained Model
Trained Model
Store and Manage

Trained Models

Deploy and Monitor
Served Models

pipelines

Training SDKs

Serving SDKs

pipelines

FEATURE STORE

Data Sources [Batch,
Streaming, Realtime]

Model-level Data Quality
Alerting

Feature Retrieval at Scale

Quick Feature Authoring

Feature Reuse

Unified Feature
Warehouse

Management

Feature Quality
Monitoring

Use case - ETA of an Uber EATS Order

 Key ML Features

● How large is the order? (order_size)

● How busy is the restaurant? (n_meal)

● How quick is the restaurant? (meal_preptime)

● How busy is the traffic? (n_busy)

21

22

Lookup
Existing
Features

● Search for features
○ by feature_name
○ by entity (e.g. eater_features)
○ by type (e.g. categorical_features)
○ by models (e.g. features used in eta_prediction_model)

or any combination ...

Palette Feature Store: Workflow

● Onboard Features and Author Pipelines
○ Metadata driven onboarding process
○ Feature Pipelines automatically created
○ Immediately available for consumption during Training & Inferencing

23

Onboard
Features

Lookup
Existing
Features

Author
Feature

Pipelines

Palette Feature Store: Workflow

Palette Feature Store: Workflow

24

Onboard
Features

Lookup
Existing
Features

Author
Feature

Pipelines

Train
Your

Model

Deploy
Your

Model

dsl1 = DSLEstimator(lambdas={

 "region_id": regionId("@palette:restaurant:realtime_feature:lat:r_id", "@palette:restaurant:realtime_feature:lat:r_id")

}

dsl2 = DSLEstimator(lambdas={

"prep_time": nFill(nVal("@palette:restaurant:batch_features:prep_time:r_id"),

"n_meal": nFill(nVal("@palette:restaurant:realtime_features:n_nean:r_id"),

"n_order": nFill(nVal("@basis:n_order"),

"n_busy": nFill(nVal("@palette:restaurant:service_feature:n_busy:region_id"))

})

ml_pipeline = MLPipeline(dsl1, dsl2)

model = ml_pipeline.fit(basis_dataframe)

michelangelo_api.deploy(model)

● Monitor Feature Metrics
○ Training-Serving Skew
○ Feature Drift
○ Feature Importance<>Drift correlation
○ Feature Quality (Freshness, Consistency, Null Rate)

Palette Feature Store: Workflow

25

Onboard
Features

Train
Your

Model

Serve
Your

Model

Monitor
Feature
Metrics

Author
Feature

Pipelines

Lookup
Existing
Features

Feature Preparation
Batch &
Streaming ETLs

Feature Storage

Historical & Near Real-Time

Curated & Crowd-sourced

Metadata

Scalable offline access

Scalable online access

Online/Offline data parity

Feature Discovery
Sharing across Models
Automatic feature selection

Feature Monitoring
Data Quality reporting

Feature Transforms
Model specific transforms

Feature Store (Palette) Lifecycle

26

Feature Stores in an End to End ML Platform

27

Feature Stores in an End to End ML Platform

28

Palette Feature Store Organization

29

● Feature Store Abstractions:

○ Entity: A Top Level Business Unit (e.g. eater, courier, restaurant)

○ Feature Group: Group of Features commonly used together (e.g. order_history)

○ Feature: The Feature (e.g. meal_preptime, n_meal, sum_orders_1week)

○ Entity Key: The UUIDs of the entities (e.g. eater_uuid, restaurant_uuid)

● Bring your join keys or UUIDs

● Join together cross-entity Feature sets with minimal code

● Train on historical Feature values

● Serve the latest, most accurate values of Features at Low Latency

● Backed by a dual datastore system (training & serving)

● Get Training Serving parity out of the box

Organized as entity : feature_group : feature : join_key

e.g. restaurant : order_history : meal_preptime : restaurant_uuid

● Batch Features:
Features calibrated on historical data
Generated via offline batch jobs
Auto dispersed for model inferencing
E.g. meal_preptime (average prep time of historical orders)

● Near Real Time Features:
Features calibrated on streaming data
Generated via near real-time streaming jobs (Flink, AthenaX)
Auto dispersed for model training
E.g. n_meal (how busy is the restaurant)

● RPC Features: Features retrieved via 3P APIs
Features calibrated on 3P API calls
Calculated at run time and served to models directly
Auto dispersed for model training
E.g. location_geohash (current geohash location of the courier)

Feature Types in Palette (Michelangelo)

30

Computing Batch Features

● Computed using Historical
Data

● Not time sensitive

● Ingested from Hive Queries
or Spark Jobs

● Aggregates over days/weeks

● E.g. meal_preptime

31

● Signals generated seconds ago

● Write Flink SQL to perform real

time aggregations

● Materialize to the online store

● Auto ETL and Backfill to the

offline store

● E.g. n_busy (How busy is the

restaurant)

○ Kafka event streams

○ Perform Real-Time

aggregations

Computing Near Real Time Features

32

● Signals generated in real-time

● Make RPC calls to Fetch Features

behind the scenes

● Auto ETL and Backfill to the

offline store

● E.g. lat/long:

○ Fetched via HTTP calls

Computing RPC Features

33

● Michelangelo Transformer
○ transform() and scoreInstance()
○ ML Readable / Writable
○ Extension of the Spark Transformer Framework
○ Parity across Spark and Spark-less environments

■ UDFs / DSLs
■ In-house unit testing framework for parity

● Feature Store APIs as Transformers
○ Feature Engineering as an integral part of the ML Pipeline

Feature Extraction & Transformation

34

● Instantiate Palette Transformer with Feature expressions

● Create a pipeline with one or more stages of estimators
and transformers

● model = pipeline.fit()

● Evaluate your model via transform()

● Score your model via scoreInstance()

Michelangelo Feature Store APIs as Spark
Transformers

35

DSLs: Feature Manipulation / Imputation

36

● Write expressions to define Transformations
● Pre-compiled Scala code execution at runtime
● Example Michelangelo code:

dsl_est1 = DSLEstimator(lambdas={

 "region_id": regionId("restaurant:fg:lat:r_id", "restaurant:fg:long:r_id")

}

dsl_est2 = DSLEstimator(lambdas={

 "prep_time": nFill(nVal("restaurant:batch_fg:prep_time:r_id"), -1),

 "n_meal": nFill(nVal("restaurant:realtime_fg:n_meal:r_id"), -1),

 "order_size": nVal("basis:order_size"),

 "n_busy": nFill(nVal("restaurant:service_fg:n_busy:region_id"), -1)

})

*fg: feature_group

DSL Transformer
Lat, long -> region_id

Uber EATS Transformation Example

37

Computation Order

Palette Transformer
Id -> n_meal

Id -> meal_preptime
Id -> lat, long

Palette Transformer
region_id -> n_busy

DSL Transformer
impute(n_meal)

impute(meal_preptime)

● n_meal:restaurant_id -> n_meal
● meal_preptime:restaurant_id -> meal_preptime -> DSL
● busy_scale: restaurant_id -> lat, long -> regionId(lat, long) -> busy_scale

Training: transform()
Serving: score_instance()

Feature Store Results & Takeaways

● Democratized Usage: 20K+ Features used across 8K+ production models

● Model development times reduced from days to hours

● Multi Modality Support: Batch, Realtime and RPC Features with online and offline parity

● Offline scalability: Joins across billions of rows

● Online serving latency: Parallel IO, fast storage with caching

● Feature Transformers: Setup chains of transformations at training/serving time

38

Embedding Ecosystems

39

Apple Confidential–Internal Use Only

Managing ML Pipelines:
Feature Stores and the Coming
Wave of Embedding Ecosystems

Xiao Ling | VLDB Tutorial 2021

Apple Confidential–Internal Use Only

Recap: Self-Supervision Embeddings
Used in many different downstream systems

Downstream systems require less supervised data and provide a quality
lift compared to hand-tuned predecessors.

≈≈Embeddings

≈≈Deployed
Model

≈≈Deployed
Model

≈≈Deployed
Model

≈≈Deployed
Model

Apple Confidential–Internal Use Only

New age of feature store systems manage pretrained embeddings
 downstream systems use them as inputs.

Recap: Embedding Ecosystems

Offline

Online

EMBEDDING
TRAINING MODEL DEPLOYMENT

Training Data Downstream SystemsEmbedding Store

MODEL TRAINING
Trained Model

MODEL
MONITORING &
MAINTENANCE

DATA STORE

DATA STREAM Deployed Model

Apple Confidential–Internal Use Only

Key part of assistant, search,
and information extraction

How tall is Lincoln!

Grounding Use Case: Named Entity Disambiguation

Map “strings to things” in a
knowledge base.

Apple Confidential–Internal Use Only

HEAD

Popular Rare

TORSO TAIL UNSEEN

Washington, DC Chevrolet, Corvette Reddish Potato Beetle Sauce! by XXXTENTACION
Q14934552 Q???Q56166Q61

The Long Tail of Entities

IR and BERT/IR work
great for the HEAD.

The majority of entities are rare!
13% entities have Wikipedia page.

< 1% of songs in Wikidata!

>1k examples in training (10, 1000] [1, 10] 0 example

Apple Confidential–Internal Use OnlyBootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

90 million entities in Wikidata ->
90*100 million examples for 60 F1

#1 Tail Scalability Challenge

Large number of patterns
needed to resolve the tail, making
it difficult to scale a system that
can learn the patterns.

Subtle reasoning clues are needed for the tail!
(+40 F1 points by encoding these reasoning patterns)

Apple Confidential–Internal Use Only

Entity Embeddings in Downstream Applications

Experiment on the entity linking task in an existing Q&A system
- With and without Bootleg-learned entity embeddings
- The entity embeddings significantly improve F1 by a relative 8%
- Also, a relative 8% improvement on tail entities!

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

Apple Confidential–Internal Use Only

#2 Memory Usage

Embeddings linearly grow per number of entities
- 128d float32 x 5M ~= 2.4 Gb (English Wikipedia)
- 128d float32 x 96M ~= 46.08 Gb (Wikidata)

It requires larger and larger servers over time !!!
- More computation affects service latency """
Hard to fit on device!#

Apple Confidential–Internal Use Only

≈≈

Memory can be saved w/o a big quality sacrifice

Only keep top 5%

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

Memory Usage

Only keep the top k entity
embeddings (i.e., compression ratio
100 - k)
- Uses a random UNK entity embedding
- Less memory-heavy signals remain
F1 only drops by 0.8 overall
- Memory drops from 5.2GB to 0.3GB!

Apple Confidential–Internal Use Only

All Entities

0.8
0.9
1

1.1

English Spanish French German

Tail Entities

0.8
0.9
1

1.1
1.2

English Spanish French German

Challenges
- Lack of equally abundant resources in English
- Memory usage increases the size of embeddings by the num of languages

#3 Embeddings in i18n languages

Embeddings work on other languages

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

Apple Confidential–Internal Use Only

$ % & …
language agnostic

EmbeddingsEmbeddingsEmbeddingsEmbeddings

Entity Linking in 100 Languages. Botha et al., EMNLP 2020

Multilingual Entity Embeddings

Botha et al. 2020 proposed to train multilingual entity embeddings
- Memory usage doesn’t grow with the number of languages
- Entity embeddings trained from resources across languages
- Enabled by a multilingual language model

Apple Confidential–Internal Use Only

Changing
Data

retrain

retrain
Embeddings Deployed Model

Deployed Model

Deployed Model

Deployed Model

retrain

retrain

retrain

#4 Embedding Stability

Entity embeddings are self-supervised from Wikipedia
- 20k new articles / month
Updating the model is hard
- Retraining entity embeddings takes hours, even days
- Also, need to retrain each downstream application!
- Previous correct prediction might change!

Apple Confidential–Internal Use Only

#5 Model Evaluation and Monitoring

Are the embeddings
- sensitive to questions!
- vulnerable to attacks!
- biased to entities popular in one country!, Etc…
Is the downstream application affected by
updated embeddings!
- What about 10s or 100s downstream apps!
- How to enable safe regular model updates!

Robustness Gym: Unifying the NLP Evaluation Landscape. Goel et al 2021.

Apple Confidential–Internal Use Only* Bold will be discussed in the following sections

Summary of Challenges

#1 Long-tail of entities
#2 Memory usage
#3 Multi-lingual embeddings
#4 Embedding stability
#5 Model monitoring

TM and © 2021 Apple Inc. All rights reserved.

Self-Supervised Training Data:
The Challenge of the Long Tail

40

Grounding Use Case: Named Entity Disambiguation

Map “strings to things” in a knowledge base.

How tall is Lincoln?

Key part of assistant, search, and information extraction

Q91

41

Subtle reasoning clues are needed for the tail!
(+40 F1 points by encoding these reasoning patterns)

Tail Challenge

42

Impossible to scale the data
to memorize all patterns
needed for rare entities

Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over type and
relationship signals can resolve unseen
entities.

43
Orr, Laurel, et al. "Bootleg: Chasing the tail with
self-supervised named entity disambiguation."
arXiv preprint arXiv:2010.10363 (2020).

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Where is Lincoln in Logan County? Input: Sentence

Lincoln, IL

Lincoln, NE

Abraham Lincoln

Logan County, OK

Logan County, OH

Logan County, IL

Lincoln, IL Logan County, ILOutput: Entities

Extract Candidates

Entity Profiles

Disambiguate

Entity Payload
entity payloadentity payloadentity payload

44

Disambiguation Inputs and Outputs

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Victoria
Mitchell
(runner)

Victoria Mitchell
(poker player, writer)

David Mitchell

David and
Victoria Mitchell
added spice to
their marriage

spouses

Reasoning over Relationships

45

Play Love Story
by Williams

Love Story by Taylor Swift Love Story by Andy Williams

How tall is Lincoln?

What is the
cheapest Lincoln?

How many people
are in Lincoln?

People have heights,
not places or brands

Brands have prices,
not places or people

Places have populations,
not people or brands

Reasoning over Types

46

Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over type and
relationship signals can resolve unseen
entities.

47

Implementation: use embeddings to
teach a model to reason over types and
relationships.

Orr, Laurel, et al. "Bootleg: Chasing the tail with
self-supervised named entity disambiguation."
arXiv preprint arXiv:2010.10363 (2020).

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Where is Lincoln in Logan County? Input: Sentence

Lincoln, IL

Lincoln, NE

Abraham Lincoln

Logan County, OK

Logan County, OH

Logan County, IL

Lincoln, IL Logan County, ILOutput: Entities

Extract Candidates

Entity Profiles

Disambiguate

Entity Payload
entity payloadentity payloadentity payload

48

Disambiguation Inputs and Outputs

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Entity Embedding

…

Q3452

Q36897

Q12

Q292973

Q903278

Q328475

…

For each candidate, we use the entity profile to extract (learned) embeddings.

key value

Logan County, IL

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

49

Entity Embedding

…

Q3452

Q36897

Q12

Q292973

Q903278

Q328475

…

For each candidate, we use the entity profile to extract (learned) embeddings.

key value

Logan County, IL

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

entity

50

Relation Embedding

…

child

capitol-of

founder

named-after

borders

league

…

key value

Logan County, IL

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

entity relation

51

Type Embedding

…

child

soccer team

crime

fruit

county

geo-loc

…

key value

Logan County, IL

{
 id: “Q292973” , name: “Logan County, IL”
 types: [“county”, “geographic_loc”],
 relations: [<“capital-of”, ”Q457134”>,
 <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

entity relation type

The entity payload has embeddings mapping for each structural resource. 52

payload

Logan County, IL

Logan County, OK

Logan County, OH

Lincoln, NE

Abraham Lincoln

Lincoln, IL

Simplest architecture that supports reasoning over types and relations.

Logan County, IL

Where is Lincoln in Logan County?

Score Stacked transformer
modules learn

patterns between
entities and text

Transformer
Transformer

Transformer

53

Bootleg Architecture
Lincoln, IL

On the head, BERT-based baseline performs ~ 5 F1 points of Bootleg.
On the tail, Bootleg outperforms baseline by > 40 F1 points!

Evaluation Set BERT NED
Baseline

Bootleg #
Examples

All 85.9 91.3 4,066K
Torso Entities 79.3 87.3 1,912K
Tail Entities 27.8 69.0 163K
Unseen Entities 18.5 68.5 10K

Bootleg: Tail Performance

54

Performance results on Wikipedia dataset.

Bootleg: Industrial Performance

Included Bootleg embeddings into an Overton production
task answering millions of users’ factoid queries. We report
relative lift.

Evaluation Set English Spanish French German

All Entities
1.08 1.03 1.02 1.00

Tail Entities
1.08 1.17 1.05 1.03

55

Using Bootleg Downstream: SoTA on the
TACRED Benchmark

Mays worked with several other companies aside from Media Enterprises
in his career.

Model Test F1 Score

SpanBERT 78.0

KnowBERT 79.3

Bootleg+SpanBERT 80.2 (SoTA)

Vincent Astor , like Marshall , died unexpectedly of a heart attack in 1959 … The International Water Management Institute or IWMI study said both …

Micro-Avg. F1 on TACRED Revised test dataset:

Bootleg resolves errors made in by the prior SoTA model.

(subject) (object)

Gold relation: per:employee_of

Goal: extract the relationship between a subject and object pair.

(subj)

Gold relation: per:cause_of_death

Wikidata relation: [‘cause of death’]

(obj) (obj) (subj)

Gold relation: org:alternate_names

Zhang et al., 2017 and Hennig et al., 2020.

Leveraging type and relation information
downstream

Q299001

Understand that sub-strings relate to the
same entity

SpanBERT no_relation

org:alternate_namesper:cause_of_death

SpanBERT no_relation

Q12152 Q868028 Q868028

Wikidata same entity

Self-Supervised Data Take Away
Self-supervised data does not well represent tail distributions ->
embeddings may not be high quality for rare entities

57

Solution: merged unstructured data with structured
knowledge that can generalize to the tail.

Embedding Management: Stability

58

59

Embedding
Store

Named Entity Recognition
(NER)

Question
Answering

Sentiment
Analysis

Relation
Extraction

Changing
Data Downstream Tasks

Retrain Embeddings

0.1
0.3
0.5
…

New embeddings require downstream tasks to be retrained!

Problem Setting: Embedding Store

Why do embeddings need to be retrained?

Learn new entities Leverage new activity1 Understand new words

Model freshness is necessary for user satisfaction in many products.

60[1] https://about.instagram.com/blog/engineering/designing-a-constrained-exploration-system

Google retrains their app store Google Play
models every day, and Facebook retrains search
models every hour.

61

[1] Baylor et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. KDD, 2017.
[2] Hazelwood et al. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. HPCA,
2018.

But model training can be unstable…

Data 1 Predictions 1

Predictions 2

Unnecessary
prediction
changes!

62

Prediction churn

[1] Cormier et al. Launch and Iterate: Reducing Prediction Churn. NeurIPS, 2016.

Data 1 + ∆

Challenges of Instability

63

Debugging

Model dependencies

1

2

3

4

Consistent user-experience

Research reliability

64

How does the embedding instability propagate to downstream tasks?

Embedding
Store

Named Entity Recognition
(NER)

Question
Answering

Sentiment
Analysis

Relation
Extraction

Changing
Data Downstream Tasks

Retrain Embeddings

0.1
0.3
0.5
…

Problem Setting: Embedding Store

Outline

● Downstream instability definition

● Stability-space tradeoff

● Measuring embedding quality
with distance measures

65

Definition: Downstream Instability

66

Data 1 Predictions 1

Predictions 2

Downstream Instability

Downstream instability = % prediction disagreement between models
trained on a pair of embeddings

Data 1 + ∆

Emb 1 (X)

Emb 2 (Y)

Embedding Hyperparameters that Impact Storage

67

[1] May et al. On the downstream performance of compressed word embeddings. NeurIPS, 2019.

Precision
bits / feature

Dimension
features / word

Embedding Size

0.04

-0.03

-0.08

0.1

-0.1

-0.1

Interval:
[-0.1, 0.1]

32-bit 1-bit

Downstream
Instability

Uniform
Quantization

Stability-Space Tradeoff for Word Embeddings

68

11%

 Embedding Size Downstream Instability

Sentiment Analysis NER

Goal: Embedding Distance Measure for Instability

69

Data 1 Predictions 1

Predictions 2

The measure should relate the distance between the embeddings
to the downstream instability.

Data 1 + ∆

Emb 1 (X)

Emb 2 (Y)

Downstream InstabilityDistance (Emb1, Emb2)

Embedding Distance Measures

● k-NN measure [1,2,3]

● Semantic displacement (SD) [4]

● PIP loss [5]

● Eigenspace overlap (EO) [6]

● Eigenspace instability measure (EIS) [7]

70

[1] Hellrich & Hahn, COLING, 2016; [2] Antoniak & Mimno, TACL, 2018; [3] Wendlandt et al., NAACL-HLT,
2018; [4] Hamilton et al., ACL, 2016; [5] Yin & Shen, NeurIPS, 2018; [6] May et al., NeurIPS, 2019; [7]
Leszczynski et al., MLSys 2020

Using Embedding Distance Measures to Minimize
Downstream Instability

71

k-NN measure and theoretically grounded EIS measure outperform
other measures for selecting embeddings to minimize downstream
instability.

Stability Takeaways

● Defined downstream instability with respect to embeddings

● Stability-space tradeoff (precision, dimension)

● Measuring embedding quality with embedding distance measures

○ EIS and k-NN measures select embeddings with lower
downstream instability

72

 Embedding Size Downstream Instability

Closing the Loop of Model
Development: Monitoring and Patching

73

Monitoring and Patching

Embeddings need to be updated: distribution shift, changing needs

Patch (how to update)
Fix bugs and improve performance

Monitor (when to update)
Evaluate and track distribution shift

74

75

Embedding
Store

Named Entity Recognition
(NER)

Question
Answering

Sentiment
Analysis

Relation
Extraction

Changing
Data Downstream Tasks

Retrain Embeddings

0.1
0.3
0.5
…

Remember: Embedding Store

Important: update embeddings not downstream models → changes propagate down to models!

Crucial Bottleneck: Evaluation

Can’t monitor and patch embeddings without evaluation

76

Embedding
Store

Named Entity Linking (NEL)

Question
Answering

Sentiment
Analysis

Relation
Extraction

Downstream Task

Evaluate model errors

Monitor

Patch

Crucial Bottleneck: Evaluation

Can’t monitor and patch embeddings without evaluation

● Critical data slices
● Bias / fairness concerns
● Sensitivity to perturbations
● Invariance to transformations
● and more!

Many Evaluation Strategies

Shift towards fine-grained evaluation with new tools (e.g. Robustness Gym, Dynabench)
77

Fine-Grained Evaluation Metrics

Tool: Robustness Gym

Example: BERT embeddings are sensitive to character errors

Consolidates different evaluation strategies (slices, transformations) and metrics

Robustness Gym: Unifying
the NLP Evaluation Landscape.
Goel et al. NAACL Demo 2021.

78

Metrics

Evaluation
Strategies

Evaluations

Tool: Robustness Gym

Example: BERT embeddings are sensitive to character errors

Consolidates many different evaluation types (subpopulations, transformations) and metrics

Robustness Gym: Unifying
the NLP Evaluation Landscape.
Goel et al. NAACL Demo 2021.

79

Metrics

Evaluation
Strategies

Evaluations

Emerging questions
● Discovering important failure modes automatically
● Understanding knowledge captured by an embedding

Important Evaluation Strategy: Slice-Based Evaluation

A type of fine-grained evaluation

→ Measure fine-grained performance on critical subpopulations (filtering)

Example:

short passages (< 50 words) in a text dataset

80

Most Named
Entity Linking
systems are
poor on rare

entities
Goodwill Hunting: Analyzing
and Repurposing Off-the-Shelf
Named Entity Linking Systems.
NAACL Industry 2021.

Robustness Gym: Unifying
the NLP Evaluation Landscape.
NAACL Demo 2021.

Example: Named Entity Linking

81

Source data distribution

evaluate

Model

Train set Validation set

Labeled

learn

Evaluation over Time: Monitoring
Continually evaluate as the world changes

82

Source data distribution

evaluate

Model

Train set Validation set

Labeled

learn

Evaluation over Time: Monitoring
Continually evaluate as the world changes

83

Target data distribution

deploy

Distribution shift

Target data distribution

deploy

Distribution shift

Source data distribution

evaluate

Model

Train set Validation set

Labeled

learn

Unlabeled

evaluate?

Need to monitor model performance on unlabeled data

Evaluation over Time: Monitoring
Continually evaluate as the world changes

84

Approach: Importance Weighting

Estimate metrics on incoming data

Upweight examples in our dev set more likely to be seen in the future

Theoretical Foundations

Density ratio estimation (Sugiyama, 2012)

Recent work: accurately estimate performance with
slice-based evaluation + importance weighting

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
85

Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data

negation
contains not, n’t

male pronoun
contains he, him

strong sentiment
contains love, adore

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
86

Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data

Source
Accuracy: 91%

negation
contains not, n’t

male pronoun
contains he, him

strong sentiment
contains love, adore

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
87

Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data

Source
Accuracy: 91%

negation
contains not, n’t

male pronoun
contains he, him

strong sentiment
contains love, adore

He does not love eating scones.

He loves taking risks.

She likes drinking coffee.

(Target) Unlabeled Test
Set Slices

1

-1

-1

1

1

-1

1

1

-1

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
88

Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data

Source
Accuracy: 91% Target Accuracy:

84%

negation
contains not, n’t

male pronoun
contains he, him

strong sentiment
contains love, adore

He does not love eating scones.

He loves taking risks.

She likes drinking coffee.

(Target) Unlabeled Test
Set Slices

1

-1

-1

1

1

-1

1

1

-1

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model

Mandoline
Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.

89

Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data

Source
Accuracy: 91% Target Accuracy:

84%

negation
contains not, n’t

male pronoun
contains he, him

strong sentiment
contains love, adore

He does not love eating scones.

He loves taking risks.

She likes drinking coffee.

(Target) Unlabeled Test
Set Slices

1

-1

-1

1

1

-1

1

1

-1

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model

Mandoline
Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.

Takeaways
● Monitor any model: importance weighting
● Add domain knowledge (slices) to improve monitoring

90

Embedding Model Patching

Data-Centric Model-Centric

Data Augmentation

Data Collection

Active Sampling

Weak Labeling

Training Algorithm

Features

Architecture

Data Preprocessing

Training Paradigm

Once errors are identified, need to retrain or update embeddings

Many Approaches

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021. 91

Downstream System

Named Entity Linking

FIFA World CupEngland National Football Team

Named Entity Linking
map “strings” to
“things” in a
knowledge base like
Wikipedia

Question Answering System 1966

When did England last win the football world cup?

A correct NEL is required for the downstream system! 92

Repurposing Bootleg NEL system to patch errors for sports QA

fix poor
performance

Sports QA: prefer if the model predicted the national sports team instead of the country!

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021.

End to End Example: Named Entity Linking

93

fix poor
performance

Relabel the
training set with a

simple heuristic

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021.

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA

94

Wikipedia
examples with

mentions of
countries and
sports teams

25% absolute accuracy improvement in sports-related errors

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021.

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA

95

Embedding Model Patching

Data-Centric Model-Centric

Data Augmentation

Data Collection

Active Sampling

Weak Labeling

Training Algorithm

Features

Architecture

Data Preprocessing

Training Paradigm

Once errors are identified, need to retrain or update embeddings

Many Approaches

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021. 96

New area of research!
● Incremental and targeted embedding updates
● Backwards compatibility for updated embeddings e.g. stability
● Data-centric vs. model-centric updates
● Sample efficiency and efficacy of approaches
● Time-to-update and optimal cadence

96

Future Directions

97

Embeddings as First Class Citizens

98

What is the right system for embedding management in ML
pipelines?

Search
What set of

embeddings are best
for a specific task?

Provenance
What data had the
most “impact” on

these embeddings?

Quality
What are the right
metrics/probes for

embedding quality?

Embedding A

Embedding B

(x1 , y1)
…

(xn , yn) tail
performance?

syntactic
information?

What are the
current failure

modes?

End-to-End Model Patching

99

How can we automate and provide guidance for embedding
patching?

What data
engineering

strategy to use?

How do I update
my models
efficiently?

Data Augmentation

Data Collection

Active Sampling

Weak Labeling

Data Preprocessing

Embeddings t

Embeddings t+1

Systems to store
and manage

models and data?

How can we
support the

entire lifecycle?

Interactive Machine Learning

100

How can we facilitate human interaction with model training
and evaluation data?

How to integrate
multiple

modalities?

Construct Data

Measure

Maintain

Monitor

Text Images

VideoRelational

Data Panels for ML
Video, Image, Model

Outputs, ...

https://github.com/robustness-gym/meerkat

