
Interpretable Feature Engineering for Structured Data
Mohamed Bouadi

Supervised by Arta Alavi and Prof. Salima Benbernou and Prof. Mourad Ouziri
SAP Labs Paris, Université Paris Cité, LIPADE

mohamed.bouadi@u-paris.fr

ABSTRACT
Machine Learning (ML) has demonstrated a significant utility in
decision-making within the domain of data management. Since the
quality of an ML model strongly depends on the quality of the input
data, Feature Engineering (FE) stands as a pivotal step in enhancing
the performance of these models, particularly with tabular data.
However, traditional FE methods are often time-consuming and
requires case-specific domain knowledge, which underscores the
need for Automated Feature Engineering (AutoFE) techniques. In
addition, with the proliferation of Data Analytics and ML-powered
systems, especially in critical contexts, the need for interpretabil-
ity and transparency becomes increasingly important, especially
among domain experts. Studies have shown thatMLmodels are only
as interpretable as there features, highlighting the importance of
feature interpretability in achievingML interpretability. In this Ph.D.
work, we tackle the problem of engineering interpretable features
for structured data. We introduce KRAFT, an AutoFE framework
harnessing a Knowledge Graph (KG) to guide the creation of inter-
pretable features. Our approach integrates a neural generator for
transforming raw features through diverse transformations with a
knowledge-based reasoner for assessing feature interpretability. Ad-
ditionally, we propose ReaGen, an AutoFE methodology combining
KGs with large language models (LLMs) to produce interpretable
features. This approach leverages external knowledge to extract rel-
evant information related to the data and employs multiple LLMs
to iteratively generate meaningful features based on dataset de-
scriptions and retrieved information. Extensive experiments on
real datasets validate the effectiveness of our solutions, showcasing
notable improvements in accuracy and interpretability. Finally, we
propose an interactive system dedicated to AutoFE techniques on
structured data, allowing users to generate meaningful features and
evaluate their efficiency and interpretability.

VLDBWorkshop Reference Format:
Mohamed Bouadi. Interpretable Feature Engineering for Structured Data.
VLDB 2024 Workshop: VLDB Ph.D. Workshop.

1 INTRODUCTION
Over the last decade, we have witnessed proliferation of ML ap-
plications on structured data to help solve difficult problems and
uncover new opportunities across a variety of domains [1, 2]. The
success of ML is often attributed to the experience of data scientists

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

Figure 1: Data science workflow.

who leverage strong background in data mining and extensive do-
main knowledge to extract useful patterns from data. In most cases,
appropriate transformation of data is an essential prerequisite step
before model construction. This crucial task is commonly referred
to as Feature Engineering (FE). Nevertheless, ML tools are still dif-
ficult to be utilized by non-experts, since a typical data science
project contains many steps, as shown in Figure 1.

To reduce the workload of data scientists, automated ML (Au-
toML) has received an increasing interest. The reason is the result-
ing ability of organizations to automate the mundane and create
business solutions to solve real world problems. However, FE re-
mains a significant bottleneck in the data science workflow due to
the combinatorial nature of the search space. Initially, this space is
given by the following equation:

𝐷𝑜𝑚𝐹 =

𝑝⋃
𝑖=1

{{ ⋃
1≤𝑠1≤ ..≤𝑠𝑖≤𝑝

{(𝑓𝑠1 , .., 𝑓𝑠𝑖)}
}
× 𝑡𝑖

}
, (1)

where 𝑝 is the number of features and 𝑡𝑖 ⊆ T is the set of 𝑖-
ary functions. The number of elements in this space is: |𝐷𝑜𝑚𝐹 | =∑𝑝
𝑖=1 (𝐴

𝑝

𝑖
× |𝑡𝑖 |), where 𝐴𝑝𝑖 is the 𝑖-permutation of 𝑝 features.

This space grows exponentially even with a limited number of
transformations, hence an exhaustive search is not feasible. In ad-
dition, FE necessitates extensive domain knowledge. Transforming
raw data into meaningful features often requires deep insights into
the domain from which the data originates. It is even more chal-
lenging with diverse data sources requiring to wisely identify and
execute relevant joins and aggregates to select the best features.
This tedious task requires up to 80% of the data scientist’s total time,
as reported in the State of Data Science Report1. Moreover, feature
interpretability remains an open challenge in AI. ML models are
only as interpretable as their features [14]. However, existing Aut-
oFE approaches often struggle to generate interpretable features.

Consequently, automating FE is becoming increasingly attrac-
tive as it may reduce data scientists workload significantly so they
can make quick decisions with lower costs. This resulted in vari-
ous approaches. The first one generates a large number of features
1https://www.anaconda.com/state-of-data-science-report-2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Mohamed Bouadi

followed by pruning and selection [10, 13]. However, these tech-
niques suffer from performance bottleneck due to the large number
of candidates. Another approach evaluates the usefulness of each
feature through training and evaluation [7, 9]. While conceptually
promising, these approaches are slower due to extensive model
training and fail to address the problem of feature interpretability.

In order to address the aforementioned challenges, we propose
the following research directions:

• We study features properties and propose a metric to evalu-
ate feature interpretability using a Description Logics-based
reasoner (DL) over a KG, that captures domain knowledge.

• To addresses the limitations of traditional feature-based
representations in neural networks, which lack semantics
and domain knowledge, we propose a new semantic vec-
torization technique to represent the input features with a
feature vector based on the semantics embedded in KG [6].

• We propose KRAFT, a knowledge-driven solution that takes
advantage of the semantics embedded in the domain knowl-
edge to automatically engineer interpretable features using
a Deep Reinforcement Learning agent (DRL).

• We combine the capabilities of LLMs with knowledge-based
reasoning techniques to automate the process of FE.

2 BACKGROUND
2.1 Feature Interpretability
ML models need to learn from good data. Even simple and inter-
pretable models, like regression, become difficult to understand
with non-interpretable features. However, there is no consensus
regarding the definition of interpretability in ML and how to evalu-
ate it. It usually refers to the "ability to present in understandable
terms to a human". In our research, we are focusing on feature
interpretability for domain experts by capturing the connections
between features semantics and domain knowledge. To this end,
we propose the following definition:

Definition 2.1. (Feature Interpretability). We define feature inter-
pretability as the ability of domain experts to understand a feature
and relating it to relevant concepts within their domain knowledge.
This implies mapping every new feature to relevant intensional
and extensional knowledge within the domain of interest.

Consequently, interpretable features should be humanly-readable
and refer to real-world entities that domain experts can understand
and reason about.

2.2 Feature Engineering
Consider a predictive problem on a tabular dataset 𝐷 = (𝑋,𝑌)
consisting of: (i) a set of features 𝑋 = {𝑥1, .., 𝑥𝑝 } ∈ R𝑛×𝑝 , where 𝑛
is the number of instances and 𝑝 is the number of features; (ii) an
applicable ML algorithm, 𝐿, (e.g. Random Forest); (iii) a correspond-
ing cross-validation performance measure P (e.g. F1-score); and (iv)
an interpretability function, 𝐼𝐾𝐺 : 𝐷𝑜𝑚𝐹 → {0, 1}, where 𝐷𝑜𝑚𝐹 is
the set of all possible features, that returns 1 if the feature is inter-
pretable and 0 otherwise. We define a FE pipeline T = {𝑡1, ..., 𝑡𝑚}
as an ordered sequence of𝑚 transformations applied to 𝑋 . The set
of generated features from 𝑋 using T is denoted as 𝑋T .

The goal of AutoFE is to find the optimal FE pipeline, T , that
generates 𝑋T which maximizes the performance P(𝐿(𝑋T , 𝑌)) for
a given algorithm 𝐿 and a metric P, as shown in Equation 2:

T = argmax
T

P(L(X̂T , Y))

𝑠 .𝑡 .∏
x̂i∈X̂T

IKG (x̂i) = 1, IKG (x̂i) ∈ {0, 1},∀𝑥𝑖 ∈ 𝑋T

(2)

3 PROPOSED SOLUTIONS
In this section, we present our proposed solutions. The first one,
KRAFT2[4, 5], leverages a KG to guide the generation of inter-
pretable features through DRL. The second, ReaGen3, combines
LLMs with KGs to produce interpretable features. In addition, we
recently proposed an interactive system that allows users to gener-
ate meaningful features, using different AutoFE approaches, and
evaluate their efficiency and interpretability.

3.1 KRAFT

Figure 2: An overview of KRAFT architecture.

Kraft consists of two parts: a Generator and a Knowledge-based
Discriminator, as illustrated in Figure 2.

3.1.1 Generator. We consider FE on a dataset 𝐷 as a Markovian
Decision Process [3]. At each step 𝑡 , a state 𝑠𝑡 ∈ 𝑆 represents
the current dataset. The set of actions, 𝐴, corresponds to the set
of transformations T . The reward is the average performance
gained from the previous step on a k-fold cross validation, i.e.,
𝑟𝑖 = P(𝐿(𝑋𝑖 , 𝑌)) − P(𝐿(𝑋𝑖−1, 𝑌)).

The generator is modeled by a policy network 𝜋 : 𝑆 → 𝑄 (𝐴),
where 𝑄 is the expected cumulative reward estimated by the agent.
The goal is to obtain the best sequence of𝑚 transformations. We
used 2 instances of a fully-connected multi-layer neural network to
approximate the Q-function: (i) The main neural network𝑄 (𝑠, 𝑎;𝜃𝑖)
to estimate the cumulative reward for each possible action; (ii) The
target network, 𝑄̂ (𝑠′, 𝑎′;𝜃𝑖) with delayed updates. A Q-learning

2Leveraging Knowlegde Graphs for Interpretable Feature Generation
3Synergizing Large Language Models and Knowledge-based Reasoning for interpret-
bale Feature Generation

Interpretable Feature Engineering for Structured Data

Figure 3: An overview of ReaGen architecture.

update at iteration 𝑖 is defined as the loss function:

𝐿𝑖 (𝜃𝑖) = E(𝑠,𝑎,𝑟,𝑠′)∼𝑈 (𝐷)

[(
𝑟 + 𝛾 max

𝑎′
𝑄̂ (𝑠′, 𝑎′;𝜃𝑖) −𝑄 (𝑠, 𝑎;𝜃𝑖)

)2]
(3)

Basically, at each step of the training, and iteratively until con-
vergence, the agent receives the current state and feed it to the
neural network. This latter calculates an intermediate reward for
each possible action and selects the one that maximizes the long
term reward and this action is used to generate new features.

3.1.2 Knowledge-based Discriminator. The discriminator is a rea-
soning algorithm used to discard non-interpretable features. We
used HermiT [12], a reasoner for the DL syntax, to infer new knowl-
edge based on the logical relationships of the KG. To decide if a
feature 𝑥 ∈ 𝑋T with unit 𝑢 is interpretable, the discriminator con-
siders 𝑥 as a DL concept and performs a subsumption reasoning.
First, it checks if 𝑥 can be subsumed from the class non-interpretable,
i.e., 𝐾𝐵 |= 𝑥 ⊏ non-interpretable (Figure 2.4). In this case, 𝑥 would
be removed. However, if we do not have enough information about
the feature, the discriminator uses the knowledge about its unit.
To this end, it performs instance checking (𝐾𝐵 |= 𝑈𝑛𝑖𝑡𝑠 (𝑢)), as
shown in Figure 2.5. If the unit is unknown, 𝑥 would be considered
non-interpretable. In this way, the discriminator discards all non-
interpretable features and ensures that the selected features and
transformations are understandable to domain experts.

3.2 ReaGen
As shown in Figure 3, ReaGen takes a dataset along with its descrip-
tion as inputs. Initially, it leverages external knowledge (e.g., KG,
Ontologies) to extract additional information and entities (Figure
3.a). Based on a predefined template, ReaGen generates a prompt
that is used to iteratively generate new features (Figure 3.b). Each
iteration begins with the generation of new features using multiple
LLMs as illustrated in Figure 3.c. The LLMs also provide explana-
tions that justify the utility of each feature. These explanations
are crucial for assessing the interpretability and relevance of the
generated features. To filter out non-interpretable features, ReaGen
employs the discriminator from our previous solution, KRAFT, that
ensures the generated features and transformations used are un-
derstandable to users (Figure 3.d). Once interpretable features are
obtained, they are evaluated using cross-validation metrics. If the
performance metrics improve compared to the previous iteration,

the new features are retained as shown in Figure 3.e.. This itera-
tive approach allows ReaGen to refine the generated features and
enhance the performance of the augmented dataset.

3.3 DANTE

Figure 4: An overview of DANTE architecture.

DANTE, shown in Figure 4, comprises four main modules: (1)
AutoFE, (2) Manual FE, (3) Evaluation, and (4) the Graphical User
Interface (GUI). AutoFE module enables users to automatically
handle missing values and categorical features. In addition, it fa-
cilitates automatic generation of interpretable features via our ap-
proach KRAFT. It also integrates other AutoFE techniques, like
FeatureTools [10], in order to offer flexibility and alternative FE
strategies to the user. Manual FE module offers an interactive
FE environment where users manually select the transformations
to be applied on features to generate new ones. The Evaluation
module adds a performance assessment layer to the system. It lets
the users select from a list of SOTAML models and cross-validation
metrics for model evaluation. Users can explore the results through
different types of graphs and tables. Finally, the GUI provides a
user-friendly platform for interacting with the system. Users can
upload their own datasets or select from available ones, choose an
ML model and performance metric, and select a FE method.

4 EMPIRICAL EVALUATION
We now present some results of our experimental evaluation of
KRAFT and ReaGen. We used several public datasets to compare
our methods with SOTA approaches of AutoFE. Due to space con-
straints, Figure 5a presents the F1-score comparison between our

(a) KRAFT versus baselines. (b) ReaGen versus baselines.

Figure 5: Overview of evaluation results: (a) Avg. F1_Score of
KRAFT; (b) Avg. RAE of ReaGen across all datasets.

Mohamed Bouadi

Amazon Employee Home Credit

Higgs Boson NYC Taxi Ride

Figure 6: Feature importance of raw features (in orange) and
generated features with KRAFT (in blue).

KRAFT and SOTA approaches for classification tasks, while Fig-
ure 5b illustrates the Relative Absolute Error (RAE) comparison of
ReaGen with SOTA approacges for regression tasks. Our exper-
iments showed that both KRAFT and ReaGen outperformed the
SOTA AutoFE across all datasets.

Additionally, in Figure 6, we show the contribution of KRAFT -
generated features (blue) compared to raw features (orange) to the
final prediction across 4 datasets, using SHAP (SHapley Additive
Explanations) [11], a model-agnostic interpretability approach. We
created a new dataset by combining the 𝑛 raw features with the
top-ranked 𝑛 features generated by KRAFT and used SHAP to score
the feature contributions. Notably, KRAFT -generated features are
consistently more important than raw features across all datasets,
offering insights into the model’s global behavior, making it more
transparent and trustworthy for users.

5 ONGOINGWORK AND CONCLUSION
In this paper, we introduce our solutions to tackle the problem of
engineering interpretable features for structured data. The first
solution, KRAFT [4, 5], is based on two components: a DRL agent
to generate new features and a human-like reasoner that uses a KG
to filter out non-interpretable features. The second one, ReaGen,
combines the use of LLMs with a knowledge-based reasoner to au-
tomate FE. By incorporating external knowledge, ReaGen enhances
the factual accuracy and grounding on LLMs, thereby reducing the
occurrence of hallucinated thoughts. Finally, we present DANTE, an
interactive system that demonstrates the practical utility of KRAFT
allowing users to generate new features as well as to evaluate their
efficiency and interpretability without any code. Extensive experi-
ments on large scale datasets are conducted, which show that our
methods can provide competitive performance and guarantee the
interpretability of the generated features.

In this Ph.D. work, we aim to bridge the gap between ML and
symbolic AI, highlighting the importance of incorporating domain
knowledge and context-aware solutions in AutoML tools. The on-
going work and future research directions include the following:

(1) KRAFT uses a binary interpretability function using DL.
In future work, we aspire to investigate the use of other
symbolic AI approaches to go towards a flexible graduated
framework of interpretability evaluation, such as Proba-
bilistic Logics and Fuzzy sets [8].

(2) Design more customized metrics to evaluate different as-
pects of feature interpretability, taking into consideration
the profile of users.

(3) Develop more customized architectures for FE. An interest-
ing candidate would be to replace the DRL agent with trans-
formers architecture. These models have shown impressive
results in encoding contextual information and capturing
dependencies between different parts of a sequence.

(4) Build a foundation model specialized in context-aware fea-
ture generation for tabular data, and foresee the potential of
LLMs to automate other steps in the data science workflow,
such as model selection for tabular data.

REFERENCES
[1] Sihem Amer-Yahia, Reynold Cheng, Mohamed Bouadi, Abdelouahab Chibah,

Mohammadreza Esfandiari, Jiangping Zhou, Nan Zhang, Eric Lau, Yuguo Li,
Xiaolin Han, et al. 2020. An ML-Powered Human Behavior Management System.
Bulletin of the Technical Committee on Data Engineering 43, 3 (2020), 53–64.

[2] Idir Benouaret, Mohamed Bouadi, and Sihem Amer-Yahia. 2021. Multi-Objective
Recommendations and Promotions at TOTAL. In Database and Expert Systems
Applications: 32nd International Conference, DEXA 2021, Virtual Event, September
27–30, 2021, Proceedings, Part II 32. Springer, 270–282.

[3] Mohamed Bouadi and Arta Alavi. 2023. Automated feature engineering for pre-
dictive modeling using deep reinforcement learning. US Patent App. 17/694,288.

[4] Mohamed Bouadi, Arta Alavi, Salima Benbernou, and Mourad Ouziri. 2024.
Leveraging Knowlegde Graphs for Interpretable Feature Generation. arXiv
preprint arXiv:2406.00544 (2024).

[5] Mohamed Bouadi, Arta Alavi, Salima Benbernou, and Mourad Ouziri. 2024.
Ontology-based framework for interpretable feature engineering. US Patent
App. 18/178,768.

[6] Mohamed Bouadi, Arta Alavi, Salima Benbernou, and Mourad Ouziri. 2024.
Semantic vectorization for feature engineering. US Patent App. 18/168,982.

[7] Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong
Xu, Yingnong Dang, Kaixin Sui, Xu Zhang, Bo Qiao, et al. 2019. Neural feature
search: A neural architecture for automated feature engineering. In 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 71–80.

[8] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, and Lutz Schröder.
2017. Probabilistic description logics for subjective uncertainty. Journal of
Artificial Intelligence Research 58 (2017), 1–66.

[9] Yiran Huang, Yexu Zhou, Michael Hefenbrock, Till Riedel, Likun Fang, and
Michael Beigl. 2022. Automatic Feature Engineering Through Monte Carlo
Tree Search. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 581–598.

[10] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, 1–10.

[11] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017).

[12] Robert DC Shearer, Boris Motik, and Ian Horrocks. 2008. Hermit: A highly-
efficient OWL reasoner.. In Owled, Vol. 432. 91.

[13] Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu,
Qian Liu, Wei Cao, and Li Jian. 2023. Openfe: Automated feature generation
with expert-level performance. In International Conference on Machine Learning.
PMLR, 41880–41901.

[14] Alexandra Zytek, Ignacio Arnaldo, Dongyu Liu, Laure Berti-Equille, and Kalyan
Veeramachaneni. 2022. The need for interpretable features: motivation and
taxonomy. ACM SIGKDD Explorations Newsletter 24, 1 (2022), 1–13.

	Abstract
	1 Introduction
	2 Background
	2.1 Feature Interpretability
	2.2 Feature Engineering

	3 Proposed Solutions
	3.1 KRAFT
	3.2 ReaGen
	3.3 DANTE

	4 Empirical Evaluation
	5 Ongoing Work and Conclusion
	References

