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ABSTRACT

The logic programming language Datalog is today used in a wide
array of applications, which led to the rise of various specialized
Datalog engines such as Soufflé, DDlog or LogicBlox, where all
of them have their reason to be. While some of them implement
basic forms of query optimization, the applied optimizations are
unfortunately always deeply hard-wired into the specific engine,
making a transfer of a technique from one system to another one
or the extension of an engine with a new technique a cumbersome
and manual engineering process.

Consequently, in this work, we propose to optimize Datalog en-
gines holistically. Instead of having the entire optimization pipeline
materialized within the Datalog engine, we generate an optimized
general-purpose representation of the query plan outside of the
engine. Then, we translate this general-purpose plan into the rep-
resentation of the target engine, while applying as many optimiza-
tions as possible. With this approach, our goal is to make query
optimization in Datalog more sustainable by optimizing a broad
range of Datalog engines, rather than focusing on just one.
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1 INTRODUCTION

Datalog is a carefully restricted logic programming language that
has seen a surge in popularity in recent years. Originally, Datalog
was conceived as a database query language that operates on finite
sets only [7]. Nowadays, Datalog is being used in a wide array
of applications, from program analysis [11, 14] to network moni-
toring [1], distributed computing [2] and distributed storage [8].
What makes Datalog so popular is that it is designed as a declar-
ative programming language, where programmers specify what
a computation should achieve rather than how that result can be
achieved computationally.

While originally, Datalog queries were rather small in size, mod-
ern (often synthesized) Datalog queries involve large and complex
computations over structured data, easily consisting of hundreds
of lines of Datalog code [6]. In this context, generating a naive
execution plan and running it often reaches its limits and leads
to poor performance. As a consequence, popular engines such as
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Soufflé [11] allow users to manually optimize the execution by an-
notating their queries. This has two problems: (1) For the user, it is
notoriously difficult to come up with reasonable physical design
decisions, as they require a deep understanding of the internals
of the engines as well as the requirements of the dataset and the
query. (2) It breaks with the declarative nature that Datalog was
supposed to inhabit.

So why do Datalog engines lack automatic query optimization,
like it has been implemented in relational systems since decades?
The reason lies in one significant difference between relational and
Datalog processing: While in the relational world, the database is
known up-front and the queries arrive on-the-fly, in the Datalog
world, the situation is typically the other way around. For example,
consider static program analysis performed by an IDE: A particu-
lar analysis, such as type checking, is encoded as a Datalog query
up-front. However, the database in form of the program to analyze
arrives on-the-fly as it constantly changes under user inputs. This
means that in contrast to a relational engine, a Datalog engine
cannot simply calculate statistics of the database, such as size, car-
dinality, domain, and data distribution, up-front and use it to steer
the query optimization.

Nevertheless, the first steps have been carried out to introduce
automatic query optimization to the Datalog world. To identify cost-
optimal join orders, Soufflé now implements a so-called feedback-
directed optimization strategy [3]. It works as follows: First, the
engine performs a profiling run using the query’s naive execution
plan on some sort of representative database to gather statistics
about the execution. To perform join order optimization, the engine
builds join cardinality estimates from these statistics and uses them
to compute a cost-optimal join order. This join order is then worked-
in during a recompilation pass to produce an optimized execution
plan, which hopefully performs well on the actual database.

While this implementation of feedback-driven optimization is a
step in the right direction, its downside is that the entire optimiza-
tion process is currently highly baked into a single specific engine,
namely Soufflé. Integrating an optimization into a specific engine
is (a) a complicated and lengthy task, and (b) optimizes only one
specific engine. This is unfortunate, considering the large amount
of existing Datalog engines, which often have been designed with
a different use-case and domain in mind. For instance, while Souf-
flé has been mainly design for the aforementioned static program
analysis, DDlog [10] targets incremental computation scenarios. A
mixture of both is IncA [13, 14] which is used for whole-program
analysis in an incremental way. Another appearance is Dedalus [2],
a logic programming language that is used to specify distributed
services and protocols. Lastly, we mention a commercial Datalog
engine named LogicBlox [4] that is used for sophisticated analyt-
ical applications and predictive analytics. It is clear that all these
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systems have their reason to be. Hence, our goal is to develop a
framework that optimizes all of them, not just a single one.

1.1 Towards Holistic Query Optimization

As a consequence, we advocate that automatic query optimization of
Datalog should happen in a holistic fashion. Instead of hard-wiring
the entire optimization pipeline into a specific engine, it should be
split into two parts: In the first part, we gather runtime statistics
of the not fully optimized execution on a representative database.
This still happens within one particular engine, such as Soufflé.
The second part happens outside a particular engine and uses the
gathered information to optimize an intermediate representation
(IR) of the execution plan. Such an IR can be produced by a front-
end, either from a given Datalog query or directly synthesized.
Then, we compile the IR containing the applied optimizations to
the concrete physical execution plan of a specific engine. Again, by
this, a particular optimization becomes available for a large number
of systems, not just for a single one.

2 STATE-OF-THE-ART

Before diving deeper into our design vision, we will walk through
a brief introduction to Datalog and the Datalog engine Soufflé.
We then discuss the current feedback-driven optimization strategy
implemented within Soufflé and its limitations.

2.1 Datalog

To get a better understanding of Datalog, let’s consider a simple
example. Suppose we want to visit 6 sightseeing attractions, enu-
merated from 0 to 5. Knowing the train connections between those
and that we arrive at attraction 2, we want to compute whether we
can visit all of them. The situation could look like this:

As initial knowledge we have a set of train connections

{0 1,1 2,1 4,2 3,4 5} and a set of visited sightsee-
ing attractions, which only contains {2} at the beginning. These
so-called facts are simply materialized as tuples in corresponding ta-
bles train_connection = {(0,1), (1,2), (1,4) (2,3), (4,5)}and
visited = {(2)3}. To compute how to travel from one to another
sightseeing attraction, we next define a Datalog program, which
consists of a set of rules. The repeated execution of these rules on
the existing facts produces new facts, which are inserted again in
the table(s). This is done until no new facts are generated anymore
and a fix point is reached. For our travelling example, the following
two rules populate the visited table with new facts:

visited(x) :- visited(y), train_connection(y,x)

visited(x) :- visited(y), train_connection(x,y)

The first rule states that if we visited a sightseeing attraction y and
there is a train connection from y to x, we can visit x as well and
therefore x should be inserted in the visited table. The second rule
is the same as the first but in the other direction. Let us look at the
syntax of a rule: A rule consists of a head and a body, separated by
:-.To evaluate a rule, Datalog starts at the first predicate in the body,
visited(y) for the first rule, and queries all tuples in the visited
table. For each tuple, the program checks if the second predicate in
the body, train_connection(y, x), is true, by querying all tuples in
the train_connection table that have y as their first element. If so,
the head tells what will happen: the tuple (x) is inserted into the
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Figure 1: Soufflé architecture and its optimizations.
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visited table. Initially, this is the case for (1) and (3), neighboring
(2). But those three attractions are not all that can be visited, thus
the rules are evaluated a second time, resulting in visited to contain
{2,1,3,0,4}, which is the fixpoint.

2.2 Optimizations in Soufflé’s Architecture

Datalog programs can be large and complex, specialized and highly
tuned engines are required to manage the data and to perform the
recursive rule evaluation efficiently. Ideally, this includes optimiz-
ing the execution. One such engine is Soufflé, which will play a
special role in our following design but other engines would also
be possible. The reason why we choose Soufflé is that it is open-
source, actively developed, has a large user base, and was used often
as a research target [3, 9, 15]. Also, despite being often used for
static program analysis, its engine is designed in a rather general-
purpose fashion. The high-level architecture of Soufflé is shown
in Figure 1. Soufflé, using a multi-step compilation, first parses the
Datalog program into an Abstract Syntax Tree (AST), which is a



tree-style representation of the input program, where each node
represents an element or statement. The AST is for instance used
for semantic analysis to check the program for errors. The AST
is then transformed into a so-called relational algebra machine
(RAM). Precisely, the RAM consists of a sequence of relational alge-
bra operations, relation management statements, and control flow
constructs with parallelism, like Scan, Project, Filter, Aggregate,
Join and Union. Finally, based on the RAM, Soufflé starts to synthe-
size C++ code, which is then compiled into a binary that can be
executed to evaluate the logic of the Datalog program.

During this multi-step compilation, Soufflé applies two classes
of optimizations: The first class are static optimizations, which only
operate on the representations of the Datalog program (i.e., AST
and RAM), but without factoring in any concrete database (as it
is typically not available when the compilation happens). On the
AST, Soufflé applies magic set transformation [5], removing empty
and redundant tables, or resolving aliases. On RAM, it applies only
a handful of static optimizations, such as converting index scan
operations to filter/existence checks, transforming consecutive fil-
ters into a single filter containing a conjunction, or pushing one
aggregate as far up the loop nest as possible.

The second class of optimizations are dynamic optimizations,
which also factor in a concrete database. Join order is the only
dynamic optimization currently implemented in Soufflé and is
based on the previously mentioned feedback-directed optimiza-
tion pipeline. For join ordering, this pipeline entails (1) a profiling
part, which instruments the generated code to collect join cardi-
nality estimates, (2) an optimization step, which applies Selinger’s
algorithm [3, 12] on the statistics to determine the cost-optimal
join order, and (3) an application phase, which materializes the
determined join order in the AST for the next round of compilation.
Unfortunately, all three steps are heavily inter-weaved with various
components of the engine, rendering any modification of the opti-
mization process or the extension of the system with a new type
of optimization extremely cumbersome. Further, due to this deep
inter-weaving, the transfer of a successfully applied optimization
(such as join ordering) from one Datalog engine to another Datalog
engine requires again careful and manual engineering.

3 TOWARDS HOLISTIC QUERY OPTIMIZATION
To overcome these limitations, we advocate to optimize holistically.
Instead of hard-wiring the entire optimization pipeline into a single
specific engine, we decouple both the optimization step (2) and
the application step (3) from a concrete Datalog engine. Only the
profiling step (1) is required to happen locally in a specific engine.

Consequently, our research goal is to lay the foundation of such
a holistic query optimization approach for Datalog. The developed
methods are aimed to be (a) practical in use, (b) compatible with a
large number of different engines, and (c) robust against a variety of
workloads.

Our vision of an architecture approaching this goal is illustrated
in Figure 2. Analogue to the original feedback-directed optimiza-
tion, our design also requires a way of executing step (1), namely
performing profiling runs to collect statistics on a concrete database.
This happens in one dedicated profiling engine, which must be able
to capture and output relevant statistics of runs. We use Soufflé
for this purpose, as it (a) already incorporates a statistics collector
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Figure 2: Vision of a holistic query optimization framework.
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for its join order optimization and (b) is open-source. After having
gathered statistics, the entire remaining pipeline happens outside
a particular engine. It starts with the translation of the Datalog
program into an abstract Datalog representation (ADR) by the ab-
straction builder. ADR is designed to capture the syntax, structure
and semantics of the Datalog program — on a conceptual level, it re-
sembles the AST representation of Soufflé but is not specialized for
any specific engine. Next, the ADR is handed over to an optimizer,
which is responsible for applying both static optimizations, such
as removing empty/redundant tables, and dynamic optimizations,
such as join ordering. To perform the latter, the optimizer imports
the previously collected statistics. The optimizer then outputs an
optimized abstract Datalog representation (0ADR), which contains
all applied optimizations either directly (e.g., if the syntax tree was
reorganized) or indirectly in the form of annotations (e.g., whether
a table should be materialized in a specific physical layout). This
0oADR then goes into the engine translation unit (ETU), which is
responsible for producing a representation that a particular target
engine can understand and import. For example, for Soufflé, this
representation would be RAM, for Viatra, it would be PSystem.
Note that the ETU must contain a specific translation scheme for
each engine, as not all systems support the same feature set, data
structures, and operations. In general, the ETU tries to work in
as many of the oADR’s indirect optimizations as possible during
translation. If an optimization is not supported by a target engine,
it will be ignored. As a fallback, if the ETU does not know the target
engine, it will produce optimized Datalog code in a file.

3.1 Example

For a better understanding, let us go through our optimization
pipeline in Figure 3, showing the example we previously used. Pre-
cisely, we show an optimization that decides on whether to materi-
alize the train_connection table as a clustered index or rather as an
unclustered index. As clustered indexes are faster but also consume
more space than unclustered indexes, the decision depends on the
space constraints and selectivity of the accesses (for high selectivies,
an unclustered index might provide sufficient performance, while
for low selectivities, a clustered index is essentially mandatory).
Consequently, in the first step, we use our profiling engine to de-
termine the selectivity of accessing train_connection, i.e., the ratio
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CREATE CLUSTERED INDEX ind_0 ON train_connection.schemal (x,y);

between the resulting size of a range query and the total size of the
table. Assuming this selectivity is rather low with w=0.7, the desired
outcome is to use a clustered index. Let us see the individual steps of
reaching this: In the Datalog program, the table train_connection
is simply declared without any physical information. From this, we
generate the ADR, which mirrors the declaration closely but adds
an IndexType to the table, which is left to default. This means that if
no further optimization information is applied, the ETU generates
the default representation for this table. However, as statistics
are available, the optimizer decides to translate the ADR into the
oADR which is annotated with the hint to generate a clustered
index for this table. From the oADR, the concrete representation
of the target engine(s) can be produced by the ETU. In the exam-
ple, we show this for Soufflé and RecStep[9]. For Soufflé, the ETU
will translate the hint to generate a clustered index by encoding
a request to generate a B-tree for this table (which is a clustered
index in Soufflé). Finally, the internal code generation of Soufflé will
translate this into the corresponding C++ code, where we can see
that train_connection has now an index t_ind_e, which is a B-tree.
For RecStep, which uses QuickStep as an RDBMS based on SQL, this
translation is different. We produce two SQL statements, one for
the table itself and the other one originates from the optimization,
leading to the generation of a clustered index.

4 RESEARCH CHALLENGES AND QUESTIONS
Let us conclude with the high-level research challenges of this
project. First, step (1) requires to execute a Datalog program on a
concrete database to produce statistics. However, since the program
cannot be dynamically optimized for this run, it might perform

poorly. Consequently, this run has to be performed on a database
that is small but also representative for the actual workload. Identi-
fying such a feasible representative workload automatically is an
open challenge, that we will have to tackle early on. Also collecting
meaningful statistics for Datalog is significantly more difficult than
in the relational world, since new facts are recursively produced.
This requires a careful collection, aggregation and interpretation of
statistical data during the profiling run. Second, step (2) optimizes
the program holistically based on statistics gathered in a specific
engine in order to optimize for other engines as well. It remains
an open research question how sensitive optimizations are to be
transferred from one engine to another, as typically, they are hard-
coded for a specific engine and the engine itself is tailored towards
a particular domain. Further, we will investigate different classes
of optimizations (e.g., physical design decisions, access paths, join
ordering) under workloads from different domains, while we antic-
ipate that their performance will vary significantly in this regard.
Third, in step (3) where the translation into the specific represen-
tation of the individual engine happens, we have to carefully map
each optimization in the oADR to the corresponding engine con-
struct. This mapping might be ambiguous (e.g., the hint to create
a clustered index could be translated into a clustered B+tree or
clustered radix tree).
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