
Parallel Algorithms Can Be Provably Fast and Scalable
Xiaojun Dong

xdong038@ucr.edu

University of California, Riverside

Riverside, CA, USA

Supervised by Yan Gu and Yihan Sun

Abstract

As multi-core processors become more widely available, parallel

computing has entered its prime era. Despite significant advances

in hardware and extensive theoretical research, there remains a

noticeable gap between theory and practice. Many theoretically

efficient parallel algorithms, although optimal in theory, are often

outperformed by less theoretically rigorous alternatives in practical

applications. Conversely, algorithms that excel in real-world sce-

narios frequently lack a solid theoretical foundation. Our research

aims to bridge this divide by redesigning existing algorithms to

achieve both theoretical efficiency and practical performance. Our

new algorithms demonstrate not only strong theoretical guaran-

tees but also excellent scalability across diverse input sizes, dataset

types, and number of processors, making them robust and versatile

for real-world applications.

Keywords

Parallel Algorithms, Graph Algorithms, Sorting Algorithms, Edit

Distance

VLDBWorkshop Reference Format:

Xiaojun Dong. Parallel Algorithms Can Be Provably Fast and Scalable.

VLDB 2024 Workshop: VLDB Ph.D. Workshop.

VLDBWorkshop Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/ucrparlay.

1 Introduction

In this paper, we will discuss our recent work [4–10, 18, 19] in two

key areas: large-scale graph processing and fundamental building

blocks. As real-world graphs continue to expand, efficient process-

ing and the ability to address a wide range of queries have become

increasingly critical. Our research tackles these challenges by de-

veloping advanced techniques and algorithms that enhance both

the theoretical foundations and practical performance of graph pro-

cessing. However, many parallel primitives are not as optimized as

their sequential counterparts available in standard libraries, which

limits the overall performance of many parallel applications. To ad-

dress this issue, we also focus on improving the efficiency of these

building blocks. Our work is summarized in Fig. 1. Due to space

limit, we illustrate our techniques with a key example algorithm

from each category to convey the high-level ideas of our approach.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Parallel
Algorithms

Large-Scale Graph
Processing

Fundamental
Building Blocks

Single-Source Shortest Paths [DGSZ21]

Biconnected Components [DWGS23] 🏆

Strongly Connected Components [WDGS23]

Semisort and Related Problems [DWW+23]

Edit Distance [DDG+23] 🏆

Integer Sort [DDGS24]
Goal: provide provably fast
primitives for parallel computing

Goal: design theoretically and
practically efficient solutions for
billion to trillion-scale in-memory
graph processing

🏆: Best Paper Awards

Graph Containers Benchmark [WDS+24]

Dendrogram Computation [DDGG24]

Figure 1: Overview of Our Work.

2 Large-Scale Parallel Graph Processing

Parallel graph processing has great significance, given its capability

to handle massive datasets (up to trillion-edge graphs) efficiently.

Our research in this domain is dedicated to providing state-of-the-

art solutions for connectivity-related problems. Notably, our work

has closed the longstanding performance gap between small- and

large-diameter graphs across many problems. Despite large-diameter

graphs are much harder to be processed due to low parallelism and

long dependency chains, we overcome these challenges by trading

off work and parallelism. Our techniques use a small constant factor

more work to reduce the length of dependency chains. Due to low

parallelism in the previous design, the increase of work will only

saturate all processors but not increasing the overall running time.

In this section, we will elaborate our work on parallel biconnec-

tivity [9], which is the first theoretically-efficient algorithm with

optimal work, span and extra space.

2.1 Problem Definition

Given an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and
𝑚 = |𝐸 | edges, a connected component (CC) is a maximal subset

in 𝑉 such that every two vertices in it are connected by a path. A

biconnected component (BCC) (or blocks) is a maximal subset𝐶 ⊆
𝑉 such that 𝐶 is connected and remains connected after removing

any vertex 𝑣 ∈ 𝐶 .
Many existing BCC algorithms use the skeleton-connectivity

framework, which first generates a skeleton as an auxiliary graph

𝐺 ′ from 𝐺 , and then finds the CCs on 𝐺 ′ that reflect BCCs of the
input graph𝐺 . The sequential Hopcroft-Tarjan algorithm [11] com-

putes BCC in𝑂 (𝑛 +𝑚) work by maintaining an implicit depth-first

search (DFS) skeleton, but DFS is considered hard to be parallelized.

The Tarjan-Vishkin [17] algorithm has 𝑂 (𝑛 + 𝑚) optimal work

and polylogarithmic span by using an arbitrary spanning tree

(AST). Although Tarjan-Vishkin is optimal in work and span, it is

space-inefficient (𝑂 (𝑚) extra space instead of 𝑂 (𝑛)). In practice,

existing implementations [2, 3, 16] overcome the space issue by

1

https://github.com/ucrparlay
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Figure 2: The outline of the FAST-BCC algorithm and a running example. The four steps are explained in detail in Sec. 2.2.

Ours GBBS SM'14 SEQ Ours GBBS SM'14 SEQ

So
cia

l

YT 5.88 4.36 3.15 1.00

K-
NN

HH5 7.01 1.14 n 1.00
OK 30.51 19.91 5.66 1.00 CH5 4.11 0.37 n 1.00
LJ 17.92 11.77 n 1.00 GL2 6.24 1.64 n 1.00

TW 34.21 17.42 2.40 1.00 GL5 8.53 1.44 n 1.00
FT 39.26 18.93 10.22 1.00 GL10 10.59 4.31 n 1.00

MEAN 21.23 12.75 4.57 1.00 GL15 11.88 5.91 n 1.00

W
eb

GG 8.92 5.65 n 1.00 GL20 11.84 6.88 n 1.00
SD 29.74 16.46 n 1.00 COS5 14.16 6.86 n 1.00
CW 30.37 17.52 n 1.00 MEAN 8.68 2.42 - 1.00

HL14 32.46 19.96 n 1.00

Sy
nt

he
tic

SQR 18.50 1.59 10.56 1.00
HL12 33.99 29.15 n 1.00 REC 12.48 0.36 3.02 1.00

MEAN 24.53 15.68 - 1.00 SQR' 8.06 0.85 n 1.00

Ro
ad

CA 5.15 0.55 n 1.00 REC' 7.81 0.48 n 1.00
USA 6.69 0.49 0.60 1.00 Chn7 11.97 0.04 0.08 1.00
GE 10.77 1.43 2.44 1.00 Chn8 11.97 0.04 0.06 1.00

MEAN 7.18 0.73 1.21 1.00 MEAN 11.30 0.27 0.18 1.00
TOTAL MEAN 12.89 2.50 0.96 1.00

10 .5 2 4 8 16 32 >32
MEAN = geometric mean
n = no support

Figure 3: The heatmap of relative speedup for parallel BCC algo-

rithms over the sequential Hopcroft-Tarjan algorithm [11] using

96 cores (192 hyper-threads). Larger/green means better. The num-

bers indicate how many times a parallel algorithm is faster than

sequential Hopcroft-Tarjan (< 1 means slower). The two baseline

algorithms are from [3, 16].

using breadth-first search (BFS) skeletons. These algorithms are fast

on low-diameter graphs, but can be even slower than the sequential

implementation (see Fig. 3) on large-diameter graphs because BFS

has span proportional to the graph diameters.

We give the first space-efficient (𝑂 (𝑛) auxiliary space) paral-
lel BCC algorithm that has efficient𝑂 (𝑚+𝑛) work and polylog-

arithmic span. Unlike Tarjan-Vishkin, our 𝐺 ′ is a subgraph of 𝐺

and can be maintained implicitly in𝑂 (𝑛) auxiliary space. We imple-

ment FAST-BCC and compare it to existing parallel BCC implemen-

tations [3, 16] and our sequential Hopcroft-Tarjan implementation.

On all graphs, FAST-BCC is faster than all baselines.

2.2 The FAST-BCC Algorithm

Our FAST-BCC algorithm has four steps: First-CC (generate span-

ning trees), Rooting (root the spanning trees using ETT), Tagging

(compute tags for each vertex), and Last-CC (run CC on the skeleton

and post-processing).

First-CC (Step 1 in Fig. 2, line 1 in Alg. 1). This step finds all

CCs in 𝐺 and generates a spanning forest 𝐹 of 𝐺 . For simplicity,

Algorithm 1: The FAST-BCC algorithm

Input: An undirected graph𝐺 = (𝑉 , 𝐸)
Output: The labels 𝑙 [·] for vertices, and the component head for each BCC

1 Compute the spanning forest 𝐹 of𝐺 ⊲ First CC

2 Root all trees in 𝐹 using the Euler tour technique ⊲ Rooting

3 Compute tags (e.g., low, high) of each vertex based on the Euler tour ⊲

Tagging

4 Compute the vertex label 𝑙 [·] using connectivity on𝐺 with edges

satisfying InSkeleton(𝑢, 𝑣) = true ⊲ Last CC

5 ParallelForEach 𝑢 ∈ 𝑉 with 𝑙 [𝑢] ≠ 𝑙 [𝑝 (𝑢)]
6 Set the component head of 𝑙 [𝑢] as 𝑝 (𝑢)

7 Function InSkeleton(𝑢, 𝑣) ⊲ Decide if 𝑢–𝑣 is in skeleton𝐺 ′

8 if (𝑢, 𝑣) is a tree edge then
9 return ¬ Fence(𝑢, 𝑣) and ¬ Fence(𝑣,𝑢)

10 else return ¬ Back(𝑢, 𝑣) and ¬ Back(𝑣,𝑢)

11 Function Fence(𝑢, 𝑣) ⊲ Decide if tree edge is fence edge

12 return first [𝑢] ≤ low [𝑣] and last [𝑢] ≥ high[𝑣]
13 Function Back(𝑢, 𝑣) ⊲ Decide if non-tree edge is back edge

14 return first [𝑢] ≤ first [𝑣] and last [𝑢] ≥ first [𝑣]

in the following, we focus on one CC and its spanning tree 𝑇 . If 𝐺

contains multiple CCs, they are simply processed in parallel.

Rooting (Step 2 in Fig. 2, line 2 in Alg. 1). We use the Euler

tour technique (ETT) in [11] to root 𝑇 , which implies the tree edge

directions (Fig. 2, Step 2).

Tagging (Step 3 in Fig. 2, line 3 in Alg. 1). This step generates the

tags used in the algorithm, including𝑤1 [·],𝑤2 [·], low [·], high[·],
first [·], last [·], and the parent array 𝑝 [·]. low [·] and high[·] values
are computed by looping over all edges and getting arrays𝑤1 and

𝑤2, and applying 𝑛 1D range-minimum queries (RMQ). These tags

will help to decide the four edge types (see details below).

Last-CC (Step 4 in Fig. 2, line 4–6 in Alg. 1). Our skeleton graph

𝐺 ′ contains plain tree edges and cross edges. To achieve space

efficiency, we do not explicitly store 𝐺 ′. Since 𝐺 ′ is a subgraph

of 𝐺 , we can directly use 𝐺 but skip the fence edges and back

edges, which can be determined using the tags generated in Step 3

(line 7–14). Then we compute the CCs on the skeleton 𝐺 ′ (line 4),
which assigns a label 𝑙 [𝑣] to each vertex (Fig. 2, Step 4.1). We then

assign the head to each CC (lines 5 and 6) by looping over all fence

edges (Fig. 2, Step 4.2). For a fence edge 𝑢–𝑝 (𝑢), if 𝑢 and 𝑝 (𝑢) have
different labels (line 5), we assign 𝑝 (𝑢) as the component head of

𝑢’s CC in 𝐺 ′. This step also only requires 𝑂 (𝑛) auxiliary space,

which is needed by running CC on 𝐺 but skip certain edges.

Correctness and Cost Bounds. For space limit, we only present

Thm. 2.1. The full analysis is available in the full version.

Theorem 2.1. Alg. 1 computes the BCCs of a graph 𝐺 with 𝑛

vertices and𝑚 edges using 𝑂 (𝑛 +𝑚) expected work, 𝑂 (log3 𝑛) span
whp, and 𝑂 (𝑛) auxiliary space (other than the input).

3 Fundamental Building Blocks

Despite modern code libraries (e.g., Boost and Abseil) are usually

integrated with fundamental algorithms, their parallel counterparts

do not exist or are often not as well-optimized as the sequential

ones. Our work in this domain aims to provide efficient building

blocks for parallel computing, both in theory and practice. Many of

my works are fundamental primitives that can be used in by a wide

range of algorithms or applications.

In this section, we will elaborate my work on parallel edit dis-

tance [5]. Our implementations can process billion-scale strings

with small edits in a few seconds.

3.1 Problem Definition

Given two strings 𝐴[1..𝑛] and 𝐵 [1..𝑚] over an alphabet Σ and a

set of operations allowed to edit the strings, the edit distance

between𝐴 and 𝐵 is the minimum number of operations required to

transform 𝐴 into 𝐵. WLOG, we assume𝑚 ≤ 𝑛. We use 𝑘 to denote

the edit distance for strings 𝐴 and 𝐵 throughout this paper. One

useful observation is that, in real-world applications, the strings to

be compared are usually reasonably similar, resulting in a relatively

small edit distance. We say an edit distance algorithm is output-

sensitive if the work is 𝑜 (𝑛𝑚) when 𝑘 = 𝑜 (𝑛).
3.2 Our Algorithms

The classic dynamic programming (DP) algorithm solves edit dis-

tance by using the states𝐺 [𝑖, 𝑗] as the edit distance of transforming

𝐴[1..𝑖] to 𝐵 [1.. 𝑗]. 𝐺 [𝑖, 𝑗] can be computed as:

𝐺 [𝑖, 𝑗] =

max(𝑖, 𝑗), if 𝑖 = 0 or 𝑗 = 0

𝐺 [𝑖 − 1, 𝑗 − 1], if 𝐴[𝑖] = 𝐵 [𝑗] and 𝑖 > 0, 𝑗 > 0

1 +min(𝐺 [𝑖 − 1, 𝑗],𝐺 [𝑖 − 1, 𝑗 − 1],𝐺 [𝑖, 𝑗 − 1]), otherwise

We propose four algorithms (BFS-SA, BFS-Hash, BFS-B-Hash,

and DaC-SD) to efficiently compute edit distance in parallel.

Algorithm Work Span Space
∗

BFS-SA 𝑂 (𝑛 + 𝑘2) �̃� (𝑘) 𝑂 (𝑛)
BFS-Hash

∗ 𝑂 (𝑛 + 𝑘2 log𝑛) �̃� (𝑘) 𝑂 (𝑛)
BFS-B-Hash

∗ 𝑂 (𝑛 + 𝑘2𝑏 log𝑛) �̃� (𝑘𝑏) 𝑂 (𝑛/𝑏 + 𝑘)
DaC-SD 𝑂 (𝑛𝑘 log𝑘) �̃� (1) 𝑂 (𝑛𝑘)

Table 1: Algorithms in this paper. 𝑘 is the edit distance. 𝑏 is the block

size.
∗
: Monte Carlo algorithms due to the use of hashing. “Space

∗
”

means auxiliary space used in addition to the input. Here we assume

constant alphabet size for BFS-SA.

BFS-based Algorithms Many existing output-sensitive algo-

rithms [13, 14] are based on breadth-first search (BFS). These algo-

rithms view the DP matrix for edit distance as a DAG, as shown

in Fig. 4. We use 𝑥 and 𝑦 to denote the row and column ids of the

cells in the DP matrix, respectively. Each state (cell) (𝑥,𝑦) has three
incoming edges from (𝑥 − 1, 𝑦), (𝑥,𝑦 − 1), and (𝑥 − 1, 𝑦 − 1) (if
they exist). The edge weight is 0 from (𝑥 − 1, 𝑦 − 1) to (𝑥,𝑦) when
𝐴[𝑥] = 𝐵 [𝑦], and 1 otherwise. Then edit distance is equivalent to

the shortest distance from (0, 0) to (𝑛,𝑚). Since the edge weights

𝑦 0 1 2 3 4 5 6

𝑥 ^ a b c a b a

0 ^

1 a

2 b

3 c

4 b

5 d

6 a

7 b

3 4 5 6

3 4 5

3 4

3 3

4 3

5 4 3

6 5 4 3

0

0

0

0

1

2

2

7 6 5 4 3 3

1

1 1

1 1

1 1

1 1

2 2

3

2

2

2 2

2 2

2 2

2

2

2 𝑥: row id 𝑦: column id

Frontier 0: f0[0]=3, the cell on diagonal 0 is (3,3)

Frontier 1: f1[-1]=4, f1[0]=4, f1[1]=4 [(4,3),(4,4),(4,5)]

Frontier 2: f2[-2]=4, f2[-1]=5, f2[0]=6, f2[1]=5, f2[2]=7

Frontier 3: f3[0]=3, the others are invalid

Diagonal 0
Diagonal 1 / −1
Diagonal 2 / −2

0 Frontier 0

1 Frontier 1

2 Frontier 2

3 Frontier 3

BFS Path (successful)

BFS Path (unsuccessful)

1 2 3 … Not explored

Figure 4: BFS-based edit distance on 𝐴[1..𝑛] and 𝐵 [1..𝑚]. 𝑓𝑡 [𝑖] is the
row-id of the last cell on diagonal 𝑖 with edit distance 𝑡 (frontier 𝑡),

representing cell (𝑓𝑡 [𝑖], 𝑓𝑡 [𝑖] − 𝑖) .

are 0 or 1, we can use a special BFS to compute the shortest distance.

In round 𝑡 , we process states with edit distance 𝑡 . The algorithm

terminates when we reach cell (𝑛,𝑚). Note that all states with

|𝑥 − 𝑦 | > 𝑘 will not be reached. Thus, this BFS will touch at most

𝑂 (𝑘𝑛) cells, leading to 𝑂 (𝑘𝑛) work.
Another key observation is that starting from any cell (𝑥,𝑦), if

there are diagonal edges with weight 0, we should always follow the

edges until a unit-weight edge is encountered. Namely, we should

always find the longest common prefix (LCP) from 𝐴[𝑥 + 1] and
𝐵 [𝑦 + 1], and skip to the cell at (𝑥 + 𝑝,𝑦 + 𝑝) with no edit, where

𝑝 is the LCP length. This idea is used in Landau and Vishkin [14]

on parallel approximate string matching, and we adapt this idea

to edit distance here. Using the modified parallel BFS algorithm by

Landau-Vishkin [14], only 𝑂 (𝑘2) states need to be processed—on

each diagonal and for each edit distance 𝑡 , only the last cell with 𝑡

edits needs to be processed. Hence, the BFS runs for 𝑘 rounds on

2𝑘 + 1 diagonals, which gives the 𝑂 (𝑘2) bound above.

Algorithm Based on Suffix Array (BFS-SA). Using the SA

algorithm in [12] and the LCP algorithm in [15] for Landau-Vishkin

gives 𝑂 (𝑛 + 𝑘2) work and �̃� (𝑘) span, where 𝑘 is the edit distance.

Algorithm Based on String Hashing (BFS-Hash). Although

BFS-SA is theoretically efficient with 𝑂 (𝑛) preprocessing work to

construct the SA, the hidden constant is large. For better perfor-

mance, we consider string hashing as an alternative for SA. A hash

function ℎ(·) maps any substring 𝐴[𝑙 ..𝑟] to a unique hash value,

which provides a fingerprint for this substring in the LCP query.

The high-level idea is to binary search the query length, using the

hash value as validation. We precompute the hash values for all

prefixes, i.e., 𝑇𝐴 [𝑥] = ℎ(𝐴[1..𝑥]) for the prefix substring 𝐴[1..𝑥]
(similarly for 𝐵). We can compute ℎ(𝐴[𝑙 ..𝑟]) by 𝑇𝐴 [𝑟] ⊖ 𝑇𝐴 [𝑙 − 1].
With the preprocessed hash values, we dual binary search the LCP

of 𝐴[𝑥 ..𝑛] and 𝐵 [𝑦..𝑚]. This indicates 𝑂 (log𝑛) work in total per

LCP query. Combining the preprocessing and query costs, BFS-

Hash computes the edit distance between two sequences of length

𝑛 and𝑚 ≤ 𝑛 in𝑂 (𝑛+𝑘2 log𝑛) work, �̃� (𝑘) span, and𝑂 (𝑛) auxiliary
space, where 𝑘 is the edit distance.

BFS-Hash is simple and easy to implement. However, BFS-SA

and BFS-Hash use 𝑂 (𝑛) extra space, and such space overhead may

be a concern in practice. Below we discuss how to make our edit

Algorithm 2: BFS-based parallel edit distance [14]

Input: Two sequences 𝐴[1..𝑛] and 𝐵 [1..𝑚].
Output: The edit distance between 𝐴 and 𝐵.

1 𝑓0 [0] ←LCP(𝐴[1..𝑛], 𝐵 [1..𝑚]) // Starting point

2 𝑡 ← 0

3 while 𝑓𝑡 [𝑛 −𝑚] ≠ 𝑛 do

4 𝑡 ← 𝑡 + 1
// Find new frontier for diagonal 𝑖

5 ParallelForEach −𝑡 ≤ 𝑖 ≤ 𝑡 do

6 𝑓𝑡 [𝑖] ← 𝑓𝑡−1 [𝑖] // Start from the last cell

7 foreach ⟨dx, dy⟩ ∈ {⟨0, 1⟩, ⟨1, 0⟩, ⟨1, 1⟩} do
// The previous cell is from diagonal 𝑗

// 𝑗 = (𝑥 − 𝑑𝑥) − (𝑦 − 𝑑𝑦) = 𝑖 − 𝑑𝑥 + 𝑑𝑦
8 𝑗 ← 𝑖 − 𝑑𝑥 + 𝑑𝑦
9 if | 𝑗 | ≤ 𝑡 − 1 then

10 The row id 𝑥 ← 𝑓𝑡−1 [𝑗] + 𝑑𝑥
11 The column id 𝑦 ← 𝑥 − 𝑖

// Skip the common prefix and keep the largest row id

12 𝑓𝑡 [𝑖] ← max(𝑓𝑡 [𝑖], 𝑥+LCP(𝐴[𝑥 + 1..𝑛], 𝐵 [𝑦 + 1..𝑚]))
13 return 𝑡

distance algorithms more space efficient.

Algorithm Based on Blocked-Hashing (BFS-B-Hash). Our

BFS-B-Hash algorithm can provide a more space-efficient solution

by trading off worst-case time. To achieve better space usage, we

divide the strings into blocks of size 𝑏, and we only store the hash

values for prefixes of the entire blocks ℎ(𝐴[1..𝑖𝑏]). Using this ap-
proach, we only need auxiliary space to store 𝑂 (𝑛/𝑏) hash values,

and thus we can control the space usage using the parameter 𝑏. To

compute these hash values, we will first compute the hash value

for each block, and run a parallel scan (prefix sum on ⊕) on the

hash values for all the blocks. Similarly, we refer to these arrays as

𝑇𝐴 [𝑖] = ℎ(𝐴[1..𝑖𝑏]) (and 𝑇𝐵 [𝑖] accordingly), and call them prefix

tables. In this way, we can plug the block hash values into the

dual binary search in BFS-Hash. In each step of dual binary search,

the concatenation of hash value can have at most 𝑏 steps. Thus,

BFS-B-Hash computes the edit distance between two sequences

of length 𝑛 and𝑚 ≤ 𝑛 in 𝑂 (𝑛 + 𝑘2 · 𝑏 log𝑛) work and �̃� (𝑘𝑏) span,
using 𝑂 (𝑛/𝑏 + 𝑘) auxiliary space, where 𝑘 is the edit distance.

The term 𝑘 in space usage is from the BFS (each frontier is at

most size 𝑂 (𝑘)). 𝑂 (𝑏 log𝑛) is the work for each LCP query. Note

that this is an upper bound—if the LCP length 𝐿 is small, the cost

can be significantly smaller (a tighter bound is 𝑂 (min(𝐿,𝑏 log𝐿))).
Divide-and-Conquer-based Algorithm. Our parallel output-

sensitive algorithm DaC-SD is inspired by the AALM algorithm [1],

and also uses it as a subroutine. Due to space limit, we only present

the theoretical analysis of our DaC-SD algorithm. More details are

provided in the full paper.

Theorem 3.1. The DaC-SD algorithm computes the edit distance

between two sequences of length 𝑛 and𝑚 ≤ 𝑛 in 𝑂 (𝑛𝑘 log𝑘) work
and 𝑂 (log𝑛 log3 𝑘) span, where 𝑘 is the edit distance.

4 Conclusion

In this paper, we discuss the theory and practice of many parallel

algorithms, including graph algorithms (e.g., single-source shortest

paths, connectivity, biconnectivity, strongly connected components,

and dendrogram) and some fundamental parallel primitives (e.g.,

semisort, integer sort, and edit distance). We developed new par-

allel algorithms that not only improve theoretical bounds but also

enhance practical performance. Additionally, we demonstrated that

some theoretically optimal algorithms can be implemented in a

manner that is practical and efficient.

For future work, we aim to develop a shared-memory parallel

graph database capable of handling trillion-scale input graphs and

supporting a wide range of queries. To achieve this, we plan to

design a dynamic container for maintaining input graphs and ex-

pand support for additional query types, such as 𝑘-core, 𝑘-truss,

and triangle counting, as found in existing graph databases.

References

[1] Alberto Apostolico, Mikhail J Atallah, Lawrence L Larmore, and Scott McFaddin.

1990. Efficient parallel algorithms for string editing and related problems. SIAM

J. on Computing 19, 5 (1990), 968–988.

[2] Guojing Cong and David Bader. 2005. An experimental study of parallel bicon-

nected components algorithms on symmetric multiprocessors (SMPs). In IEEE

International Parallel and Distributed Processing Symposium (IPDPS). IEEE.

[3] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically efficient

parallel graph algorithms can be fast and scalable. ACM Transactions on Parallel

Computing (TOPC) 8, 1 (2021), 1–70.

[4] Laxman Dhulipala, Xiaojun Dong, Kishen Gowda, and Yan Gu. 2024. Optimal

Parallel Algorithms for Dendrogram Computation and Single-Linkage Clustering.

In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

[5] XiangyunDing, Xiaojun Dong, Yan Gu, Yihan Sun, and Youzhe Liu. 2023. Efficient

Parallel Output-Sensitive Edit Distance. In European Symposium on Algorithms

(ESA).

[6] Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2024. Parallel Integer

Sort: Theory and Practice. InACM Symposium on Principles and Practice of Parallel

Programming (PPOPP).

[7] Xiaojun Dong, Yan Gu, Yihan Sun, and Letong Wang. 2024. Brief Announcement:

PASGAL: Parallel And Scalable Graph Algorithm Library. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA).

[8] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient Stepping

Algorithms and Implementations for Parallel Shortest Paths. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA). 184–197.

[9] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably Fast and

Space-Efficient Parallel Biconnectivity. In ACM Symposium on Principles and

Practice of Parallel Programming (PPOPP). 52–65.

[10] Xiaojun Dong, Yunshu Wu, Zhongqi Wang, Laxman Dhulipala, Yan Gu, and

Yihan Sun. 2023. High-Performance and Flexible Parallel Algorithms for Semisort

and Related Problems. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA).

[11] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient algorithms for

graph manipulation. Commun. ACM 16, 6 (1973), 372–378.

[12] Juha Kärkkäinen and Peter Sanders. 2003. Simple linear work suffix array

construction. In Intl. Colloq. on Automata, Languages and Programming (ICALP).

Springer, 943–955.

[13] Gad M Landau and Uzi Vishkin. 1988. Fast string matching with 𝑘 differences. J.

Computer and System Sciences 37, 1 (1988), 63–78.

[14] Gad M Landau and Uzi Vishkin. 1989. Fast parallel and serial approximate string

matching. J. Algorithms 10, 2 (1989), 157–169.

[15] Julian Shun. 2014. Fast parallel computation of longest common prefixes. In

International Conference for High Performance Computing, Networking, Storage,

and Analysis (SC). IEEE, 387–398.

[16] George Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity algo-

rithms for multicore platforms. In IEEE International Conference on High Perfor-

mance Computing (HiPC). IEEE, 1–10.

[17] Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity

algorithm. SIAM J. on Computing 14, 4 (1985), 862–874.

[18] Letong Wang, Xiaojun Dong, Yan Gu, and Yihan Sun. 2023. Parallel Strong Con-

nectivity Based on Faster Reachability. ACM SIGMOD International Conference

on Management of Data (SIGMOD) 1, 2 (2023), 1–29.

[19] Brian Wheatman, Xiaojun Dong, Zheqi Shen, Laxman Dhulipala, Jakub Łącki,

Prashant Pandey, and Helen Xu. 2024. BYO: A Unified Framework for Bench-

marking Large-Scale Graph Containers. In Proceedings of the VLDB Endowment

(PVLDB).

	Abstract
	1 Introduction
	2 Large-Scale Parallel Graph Processing
	2.1 Problem Definition
	2.2 The FAST-BCC Algorithm

	3 Fundamental Building Blocks
	3.1 Problem Definition
	3.2 Our Algorithms

	4 Conclusion
	References

