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ABSTRACT

Though data cleaning systems have earned great success and wide
spread in both academia and industry, they fall short when the data
contains spatial and temporal information that affects functional
dependencies. In particular, state-of-the-art data cleaning systems
yield sub-optimal accuracy when cleaning attributes (e.g., census
tract) that are in dependency of spatial attributes (e.g., latitude
and longitude). Moreover, they cannot handle the case where the
groundtruth of a functional dependency is changing over the time
(e.g., the census tract of a location updates every 10 years). In this
paper, I discuss two case studies I have done/am doing in my PhD
time, aiming to inject the spatial and temporal awareness into data
cleaning systems. In the first study, we propose SPARCLE; a novel
framework that injects spatial awareness into the core engine of
rule-based data cleaning systems, that significantly boosts their
accuracy when dealing with spatial data. Then for the second case,
I show the motivating example where temporal awareness is in need
for data cleaning, and justify why the problem is worth studying.
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1 INTRODUCTION

Motivated by the imperfection of real data sets, along with the huge
efforts carried by data scientists to manually clean their data, efforts
have been dedicated to develop various approaches and systems for
automated data cleaning. The large majority of such approaches
(e.g., see [4, 6, 8, 14, 20, 24]) and systems (e.g., see [9, 12, 13, 18, 21,
25, 26, 31]) are rule-based, where functional dependencies between
various attributes guide the data cleaning process. The success and
immense need of such data cleaning systems made it widely adopted
by industry [2, 11, 16, 22] and commercial startups [17, 28, 29].
Unfortunately, with all its success and wide spread, we found
state-of-the-art data cleaning systems fall short when the data con-
tains spatial or temporal attributes. In particular, we found them
yield sub-optimal accuracy when trying to clean spatial data with
functional dependencies such as (Latitude, Longitude) — Census
Tract. The main reason is that state-of-the-art data cleaning systems
mainly rely on functional dependencies where there are sufficient
co-occurrence of value pairs to learn that a certain value of an at-
tribute leads to a corresponding value of another attribute. However,
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ID Latitude Longitude |Borough
4486519 | 40.751441 |-73.973974 | Manhattan
4486555 | 40.690183 |-73.956825
4486604 | 40.681582 |-73.974638 | Brooklyn
4486609 | 40.683304 |-73.917274 | Queens
4486660 | 40.868165 |-73.831487 | Bronx

(a) Part of Table of NYC Motor Vehicle Collision Data

(b) Map of NYC Motor Vehicle Collision Data

Figure 1: NYC Motor Vehicle Collision Data

for spatial attributes that represent locations, there is very little
chance that two records would have exact same coordinates, and
hence co-occurrence is unlikely to exist. Moreover, we observe the
fact that the groundtruth with respect to a functional dependency
may change throughout the dataset. For example, Census Tract of
the above-mentioned dependency updates every 10 years. How-
ever, existing systems would only try to enforce a single version of
groundtruth, which apparently results in sub-optimal accuracy.

2 CASE 1: SPATIAL-AWARE DEPENDENCY

In this case, we investigated the NYC Motor Vehicle Collision
data [23], which includes 1,751,624 collision records that took place
in the New York City since 2014. A snapshot of this dataset is in
Figure 1(a) for five collision records and only four attributes of each
collision (ID, Latitude, Longitude, Borough). The snapshot shows
two kinds of errors: (1) the second record is missing the Borough
information, and (2) the fourth record has the wrong Borough infor-
mation. To get an idea of the scale of the problem, Figure 1(b) plots
all the erroneous records over NYC map (421,013 records), where
418,896 records have a missing borough (plotted in red) and 2,117
records have incorrect borough (plotted in blue). We fed this data


https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Table 1: Error Repairing of NYC Motor Vehicle Collision Data

HoloClean | SPARCLE

Total 58.7% 99.4%
Errors at duplicated location 99.6% 99.7%
Errors at new location 30.3% 99.1%

along with the functional dependency: (Latitude, Longitude) — Bor-
ough to HoloClean [25] system as a state-of-the-art rule-based data
cleaning framework. It is important to note that in this particular
example, we do not rely on any external knowledge of borough
boundaries. HoloClean only repaired 58.7% of the errors, which is a
pretty low accuracy compared to its ability in cleaning non-spatial
data with more than 95% accuracy [25]. To understand such poor
accuracy, we distinguish between: (a) erroneous records that took
place in the same exact location of at least one other correct record,
and (b) erroneous records that took place in new locations where
there is no other correct records. As depicted in Table 1, HoloClean
was able to correct 99.6% of the former, but only 30.3% of the latter.

The main reason behind such poor performance of HoloClean,
as a representative of rule-based data cleaning systems, is twofold:
(1) Cleaning with functional dependencies relies on sufficient co-
occurrence of value pairs to learn that a certain value of an attribute
leads to a corresponding value of another attribute. However, for
spatial attributes, there is very little chance that two records have
the exact same coordinates, mainly due to the inherent inaccuracy
of location-detection devices. Hence, a rule-based system will not
be able to find sufficient spatial co-occurrence to be used to detect
and repair erroneous entries. (2) The outcome of whether a certain
record satisfies a rule is binary (True or False). However, in spatial
rules, such outcome needs to be fuzzy, as a certain record may
satisfy the rule in stronger terms than other records.

The closest related works to solve this problem would be the set
of relaxed functional dependencies [5], including matching depen-
dency [10], metric dependency [19], differential dependency [27],
and ontology dependency [3]. However, these dependencies are
mainly proposed to tolerate marginal syntactic difference for enti-
ties that are actually considered the same, e.g., the words “Ave” and
“Avenue” should mean the same thing. While in spatial data, two
records with nearby coordinates are truly two different records. As
a result, they still yield sub-optimal cleaning accuracy (i.e., over 0.2
in terms of precision) compared with our proposed approach [15].

2.1 Proposed Approach: SPARCLE

To address on the problem, we propose SPARCLE (SPatially-AwaRe
CLEaning) [15]; a novel framework that injects spatial awareness
into the core engine of rule-based data cleaning systems as a means
of boosting their accuracy. A key idea behind SPARCLE is that it
goes beyond the traditional functional dependency rules of the
form: “T'wo records with the same location should have the same
borough”to support the more relaxed functional dependency form:
“Two records with more similar locations are more likely to have the
same borough”. To do so, SPARCLE injects two main spatial concepts
into its host data cleaning system: (1) Spatial Neighborhood. To
support going from the “same” predicate to the “similar” predicate,
records with spatial attributes satisfying some spatial neighborhood
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Figure 2: SPARCLE Architecture

(similarity) criteria should be considered as relatively equivalent
with respect to the spatial functional dependencies; (2) Distance
Weighting. To support going from “should”to “likely” and to have
the keyword “more” in the relaxed functional dependency, records
will be given a weight of how much they satisfy each rule, where
the weight will be based on the distance between records satisfying
the functional dependency. With this, the last column of Table 1
shows that, for NYC collision data, SPARCLE was able to correct
99.4% of all errors and 99.1% of the errors with new locations.

A main contribution of SPARCLE is that it proves that spatial
awareness of Spatial Neighborhood and Distance Weighting could
be and should be injected into most data cleaning systems. Our
goal in SPARCLE is not to come up with a new data cleaning system.
Instead, it is to boost the accuracy of current systems. In partic-
ular, SPARCLE lives inside a host data cleaning system, making it
spatially-aware. To this end, its architecture follows the common
architecture of most rule-based data cleaning systems. In particular,
such systems (e.g., [9, 12, 18, 21, 25, 31]) are typically composed of
four back-to-back components, error detector, candidate generator,
input formulator, and error corrector. The first three modules are
mainly for error detection and preparing the data in some format
that can be repaired using a statistical method in the last module,
which is very system-specific. Hence, SPARCLE focuses on modi-
fying the first three modules to be: spatial error detector, spatial
candidate generator, and spatial input formulator, while leaving the
fourth module intact as it is system-specific. These modified mod-
ules will mainly support spatial dependencies. Multiple constraints
are handled separately and in parallel. Non-spatial dependencies
are still supported through the host data cleaning system. The out-
come of the third module (spatial input formulator) is forwarded as
is to the downstream error correction module to be combined with
other non-spatial constraints to find out the final repaired value.

We implemented SPARCLE inside two state-of-the-art data clean-
ing systems HoloClean [30] and Baran [21]. Experiments on four
real datasets, each with multiple spatial and non-spatial dependen-
cies, show that SPARCLE boosts 0.3-0.9 cleaning accuracy (in terms
of F1 Score) of the host system.



2.2 SpaRrcLE Architecture

Figure 2 depicts SPARCLE architecture, deployed inside a host data
cleaning system. SPARCLE takes two types of inputs, the raw data to
be cleaned and the constraints that define functional dependencies.
The output of SPARCLE is the detected erroneous cells, where a cell is
a certain attribute of a certain record, along with a weighted list of
suggested correct values for each cell. Internally, SPARCLE follows
similar architecture to that of rule-based data cleaning systems,
mainly composed of three modules, spatial error detector, spatial
candidate generator, and spatial input formulator. A brief description
of SPARCLE input, modules, and output is below:

SparcLE Input: Constraints. As SPARCLE is injected into a host
rule-based data cleaning system (e.g., [12, 21, 25, 30]), it is auto-
matically triggered only when there are spatial constraints, and it
only takes care of such constraints. Non-spatial constraints over
the same input data will still be supported by the host data cleaning
system without any interference from SPARCLE.

Spatial Error Detector. The input to this module is the input to
SpaRrcLE. The output is two sets of cells, erroneous and clean cells.
It injects spatial-awareness into existing error detection modules.
Hence, instead of detecting errors based on exact co-occurrence, it
relaxes the co-occurrence criteria to consider records within spatial
proximity. It also assigns weights to all detected errors based on
the distance between co-occurred records.

Spatial Candidate Generator. The input to this module is the
two sets of erroneous and clean cells coming out of the spatial error
detector. The output is two similar sets of cells, considering the
following: (1) There will be more cells in the clean set, as some
erroneous cells will be cleaned, (2) Each cell will have a set of
weighted candidate values, where SPARCLE believes that one of
these values in the correct value, (3) Clean cells will be labeled with
the value that SPARCLE believes it is the correct one.

Spatial Input Formulator. This module mainly injects spatial-
awareness into existing input formulator modules, where the input
is the output of the spatial candidate generator, while the output is
the output of SPARCLE. As these modules are very specific to the
host cleaning systems, SPARCLE has to have various versions of
such module to match its host system. The goal is to score each
possible candidate value and prepare the output in a certain format
to match the requirements of the host error correction module.
SPARCLE Output: Interaction with Host System. The output
of SpaRcLE is the output of the Spatial Input Formulator, which is
the detected erroneous cells and their weighted suggested values.
If we only have spatial constraints, then the output of SPARCLE
is the completely corrected input data. When having non-spatial
constraints, the output of SPARCLE is sent to the error correction
module of its host data cleaning system. Then, it will be integrated
with other suggested values from the non-spatial constraints for
error correction method to statistically come up with the final correct
value. As the correction module is very system-specific, the Spatial
Input Formulator has to customize the output of SPARCLE based on
its host system.

3 CASE 2: TEMPORAL-AWARE DEPENDENCY

Another practical yet unstudied challenge of functional dependencies-
based data cleaning is that the groundtruth with respect to a certain

(a) 2003-2015

(b) 2015-2023 (c) 2023-Present

Figure 3: Chicago Ward Map

dependency may change throughout the dataset. For example, in a
dataset [7] that contains building permits issued in Chicago from
2006 to present, there are attributes such as Ward, Census Tract
and Police District that are in dependencies with spatial attributes
Latitude and Longitude. And the boundaries of these attributes are
changing every few years. Figure 3 shows three versions of ward
map during the time span of the dataset. As a result, an area belongs
to ward A in 2010 may belong to ward B in 2020.

This characteristic brings extra difficulties for current data clean-
ing systems. In particular, for a system working with dependency
(Latitude, Longitude) — Ward, it will detect both records as erro-
neous if they have the same location but different wards. However,
both entries might be just correct; they have different wards only
because the ward map changed. As for error repairing, solving
all records together will confuse the system as it only intends to
enforce a single version of groundtruth. Hence an entry might be
repaired to an out-of-date value, which clearly hurts the accuracy.
The closest related works are the ones on temporal functional depen-
dencies [1], which restrict the rule on the temporal dimension, for
example, person cannot be reported in two countries at the same
time (Person — Destination in a 1-hour window). Since those works
mainly focus on time window while our challenge is about time
period, the applicability is questionable.

Simply having the temporal attribute on the left-hand side of
the dependency (e.g., (Time, Latitude, Longitude) — Ward) is not
enough to solve the problem. The main reason is again the insuffi-
cient co-occurrence as it now needs records also to have the same
timestamp to learn the dependency. Relaxing on the temporal at-
tributes, just like how SPARCLE relaxes spatial attributes, is a possible
solution. This spatio-temporal relaxation requires a spatio-temporal
similarity measurement, which is untrivial. Another possible so-
lution is to detect the change of dependency groundtruth directly.
In an ideal world, we could split the data by different versions of
groundtruth and clean them separately. However, it is often un-
clear when a new groundtruth become effective. The intuition is
that if an area has many records with ward as A and ward as B
before and after a certain time T, then there is a great chance that
a new groundtruth becomes effective at the time T. Efficiency is a
foreseeable challenge here to identify and verify all the cases.

Last but not least, this temporal awareness is not only limited
to spatial boundaries. It is valid in many traditional data cleaning
cases. Taking a human resource data for example, an employee may
change their telephone or address at some time. In general, there
should be no eternal groundtruth; instead, a groundtruth is only
valid for a certain period of time.



4 FUTURE WORKS

Besides Section 2 and 3, there are more future works along the path
of data cleaning with spatial and temporal awareness.

Learn the parameters and fit the weight function. The two
key ideas in SPARCLE (Section 2) introduces two parameters: (1) dis-
tance d for Spatial Neighborhood, which means we consider the
area within distance d to be the neighborhood of a location; and
(2) weight function ‘W (d) for Distance Weighting, which means the
a closer record will have a higher weight. In SPARCLE [15], we use a
specified set of distance and weight function for all data after trying
many combinations, and we show that the choice significantly af-
fect the cleaning accuracy. As for future, we could learn the distance
threshold and fit the weight function from the dataset, which would
not only improve the cleaning accuracy per dataset, but also saves
the efforts to find the optimal parameters. This should be feasible
given the assumption that the majority of a dataset is correct.

Fix the latitudes and longitudes. An importance thing in SPAR-
CLE [15] is that we assume the Latitude and Longitude attributes are
correct. This assumption is reasonable as the latitudes and longi-
tudes are often directly read from devices and are not meant to be
repaired in a functional dependency manner. However, there are
cases the locations seem suspicious. For example, if all attributes of
a record such as Borough, Zipcode, Police Ward, Community Neigh-
borhood, Census Tract are detected erroneous, it is reasonable to
suspect that maybe the actual incorrectness is in Latitude and Lon-
gitude. Also, the Latitude and Longitude could be missing and need
to be imputed. In these cases, we could make the best guess of the
locations (for example, in the intersection of the multiple bound-
aries) that preserves the dependencies best. Fixing and imputing the
locations will benefit downstream applications like spatial analysis.
Reconstruct the boundary. In SPARCLE [15], what we are trying
to do with dependency (Latitude, Longitude) — Borough is to figure
out the mappings from point location to borough name, such as

POINT(-73.960077, 40.784859) — Manhattan

POINT(-73.816996,40.720750) — Queens
. However, given the fact that each borough is an area rather than
a collection of points, it would be beneficial to reconstruct the
boundary, which means to figure out the mapping such as

POLYGON(( — 73.951793 40.824084, —73.916165 40.811506,
..y —73.951793 40.824084)) — Manhattan
POLYGON (( — 73.853140 40.739160, —73.777560 40.729019,

..., —73.853140 40.739160)) — Queens
. The benefits are at least twofold: (1) it constructs the knowledge
base that can be easily applied to new data. (2) A special considera-
tion of the boundary might improve the cleaning accuracy of the
records around the boundary, which are the hardest ones to clean
according to our experiments [15].
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