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Modern ML Pipelines

ML pipelines help engineers build and deploy models

Standardization Easier to MaintainReproducibility
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Engineer Workflow Today

STORE and 
MANAGE 

DATA 

BUILD 
MODEL and 

TRAIN

Feature / Data 
Engineering

Model Testing 
/ Deployment

DEPLOY 
and 

MONITOR

Monitor
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Engineer Workflow of Yesteryear (< 2017-8)

*Sculley, David, et al. "Hidden technical debt in machine learning systems." Neurips (2015)

STORE and 
MANAGE 

DATA 

DEPLOY 
and 

MONITOR
5

“Pipeline Jungle*”



The “Pipeline Jungle” Experience

*Sculley, David, et al. "Hidden technical debt in machine learning systems." Neurips (2015)
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The challenges to deploying a model:

- One-off feature definitions

- Lack of reproducibility

- Inconsistent storage

- No standard evaluations and 
testing

- Difficult to detect and recover from 
errors

- ...

The “Pipeline Jungle” Experience
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Product 
Recommender 

Model
“More than 4.5 stars”

Popular Product Feature
Recommender 

Models across Teams

Product 
Recommender 

Model

“More than 5K 
purchases”

Product 
Recommender 

Model

“80% positive sentiment 
reviews”



Feature Store Solution

STORE and 
MANAGE 

DATA 

DEPLOY 
and 

MONITOR

Monitor

Systems to build, deploy, and monitor ML pipelines 
with special focus on feature management.

FEATURE 
MANAGEMENT

Feature Store

PART 1
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Model Training 
/ Deployment

Feature / Data 
Engineering



Enter Self-Supervision

Paradigm where models learn embedding representations of 
underlying training data without needed manually labels.
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Self-Supervision Example: Transformers and MLM

Learn word embeddings by train a language model to predict a 
masked word in a given context.

The dog enjoys eating MASK

Transformer 
Model

The dog enjoys eating bones

Output word 
embeddings

Input word 
embeddings

Word embeddings encode contextual information. 10



Enter Self-Supervision

Paradigm where models learn embedding representations of the 
underlying training data without manual labels.

Embeddings are then used in downstream models.

Embedding 
Model

Downstream 
ModelDownstream 

ModelDownstream 
ModelDownstream 

Model
Embedding
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Self-Supervision Example: Transformers

Learn word embeddings by train a language model to predict a 
masked word in a given context.

The dog enjoys eating MASK

Transformer 
Model

The dog enjoys eating bones

Output word 
embeddings

Input word 
embeddings

Word embeddings encode contextual information.

Used in downstream 
sentiment analysis
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Recall Feature Store Solution

STORE and 
MANAGE 

DATA 

Feature / Data 
Engineering

DEPLOY 
and 

MONITOR

Monitor

FEATURE 
MANAGEMENT

Feature Store
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Model Training 
/ Deployment



Embedding Ecosystems

STORE and 
MANAGE 

DATA 

Embedding 
Training

Model Training 
/ Deployment

DEPLOY 
and 

MONITOR

Monitor

Self-supervised embeddings, models that train them, 
and downstream systems that use them.

EMBEDDING 
MANAGEMENT

Embedding 
Store

PART 2

14Reduction in engineer effort One embedding for multiple tasksHigher quality downstream systems



Feature Stores
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Engineer Workflow of Yesteryear (< 2017-8)

“Pipeline Jungle*”
*Sculley, David, et al. "Hidden technical debt in machine learning systems." Neurips (2015)

STORE and 
MANAGE 

DATA 

DEPLOY 
and 

MONITOR
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Lack of Feature Management

STORE and 
MANAGE 

DATA 

DEPLOY 
and 

MONITOR
17

Deployed Model
Deployed Model

Trained Model
Trained Model
Store and Manage 

Trained Models

Deploy and Monitor 
Served Models

0 cataloging, 
monitoring of Features 
across the organization.

0 Feature Quality 
observability

pipelines

Training SDKs

Serving SDKs

pipelines

“Pipeline Jungle*”

Data Sources [Batch, 
Streaming, Realtime]



Lack of Feature Management

STORE and 
MANAGE 

DATA 

DEPLOY 
and 

MONITOR
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Deployed Model
Deployed Model

Trained Model
Trained Model
Store and Manage 

Trained Models

Deploy and Monitor 
Served Models

pipelines

Training SDKs

Serving SDKs

pipelines

“Pipeline Jungle*”

Data Sources [Batch, 
Streaming, Realtime]

Bespoke one-off 
systems

Repeated work

Hard to manage 
streaming inputs

Difficult to maintain 
systems and correct 

errors

Training Serving skew



Lack of Feature Management

19

Days/Weeks to make data 
ML ready

Near 0 monitoring of 
Features

High latency, unreliable 
Feature serving in 

production models at scale

1 3

● Materializing Features from 
various data sources.

● Duplicating code while 
materializing in training & 
serving

● No guarantees of training- 
serving parity

● No Feature health metrics 
out of the box  (due to the 
various sources problem)

● No online-offline parity 
monitoring, leading to 
models performing poorly

● No feature drift monitoring

● No idea about Feature 
impact on a model

● Poor Model latencies leading 
to bad user experience.

● No dedicated dynamic 
resource allocation for 
feature engineering

● Multiple RPC calls  at high 
throughputs to fetch 
features dramatically 
increasing latencies
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Feature Stores

STORE and 
MANAGE 

DATA 

DEPLOY 
and 

MONITOR
20

Deployed Model
Deployed Model

Trained Model
Trained Model
Store and Manage 

Trained Models

Deploy and Monitor 
Served Models

pipelines

Training SDKs

Serving SDKs

pipelines

FEATURE STORE

Data Sources [Batch, 
Streaming, Realtime]

Model-level Data Quality 
Alerting

Feature Retrieval at Scale

Quick Feature Authoring

Feature Reuse

Unified Feature 
Warehouse 

Management

Feature Quality 
Monitoring



Use case - ETA of an Uber EATS Order

    Key ML Features

● How large is the order? (order_size)

● How busy is the restaurant? (n_meal)

● How quick is the restaurant? (meal_preptime)

● How busy is the traffic? (n_busy)
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Lookup 
Existing 
Features

● Search for features 
○ by feature_name
○ by entity (e.g. eater_features)
○ by type (e.g. categorical_features)
○ by models (e.g. features used in eta_prediction_model)

or any combination ...

Palette Feature Store: Workflow



● Onboard Features and Author Pipelines
○ Metadata driven onboarding process
○ Feature Pipelines automatically created
○ Immediately available for consumption during Training & Inferencing

23

Onboard 
Features

Lookup 
Existing 
Features

Author 
Feature 

Pipelines

Palette Feature Store: Workflow



Palette Feature Store: Workflow
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Onboard 
Features

Lookup 
Existing 
Features

Author 
Feature 

Pipelines

Train
Your 

Model

Deploy 
Your 

Model

dsl1 = DSLEstimator(lambdas={

  "region_id": regionId("@palette:restaurant:realtime_feature:lat:r_id", "@palette:restaurant:realtime_feature:lat:r_id")

}

dsl2 = DSLEstimator(lambdas={

"prep_time": nFill(nVal("@palette:restaurant:batch_features:prep_time:r_id"),

"n_meal": nFill(nVal("@palette:restaurant:realtime_features:n_nean:r_id"),

"n_order": nFill(nVal("@basis:n_order"),

"n_busy": nFill(nVal("@palette:restaurant:service_feature:n_busy:region_id"))

})

ml_pipeline = MLPipeline(dsl1, dsl2)

model = ml_pipeline.fit(basis_dataframe)

michelangelo_api.deploy(model)



● Monitor Feature Metrics
○ Training-Serving Skew
○ Feature Drift
○ Feature Importance<>Drift correlation
○ Feature Quality (Freshness, Consistency, Null Rate)

Palette Feature Store: Workflow

25

Onboard 
Features

Train
Your 

Model

Serve 
Your 

Model

Monitor 
Feature 
Metrics

Author 
Feature 

Pipelines

Lookup 
Existing 
Features



Feature Preparation
Batch &
Streaming ETLs

Feature Storage

Historical & Near Real-Time

Curated & Crowd-sourced 

Metadata

Scalable offline access

Scalable online access

Online/Offline data parity

Feature Discovery
Sharing across Models
Automatic feature selection

Feature Monitoring
Data Quality reporting

Feature Transforms
Model specific transforms

Feature Store (Palette) Lifecycle

26



Feature Stores in an End to End ML Platform
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Feature Stores in an End to End ML Platform
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Palette Feature Store Organization
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● Feature Store Abstractions:

○ Entity: A Top Level Business Unit (e.g. eater, courier, restaurant)

○ Feature Group: Group of Features commonly used together (e.g. order_history)

○ Feature: The Feature (e.g. meal_preptime, n_meal, sum_orders_1week)

○ Entity Key: The UUIDs of the entities (e.g. eater_uuid, restaurant_uuid)

● Bring your join keys or UUIDs

● Join together cross-entity Feature sets with minimal code

● Train on historical Feature values

● Serve the latest, most accurate values of Features at Low Latency

● Backed by a dual datastore system (training & serving)

● Get Training Serving parity out of the box

Organized as entity : feature_group : feature : join_key

e.g. restaurant : order_history : meal_preptime : restaurant_uuid



●    Batch Features:
Features calibrated on historical data
Generated via offline batch jobs
Auto dispersed for model inferencing
E.g. meal_preptime (average prep time of historical orders)

●    Near Real Time Features: 
Features calibrated on streaming data
Generated via near real-time streaming jobs (Flink, AthenaX)
Auto dispersed for model training
E.g. n_meal (how busy is the restaurant)

●     RPC Features: Features retrieved via 3P APIs 
Features calibrated on 3P API calls
Calculated at run time and served to models directly
Auto dispersed for model training
E.g. location_geohash (current geohash location of the courier)

Feature Types in Palette (Michelangelo)

30



Computing Batch Features

● Computed using Historical 
Data

● Not time sensitive

● Ingested from Hive Queries 
or Spark Jobs

● Aggregates over days/weeks

● E.g. meal_preptime

31



● Signals generated seconds ago

● Write Flink SQL to  perform real 

time aggregations

● Materialize to the online store

● Auto ETL and Backfill to the 

offline store

● E.g. n_busy (How busy is the 

restaurant)

○ Kafka event streams

○ Perform Real-Time 

aggregations

Computing Near Real Time Features

32



● Signals generated in real-time

● Make RPC calls to Fetch Features 

behind the scenes

● Auto ETL and Backfill to the 

offline store

● E.g. lat/long:

○ Fetched via HTTP calls

Computing RPC Features

33



● Michelangelo Transformer
○ transform() and scoreInstance()
○ ML Readable / Writable
○ Extension of the Spark Transformer Framework
○ Parity across Spark and Spark-less environments

■ UDFs / DSLs
■ In-house unit testing framework for parity

● Feature Store APIs as Transformers
○ Feature Engineering as an integral part of the ML Pipeline

Feature Extraction & Transformation

34



● Instantiate Palette Transformer with Feature expressions

● Create a pipeline with one or more stages of estimators 
and transformers

● model  = pipeline.fit()

● Evaluate your model via transform()

● Score your model via scoreInstance()

Michelangelo Feature Store APIs as Spark 
Transformers

35



DSLs: Feature Manipulation / Imputation

36

● Write expressions to define Transformations
● Pre-compiled Scala code execution at runtime
● Example Michelangelo code:

dsl_est1 = DSLEstimator(lambdas={

  "region_id": regionId("restaurant:fg:lat:r_id", "restaurant:fg:long:r_id")

}

dsl_est2 = DSLEstimator(lambdas={

  "prep_time":  nFill(nVal("restaurant:batch_fg:prep_time:r_id"), -1),

  "n_meal":     nFill(nVal("restaurant:realtime_fg:n_meal:r_id"), -1),

  "order_size": nVal("basis:order_size"),

  "n_busy":     nFill(nVal("restaurant:service_fg:n_busy:region_id"), -1)

})

*fg: feature_group



DSL Transformer
Lat, long -> region_id

Uber EATS Transformation Example

37

Computation Order

Palette Transformer
Id -> n_meal

Id -> meal_preptime
Id -> lat, long

Palette Transformer
region_id -> n_busy

DSL Transformer
impute(n_meal)

impute(meal_preptime)

● n_meal:restaurant_id -> n_meal
● meal_preptime:restaurant_id -> meal_preptime -> DSL
● busy_scale: restaurant_id -> lat, long -> regionId(lat, long) -> busy_scale

Training: transform()
Serving: score_instance()



Feature Store Results & Takeaways

● Democratized Usage: 20K+ Features used across 8K+ production models

● Model development times reduced from days to hours

● Multi Modality Support: Batch, Realtime and RPC Features with online and offline parity

● Offline scalability: Joins across billions of rows 

● Online serving latency: Parallel IO, fast storage with caching 

● Feature Transformers: Setup chains of transformations at training/serving time
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Embedding Ecosystems
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Apple Confidential–Internal Use Only

Managing ML Pipelines: 
Feature Stores and the Coming 
Wave of Embedding Ecosystems 

Xiao Ling | VLDB Tutorial 2021



Apple Confidential–Internal Use Only

Recap: Self-Supervision Embeddings
Used in many different downstream systems

Downstream systems require less supervised data and provide a quality 
lift compared to hand-tuned predecessors.

≈≈Embeddings

≈≈Deployed 
Model

≈≈Deployed 
Model

≈≈Deployed 
Model

≈≈Deployed 
Model



Apple Confidential–Internal Use Only

New age of feature store systems manage pretrained embeddings 
                          downstream systems use them as inputs.

Recap: Embedding Ecosystems

Offline

Online

EMBEDDING 
TRAINING MODEL DEPLOYMENT

Training Data Downstream SystemsEmbedding Store

MODEL TRAINING 
Trained Model

MODEL 
MONITORING & 
MAINTENANCE

DATA STORE

DATA STREAM Deployed Model



Apple Confidential–Internal Use Only

Key part of assistant, search,  
and information extraction

How tall is Lincoln!

Grounding Use Case: Named Entity Disambiguation

Map “strings to things” in a 
knowledge base.



Apple Confidential–Internal Use Only

HEAD

Popular Rare

TORSO TAIL UNSEEN

Washington, DC Chevrolet, Corvette Reddish Potato Beetle Sauce! by XXXTENTACION
Q14934552 Q???Q56166Q61

The Long Tail of Entities

IR and BERT/IR work 
great for the HEAD.

The majority of entities are rare! 
13% entities have Wikipedia page. 

< 1% of songs in Wikidata!

>1k examples in training (10, 1000] [1, 10] 0 example



Apple Confidential–Internal Use OnlyBootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

90 million entities in Wikidata -> 
90*100 million examples for 60 F1

#1 Tail Scalability Challenge

Large number of patterns 
needed to resolve the tail, making 
it difficult to scale a system that 
can learn the patterns.

Subtle reasoning clues are needed for the tail!
(+40 F1 points by encoding these reasoning patterns)



Apple Confidential–Internal Use Only

Entity Embeddings in Downstream Applications

Experiment on the entity linking task in an existing Q&A system 
- With and without Bootleg-learned entity embeddings 
- The entity embeddings significantly improve F1 by a relative 8% 
- Also, a relative 8% improvement on tail entities!

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021



Apple Confidential–Internal Use Only

#2 Memory Usage

Embeddings linearly grow per number of entities 
- 128d float32 x 5M ~= 2.4 Gb (English Wikipedia) 
- 128d float32 x 96M ~= 46.08 Gb (Wikidata) 

It requires larger and larger servers over time  !!! 
- More computation affects service latency  """ 
Hard to fit on device!#



Apple Confidential–Internal Use Only

≈≈

Memory can be saved w/o a big quality sacrifice

Only keep top 5%

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

Memory Usage

Only keep the top k entity 
embeddings (i.e., compression ratio 
100 - k) 
- Uses a random UNK entity embedding 
- Less memory-heavy signals remain 
F1 only drops by 0.8 overall 
- Memory drops from 5.2GB to 0.3GB!



Apple Confidential–Internal Use Only

All Entities

0.8
0.9
1

1.1

English Spanish French German

Tail Entities

0.8
0.9
1

1.1
1.2

English Spanish French German

Challenges 
- Lack of equally abundant resources in English 
- Memory usage increases the size of embeddings by the num of languages

#3 Embeddings in i18n languages

Embeddings work on other languages

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021



Apple Confidential–Internal Use Only

$ % & …
language agnostic

EmbeddingsEmbeddingsEmbeddingsEmbeddings

Entity Linking in 100 Languages. Botha et al., EMNLP 2020

Multilingual Entity Embeddings

Botha et al. 2020 proposed to train multilingual entity embeddings 
- Memory usage doesn’t grow with the number of languages 
- Entity embeddings trained from resources across languages 
- Enabled by a multilingual language model



Apple Confidential–Internal Use Only

Changing  
Data

retrain

retrain
Embeddings Deployed Model

Deployed Model

Deployed Model

Deployed Model

retrain

retrain

retrain

#4 Embedding Stability

Entity embeddings are self-supervised from Wikipedia 
- 20k new articles / month 
Updating the model is hard 
- Retraining entity embeddings takes hours, even days 
- Also, need to retrain each downstream application! 
- Previous correct prediction might change!



Apple Confidential–Internal Use Only

#5 Model Evaluation and Monitoring

Are the embeddings 
- sensitive to questions! 
- vulnerable to attacks! 
- biased to entities popular in one country!, Etc… 
Is the downstream application affected by 
updated embeddings! 
- What about 10s or 100s downstream apps! 
- How to enable safe regular model updates!

Robustness Gym: Unifying the NLP Evaluation Landscape. Goel et al 2021.



Apple Confidential–Internal Use Only* Bold will be discussed in the following sections

Summary of Challenges

#1 Long-tail of entities 
#2 Memory usage 
#3 Multi-lingual embeddings 
#4 Embedding stability 
#5 Model monitoring



TM and © 2021 Apple Inc. All rights reserved.



Self-Supervised Training Data: 
The Challenge of the Long Tail

40



Grounding Use Case: Named Entity Disambiguation

Map “strings to things” in a knowledge base.

How tall is Lincoln?

Key part of assistant, search, and information extraction

Q91

41



Subtle reasoning clues are needed for the tail!
(+40 F1 points by encoding these reasoning patterns)

Tail Challenge

42

Impossible to scale the data 
to memorize all patterns 
needed for rare entities



Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over type and 
relationship signals can resolve unseen 
entities.

43
Orr, Laurel, et al. "Bootleg: Chasing the tail with 
self-supervised named entity disambiguation." 
arXiv preprint arXiv:2010.10363 (2020).



{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

Where is Lincoln in Logan County? Input: Sentence

Lincoln, IL

Lincoln, NE

Abraham Lincoln

Logan County, OK

Logan County, OH

Logan County, IL

Lincoln, IL Logan County, ILOutput: Entities

Extract Candidates

Entity Profiles

Disambiguate

Entity Payload
entity payloadentity payloadentity payload

44

Disambiguation Inputs and Outputs

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}



Victoria 
Mitchell
(runner)

Victoria Mitchell
(poker player, writer)

David Mitchell

David and 
Victoria Mitchell 
added spice to 
their marriage

spouses

Reasoning over Relationships

45

Play Love Story 
by Williams

Love Story by Taylor Swift Love Story by Andy Williams



How tall is Lincoln?

What is the 
cheapest Lincoln?

How many people 
are in Lincoln?

People have heights, 
not places or brands

Brands have prices, 
not places or people

Places have populations, 
not people or brands

Reasoning over Types

46



Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over type and 
relationship signals can resolve unseen 
entities.

47

Implementation: use embeddings to 
teach a model to reason over types and 
relationships.

Orr, Laurel, et al. "Bootleg: Chasing the tail with 
self-supervised named entity disambiguation." 
arXiv preprint arXiv:2010.10363 (2020).



{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

Where is Lincoln in Logan County? Input: Sentence

Lincoln, IL

Lincoln, NE

Abraham Lincoln

Logan County, OK

Logan County, OH

Logan County, IL

Lincoln, IL Logan County, ILOutput: Entities

Extract Candidates

Entity Profiles

Disambiguate

Entity Payload
entity payloadentity payloadentity payload
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Disambiguation Inputs and Outputs

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}



Entity Embedding

…

Q3452

Q36897

Q12

Q292973

Q903278

Q328475

…

For each candidate, we use the entity profile to extract (learned) embeddings.

key value

Logan County, IL

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

49



Entity Embedding

…

Q3452

Q36897

Q12

Q292973

Q903278

Q328475

…

For each candidate, we use the entity profile to extract (learned) embeddings.

key value

Logan County, IL

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

entity 

50



Relation Embedding

…

child

capitol-of

founder

named-after

borders

league

…

key value

Logan County, IL

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

entity relation

51



Type Embedding

…

child

soccer team

crime

fruit

county

geo-loc

…

key value

Logan County, IL

{
    id: “Q292973” , name: “Logan County, IL”
    types: [“county”, “geographic_loc”],
    relations: [<“capital-of”, ”Q457134”>, 
                      <“named-after”>, “Q169067”]
}

Using Embeddings to Encode Signals

entity relation type

The entity payload has embeddings mapping for each structural resource. 52

payload



Logan County, IL

Logan County, OK

Logan County, OH

Lincoln, NE

Abraham Lincoln

Lincoln, IL

Simplest architecture that supports reasoning over types and relations.

Logan County, IL

Where is Lincoln in Logan County? 

Score Stacked transformer 
modules learn 

patterns between 
entities and text

Transformer
Transformer

Transformer

53

Bootleg Architecture
Lincoln, IL



On the head, BERT-based baseline performs ~ 5 F1 points of Bootleg.
On the tail, Bootleg outperforms baseline by > 40 F1 points!

Evaluation Set BERT NED 
Baseline

Bootleg # 
Examples

All 85.9 91.3 4,066K
Torso Entities 79.3 87.3 1,912K
Tail Entities 27.8 69.0 163K
Unseen Entities 18.5 68.5 10K

Bootleg: Tail Performance

54

Performance results on Wikipedia dataset.



Bootleg: Industrial Performance

Included Bootleg embeddings into an Overton production 
task answering millions of users’ factoid queries. We report 
relative lift.

Evaluation Set English Spanish French German

All Entities
1.08 1.03 1.02 1.00

Tail Entities
1.08 1.17 1.05 1.03

55



Using Bootleg Downstream: SoTA on the 
TACRED Benchmark

Mays worked with several other companies aside from Media Enterprises 
in his career.

Model Test F1 Score

SpanBERT 78.0

KnowBERT 79.3

Bootleg+SpanBERT 80.2 (SoTA)

Vincent Astor , like Marshall , died unexpectedly of a heart attack in 1959 … The International Water Management Institute or IWMI study said both …

Micro-Avg. F1 on TACRED Revised test dataset: 

Bootleg resolves errors made in by the prior SoTA model.

(subject) (object) 

Gold relation: per:employee_of

Goal: extract the relationship between a subject and object pair. 

(subj)

Gold relation: per:cause_of_death 

Wikidata relation: [‘cause of death’]

(obj) (obj)  (subj)

Gold relation: org:alternate_names 

Zhang et al., 2017 and Hennig et al., 2020.

Leveraging type and relation information 
downstream

Q299001

Understand that sub-strings relate to the 
same entity 

SpanBERT    no_relation 

org:alternate_namesper:cause_of_death

SpanBERT   no_relation 

Q12152 Q868028 Q868028

Wikidata same entity



Self-Supervised Data Take Away
Self-supervised data does not well represent tail distributions -> 
embeddings may not be high quality for rare entities

57

Solution: merged unstructured data with structured 
knowledge that can generalize to the tail.



Embedding Management: Stability

58
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Embedding 
Store

Named Entity Recognition 
(NER)

Question 
Answering

Sentiment 
Analysis

Relation 
Extraction

Changing 
Data Downstream Tasks

Retrain Embeddings

0.1
0.3
0.5
…

New embeddings require downstream tasks to be retrained!

Problem Setting: Embedding Store



Why do embeddings need to be retrained?

Learn new entities Leverage new activity1 Understand new words

Model freshness is necessary for user satisfaction in many products. 

60[1] https://about.instagram.com/blog/engineering/designing-a-constrained-exploration-system



Google retrains their app store Google Play 
models every day, and Facebook retrains search 
models every hour.

61

[1] Baylor et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. KDD, 2017.
[2] Hazelwood et al. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. HPCA, 
2018.



But model training can be unstable…

Data 1 Predictions 1

Predictions 2

Unnecessary 
prediction 
changes!

62

Prediction churn 

[1] Cormier et al. Launch and Iterate: Reducing Prediction Churn. NeurIPS, 2016.

Data 1 + ∆



Challenges of Instability
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Debugging

Model dependencies

1

2

3

4

Consistent user-experience

Research reliability
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How does the embedding instability propagate to downstream tasks? 

Embedding 
Store

Named Entity Recognition 
(NER)

Question 
Answering

Sentiment 
Analysis

Relation 
Extraction

Changing 
Data Downstream Tasks

Retrain Embeddings

0.1
0.3
0.5
…

Problem Setting: Embedding Store



Outline 

● Downstream instability definition 

● Stability-space tradeoff 

● Measuring embedding quality 
with distance measures

65



Definition: Downstream Instability
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Data 1 Predictions 1

Predictions 2

Downstream Instability

Downstream instability = % prediction disagreement between models 
trained on a pair of embeddings

Data 1 + ∆

Emb 1 (X)

Emb 2 (Y)



Embedding Hyperparameters that Impact Storage

67

[1] May et al. On the downstream performance of compressed word embeddings. NeurIPS, 2019.

Precision 
# bits / feature

Dimension
# features / word

Embedding Size

0.04

-0.03

-0.08

0.1

-0.1

-0.1

Interval: 
[-0.1, 0.1] 

32-bit 1-bit

Downstream
Instability

Uniform 
Quantization 



Stability-Space Tradeoff for Word Embeddings
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11%

 Embedding Size         Downstream Instability

Sentiment Analysis NER



Goal: Embedding Distance Measure for Instability
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Data 1 Predictions 1

Predictions 2

The measure should relate the distance between the embeddings 
to the downstream instability.

Data 1 + ∆

Emb 1 (X)

Emb 2 (Y)

Downstream InstabilityDistance (Emb1, Emb2)



Embedding Distance Measures

● k-NN measure [1,2,3]

● Semantic displacement (SD) [4]

● PIP loss [5]

● Eigenspace overlap (EO) [6]

● Eigenspace instability measure (EIS) [7]

70

[1] Hellrich & Hahn, COLING, 2016; [2] Antoniak & Mimno, TACL, 2018; [3] Wendlandt et al., NAACL-HLT, 
2018; [4] Hamilton et al., ACL, 2016; [5] Yin & Shen, NeurIPS, 2018; [6] May et al., NeurIPS, 2019; [7] 
Leszczynski et al., MLSys 2020



Using Embedding Distance Measures to Minimize 
Downstream Instability

71

k-NN measure and theoretically grounded EIS measure outperform 
other measures for selecting embeddings to minimize downstream 
instability. 



Stability Takeaways 

● Defined downstream instability with respect to embeddings

● Stability-space tradeoff (precision, dimension)

● Measuring embedding quality with embedding distance measures

○ EIS and k-NN measures select embeddings with lower 
downstream instability
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 Embedding Size         Downstream Instability



Closing the Loop of Model 
Development: Monitoring and Patching

73



Monitoring and Patching

Embeddings need to be updated: distribution shift, changing needs

Patch (how to update)
Fix bugs and improve performance

Monitor (when to update)
Evaluate and track distribution shift
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Embedding 
Store

Named Entity Recognition 
(NER)

Question 
Answering

Sentiment 
Analysis

Relation 
Extraction

Changing 
Data Downstream Tasks

Retrain Embeddings

0.1
0.3
0.5
…

Remember: Embedding Store

Important: update embeddings not downstream models → changes propagate down to models!



Crucial Bottleneck: Evaluation

Can’t monitor and patch embeddings without evaluation
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Embedding 
Store

Named Entity Linking (NEL)

Question 
Answering

Sentiment 
Analysis

Relation 
Extraction

Downstream Task

Evaluate model errors

Monitor

Patch



Crucial Bottleneck: Evaluation

Can’t monitor and patch embeddings without evaluation

● Critical data slices
● Bias / fairness concerns
● Sensitivity to perturbations
● Invariance to transformations
● and more!  

Many Evaluation Strategies

Shift towards fine-grained evaluation with new tools (e.g. Robustness Gym, Dynabench)
77

Fine-Grained Evaluation Metrics



Tool: Robustness Gym

Example: BERT embeddings are sensitive to character errors

Consolidates different evaluation strategies (slices, transformations) and metrics 

Robustness Gym: Unifying
the NLP Evaluation Landscape.
Goel et al. NAACL Demo 2021.

78

Metrics

Evaluation
Strategies

Evaluations



Tool: Robustness Gym

Example: BERT embeddings are sensitive to character errors

Consolidates many different evaluation types (subpopulations, transformations) and metrics 

Robustness Gym: Unifying
the NLP Evaluation Landscape.
Goel et al. NAACL Demo 2021.
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Metrics

Evaluation
Strategies

Evaluations

Emerging questions
● Discovering important failure modes automatically
● Understanding knowledge captured by an embedding



Important Evaluation Strategy: Slice-Based Evaluation

A type of fine-grained evaluation 

→ Measure fine-grained performance on critical subpopulations (filtering)

Example: 

short passages (< 50 words) in a text dataset

80



Most Named 
Entity Linking 
systems are 
poor on rare 

entities
Goodwill Hunting: Analyzing 
and Repurposing Off-the-Shelf 
Named Entity Linking Systems. 
NAACL Industry 2021.

Robustness Gym: Unifying
the NLP Evaluation Landscape.
NAACL Demo 2021.

Example: Named Entity Linking
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Source data distribution

evaluate

Model

Train set Validation set

Labeled

learn

Evaluation over Time: Monitoring
Continually evaluate as the world changes
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Source data distribution

evaluate

Model

Train set Validation set

Labeled

learn

Evaluation over Time: Monitoring
Continually evaluate as the world changes
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Target data distribution

deploy

Distribution shift



Target data distribution

deploy

Distribution shift

Source data distribution

evaluate

Model

Train set Validation set

Labeled

learn

Unlabeled

evaluate?

Need to monitor model performance on unlabeled data

Evaluation over Time: Monitoring
Continually evaluate as the world changes

84



Approach: Importance Weighting

Estimate metrics on incoming data

Upweight examples in our dev set more likely to be seen in the future

Theoretical Foundations

Density ratio estimation (Sugiyama, 2012)

Recent work: accurately estimate performance with 
slice-based evaluation + importance weighting

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
85



Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data 

negation
contains not, n’t 

male pronoun
contains he, him

strong sentiment
contains love, adore

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
86



Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data 

Source 
Accuracy: 91%

negation
contains not, n’t 

male pronoun
contains he, him

strong sentiment
contains love, adore

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled 
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model 

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
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Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data 

Source 
Accuracy: 91%

negation
contains not, n’t 

male pronoun
contains he, him

strong sentiment
contains love, adore

He does not love eating scones.

He loves taking risks.

She likes drinking coffee.

(Target) Unlabeled Test 
Set Slices

1

-1

-1

1

1

-1

1

1

-1

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled 
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model 

Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
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Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data 

Source 
Accuracy: 91% Target Accuracy: 

84%

negation
contains not, n’t 

male pronoun
contains he, him

strong sentiment
contains love, adore

He does not love eating scones.

He loves taking risks.

She likes drinking coffee.

(Target) Unlabeled Test 
Set Slices

1

-1

-1

1

1

-1

1

1

-1

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled 
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model 

Mandoline
Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.
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Mandoline: Slice-based reweighting framework
Slice: user-defined grouping of data 

Source 
Accuracy: 91% Target Accuracy: 

84%

negation
contains not, n’t 

male pronoun
contains he, him

strong sentiment
contains love, adore

He does not love eating scones.

He loves taking risks.

She likes drinking coffee.

(Target) Unlabeled Test 
Set Slices

1

-1

-1

1

1

-1

1

1

-1

I love eating ice-cream.

He loved walking on the beach.

He didn’t like drinking coffee.

(Source) Labeled 
Validation Set

-1

Slices

-1

1

-1

1

1

1

1

-1

 Model 

Mandoline
Mandoline: Model Evaluation under Distribution Shift. Chen et al. ICML 2021.

Takeaways
● Monitor any model: importance weighting
● Add domain knowledge (slices) to improve monitoring
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Embedding Model Patching

Data-Centric Model-Centric

Data Augmentation

Data Collection

Active Sampling

Weak Labeling

Training Algorithm

Features

Architecture

Data Preprocessing

Training Paradigm

Once errors are identified, need to retrain or update embeddings

Many Approaches

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021. 91



Downstream System

Named Entity Linking

FIFA World CupEngland National Football Team

Named Entity Linking
map “strings” to 
“things” in a 
knowledge base like 
Wikipedia

Question Answering System 1966

When did England last win the football world cup?

A correct NEL is required for the downstream system! 92



Repurposing Bootleg NEL system to patch errors for sports QA

fix poor 
performance

Sports QA: prefer if the model predicted the national sports team instead of the country!

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021.

End to End Example: Named Entity Linking
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fix poor 
performance

Relabel the 
training set with a 

simple heuristic

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021.

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA

94



Wikipedia 
examples with 

mentions of 
countries and 
sports teams

25% absolute accuracy improvement in sports-related errors

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021.

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA
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Embedding Model Patching

Data-Centric Model-Centric

Data Augmentation

Data Collection

Active Sampling

Weak Labeling

Training Algorithm

Features

Architecture

Data Preprocessing

Training Paradigm

Once errors are identified, need to retrain or update embeddings

Many Approaches

Goodwill Hunting: Analyzing and Repurposing Off-the-Shelf Named Entity Linking Systems. Goel et al. NAACL Industry 2021. 96

New area of research!
● Incremental and targeted embedding updates
● Backwards compatibility for updated embeddings e.g. stability
● Data-centric vs. model-centric updates
● Sample efficiency and efficacy of approaches
● Time-to-update and optimal cadence
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Future Directions
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Embeddings as First Class Citizens

98

What is the right system for embedding management in ML 
pipelines?

Search
What set of 

embeddings are best 
for a specific task?

Provenance
What data had the 
most “impact” on 

these embeddings?

Quality
What are the right 
metrics/probes for 

embedding quality?

Embedding A

Embedding B

(x1 , y1)
…

(xn , yn) tail 
performance?

syntactic 
information?



What are the 
current failure 

modes?

End-to-End Model Patching

99

How can we automate and provide guidance for embedding 
patching?

What data 
engineering 

strategy to use?

How do I update 
my models 
efficiently?

Data Augmentation

Data Collection

Active Sampling

Weak Labeling

Data Preprocessing

Embeddings t

Embeddings t+1



Systems to store 
and manage 

models and data?

How can we 
support the 

entire lifecycle?

Interactive Machine Learning

100

How can we facilitate human interaction with model training 
and evaluation data?

How to integrate 
multiple 

modalities?

Construct Data

Measure

Maintain

Monitor

Text Images

VideoRelational

Data Panels for ML
Video, Image, Model 

Outputs, ...

https://github.com/robustness-gym/meerkat


