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ABSTRACT
The volume and velocity of streaming data are growing exponen-
tially, driven by advancements in sensor technologies and the in-
creasing presence of connected devices. This growth increases the
need for efficient data stream management systems. Over the past
decades, significant efforts have been made to develop methods
for efficient streaming data analytics. While scaling the network
resources horizontally and vertically is one approach, another is
to scale down the data using synopses. Synopses are a class of ap-
proximate data structures for stream summarization, which can
be used for aggregate queries. Examples of synopses include sam-
ples (e.g., with uniform or reservoir sampling), and sketches (e.g.,
Count-min and Bloom filters). During my PhD I will work on mak-
ing an efficient self-tuning data stream management system based
on synopses. These self-tuning systems should decrease the time-
consuming and complex process of selecting a set of synopses to
maintain. Towards this end I will: (a) study the state-of-the-art to
identify key gaps in the support for query types by synopses (b)
fill major gaps by designing new synopses and (c) develop a pol-
icy to continuously tune the optimal set of synopses. So far, my
contributions address two novel requirements, by supporting fre-
quency queries with arbitrary many predicates (OmniSketch) and
supporting spatial aggregate queries on arbitrary shapes in a grid
(SpatialSketch). This workshop will be an excellent opportunity to
discuss both the horizon of the proposed system and my planned
contributions in detail.

VLDBWorkshop Reference Format:
Wieger R. Punter. Towards Flexible Self-Tuning Data Stream Management
Systems. VLDB 2024 Workshop: VLDB Ph.D. Workshop.

1 INTRODUCTION
The volume and velocity of streaming data is experiencing unprece-
dented growth, driven by advancements in sensor technologies and
the increasing presence of connected devices. This growth goes
hand in hand with the need to process and analyze this streaming
data efficiently in real-time. In the past decades, there has been
a great effort in developing methods to allow efficient analytics
on streaming data. A popular approach is to scale the amount of
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resources in a network, horizontally and/or vertically. Complemen-
tary to this, it is also possible to scale down the data, by using
synopses [5, 9].

Synopses are small-space approximate data structures for stream
summarization that can subsequently be used to execute aggregate
queries. A controllable amount of error is introduced to allow space-
and time-efficient analytics. Examples of synopses are Reservoir
Sampling [18], Distinct Sampling [8] and sketching techniques as
the Bloom Filter [3], Count-min [6] and HyperLogLog [7].

Traditional synopses are typically constructed for answering a
single query type. For example, Bloom filters can answer member-
ship queries, whereas Count-min queries can answer frequency
queries. Therefore, use of synopses requires prior knowledge about
the (expected) future workload on the data stream. In the absence
of this knowledge (or limited knowledge), one needs to construct
and maintain many different synopses (e.g., as many as can fit in
the available RAM or can be processed at line speed) to support
a wide range of queries. Furthermore, the allocation of resources
to the synopses is also not trivial, as there is an inherent trade-off
between accuracy and efficiency for each synopsis. In general, the
more resources, e.g. storage, processing time, we allocate to the
synopses, the more accurate the query results.

For the practitioner, selecting the set of synopses to maintain is
therefore a time-consuming and challenging process. The learning
curve of mastering all synopses is steep, and even when you have
mastered it, balancing all trade-offs and selecting the set of synopses
takes time.

To address the challenge of selecting the set of synopses to main-
tain, lately we have witnessed the development of many general-use
synopses, such as the UnivMon [13] or Elastic sketch [19]. These
synopses can be used for answering many query types (e.g., esti-
mating many frequency-moments and heavy hitter queries) with
one synopsis. The benefit of these synopses is that the user can
select one synopsis for multiple purposes and spend all resources
on one structure. However, these general synopses are still not
general enough (i.e., many query types require their own synopses
and many others cannot even be answered with any synopsis).

There is therefore a need for designing general-use synopses
that can be used for answering many query types, as well as data
stream management systems that can automatically choose the set
of synopses to maintain. My PhD work will focus on addressing
these gaps by (1) identifying key gaps in the support for query types
by synopses, (2) filling the defined gaps for missing query types
and (3) designing selection policies for the set of synopses, to allow
self-tuning systems. The results will also be useful outside of data
stream management systems, for single applications.

My first two works have contributed to this by significantly
reducing the amount of synopses needed to support the following
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query types: frequency queries with multiple predicates and spatial
aggregations on arbitrary shapes. For both, the complexity of the
problem lies in that it should be possible to specify the predicates
and the arbitrary shapes at query time.

Roadmap. The remainder of this document is structured as fol-
lows. In Section 2, a brief background on mentioned synopses is
provided. Section 3 discusses my current contributions in more
detail. The envisioned system is presented in Section 4. Finally, my
research plan is presented in Section 5.

2 RELATEDWORK
This section covers a selection of synopses that are mentioned in the
rest of this document. It also highlights sketches that answer multi-
ple query types with one sketch. A thorough survey of synopses
can be found in [5].

Synopses are small-space approximate data structures for stream
summarization that can subsequently be used to execute aggregate
queries. They can be categorized in Histograms, Wavelets, Samples
and Sketches. We focus on the latter two. In general, samples are
data structures that often support more than one query type, while
sketches aremore specific [5]. Sketches perform better than samples
on some query types as distinct count and join size estimation, and
are also more robust against deletes in the stream [5]. We will now
briefly discuss some widely-used sampling and sketching methods
and their purpose.

Reservoir sampling [18] is a uniform samplingmethod for streams.
It is constant in memory-usage and can be used for multiple queries,
such as selectivity. Distinct sampling [8] can be used to estimate the
number of distinct elements. Min-wise hashing [2, 16] is a method
to estimate the cardinality of the intersection of multiple sets, based
on a summary that is computed independently for each set.

The Count-min sketch [6] summarizes the distribution of data
streams and support frequency and inner product queries. Bloom Fil-
ters [3] support membership queries. The HyperLogLog sketch [7]
supports distinct count. Misra-Gries answers heavy hitter queries.
Recently, sketches were developed to answer multiple query types
with one synopses. Examples are UnivMon [13], elastic sketch [19]
and Panakos [20]. These sketches usually focus on estimating mul-
tiple frequency moments and heavy hitter queries.

3 CURRENT RESULTS
I started my PhD in December 2022. My focus up to now was on
understanding the key functionality of synopses, and designing
synopses for addressing specific requirements. This section covers
my contributions so far. The OmniSketch is published in VLDB 2024
[17]. I also contributed to the SpatialSketch [12], which is under
submission.

3.1 Omnisketch
My first work, OmniSketch [17], can efficiently answer frequency
queries with an arbitrary number of predicates.

SELECT COUNT (*) FROM stream
WHERE attr1 = x AND attr2 > y AND ... attrA < z

At query time, the user can specify the subset of attributes in
the stream they wish to filter, and the specific predicate values.
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Figure 1: OmniSketch Data Structure

Existing methods, [4, 6, 19], either require knowing the subsets of
attributes in advance and building a synopsis for each combination
(inflexible), or maintaining a synopsis for all possible subsets, which
scales exponentially with the number of attributes in the stream
(inefficient). Hydra, a sketch developed by Manousis et al. [14] is
a single synopses that can answer this query type, even though
it is not specifically designed for it. However, it only shifts the
exponential factor from the number of synopses to the insertion
time and accuracy. When dealing with high-velocity streams, this
remains too inefficient. Therefore, we developed the OmniSketch,
for which the space and insertion time requirements scales linearly
with the amount of attributes in the stream, instead of exponentially.
This comes at the cost of a small but manageable increase in the
query time.

Data Structure. The data structure of the sketch is shown in Fig-
ure 1 for an example stream of form (𝑟𝑖𝑑, 𝑖𝑝𝑆𝑟𝑐, 𝑖𝑝𝐷𝑒𝑠𝑡, 𝑡𝑜𝑡𝑎𝑙𝐿𝑒𝑛, 𝑑𝑠𝑐𝑝).
We maintain an attribute sketch per attribute that is similar to
the Count-min sketch. Every attribute sketch contains 𝑑 rows
and 𝑤 columns. In each cell of the sketch, the min-wise sample
method described by Pagh et al. in 2014 [16] is maintained. The
records are inserted to each of the |𝐴| attribute sketches. As ex-
ample, at the attribute sketch for 𝑖𝑝𝑆𝑟𝑐 , 𝑑 hash functions of form
ℎ 𝑗 (𝑟𝑖𝑝𝑆𝑟𝑐 )− > [1 . . .𝑤] are executed to find the corresponding cells
at each row 𝑗 . At each corresponding cell, the 𝑟𝑖𝑑 is inserted into the
min-wise sample. At query time, the corresponding cells are found
by hashing the predicate values at the relevant attribute sketches.
The intersection size of all samples is computed and used to scale
the answer result. When the parameters are set correctly, the error
is guaranteed to be lower than 𝜖𝑁 , with high probability. 𝑁 denotes
the size of the stream up until querying. The mathematical proof is
described in detail in the paper and the technical report.

The empirical results of the sketch show OmniSketch outper-
forms the state-of-the-art (in our experiments, by more than 2
orders of magnitude in throughput) while still providing highly
accurate estimates. This method only works for the insertion-only
streaming model. In the future, we plan to extend this work by
supporting deletes in the streaming model as well.

3.2 SpatialSketch
In the second project I contributed to, synopses for summarizing
spatial data streams [12], we considered the challenge of computing
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Figure 2: Design of Data Stream Management System

aggregate statistics for spatial ranges over data streams, where
the spatial ranges is specified at query time. We introduced two
novel sketches, SpatialSketch and DynSketch, which can support
different types of aggregates (e.g., frequency estimation, L2 norm,
membership queries) by incorporating the functionality of other
nested sketches like Count-min sketches and Bloom filters.

Data Structure. The data structure of SpatialSketch is based on
dyadic ranges [10]. The sketch has a layered structure of grids.
At the base layer, the grid has the maximum spatial resolution,
specified by the user. At the top layer, there is a grid with one cell,
covering the entire spatial region. Each cell in the grids contains
a nested sketch, e.g. the Count-min. At insertion time, a record is
inserted at each layer to the nested sketch at the cell based on the
spatial location of the record. At query time, a partition algorithm
partitions the shape of arbitrary form first into rectangles, and then
into dyadic intervals inside those rectangles. The corresponding
intervals are queried and the result is reduced with the appropriate
function, based on the nested sketch. It also allows merging of the
nested sketches at the queried intervals.

DynSketch is a dynamic version of the SpatialSketch that dynam-
ically drops certain grids and layers when dealing with memory
constraints. Importantly, the two sketches are backed by a formal
analysis that provides accuracy guarantees for diverse aggregates,
and for different classes of nested sketches. Through an extensive
experimental evaluation with both real and synthetic data streams,
we demonstrated that the proposed sketches outperform the com-
petitors (both exact and approximate) in terms of functionality,
efficiency, and accuracy, within identical memory constraints.

4 VISION
In this section, I present an envisioned system to enable the wide-
spread use of synopses. This vision places the contributions during
my PhD in the right context, as my work aims to make this system
possible. The system extends beyond the scope of my PhD.

The envisioned system is inspired by Chapter 6 in the survey by
Cormode, Garofalakis & Haas [5] and the system described by Ioan-
nidis [11]. The survey Chapter describes future work directions,
such as the implementation of synopses in data streammanagement
systems, and open problems and issues that constitute roadblocks

for the wide acceptance of approximate query processing. The sys-
tem described by Ioannidis discusses problems for approximations
in database systems, not streaming systems. Even though there is a
focus on a different data model than streaming data, the problems
remain relevant, as they concern approximations. The motivation
for my system is to be able to answer user queries in an approximate
fashion, without users having to undergo a steep learning curve.

Figure 2 presents my envisioned system, with the following
workflow:

(1) Data:The user connects static and/or streaming data sources
to the system.

(2) Workload information: The user specifies any informa-
tion they have on the type of future workload. This infor-
mation can change after initialization.

(3) Selecting Set of Synopses: The system maintains a set of
synopses to support the specified workload, but allowing
flexibility to execute other workloads as well. The size of the
set of synopses is limited by either the user or the system. As
workload information can change, the system continuously
optimizes the set of synopses and the resource allocation
within.

(4) Processing Data: The data is inserted in the corresponding
(sub)set of synopses.

(5) Querying Synopses: The user can execute approximate
queries on the data, by using a declarative language, pos-
sibly CQL [1]. The system will optimize the running time
and accuracy of the query plan based on available synopses
and static tables.

(6) Interpretable Results: The user is aided in interpreting
the approximate results by the system.

This workflow imposes many research challenges, such as (rela-
tion to workflow in parentheses):

(2 & 3) How should the workload information be asked from the
user?

(2,3&5) How to handle missing/incorrect workload information?
(3) How to select the optimal set of synopses based on available

information?
(3) How to allocate resources within the set?
(3) How to dynamically maintain the set if the available in-

formation about the future query needs changes, without
needing significant redesigns?

(6) How should results be presented to aid the user?

5 RESEARCH PLAN
As my PhD is time-constrained, I will contribute to the needs de-
fined in the introduction: designing general-use synopses that can
be used for answering many query types and developing a policy to
select the optimal set of synopses given the available information.
My research plan contains three steps: (1) identifying key gaps in
the support for query types by synopses, (2) filling the defined gaps
for missing query types and (3) designing selection policies for the
set of synopses.

Identifying the key missing functionalities. There is a need for an
overview of the state-of-the-art on synopses. With the overview,



we can identify the state of the art for each query type, the rela-
tionship between different synopses, as well as unsupported query
types. The most complete survey to date is the one by Cormode,
Garofalakis and Haas [5]. However, this is from 2012 and in the last
few years there were many additional key results.

Filling the gap for missing query types. The identified missing
functionalities will be used to focus on the right problems and to
design synopses for the missing query types. This process can also
entail generalizing a synopsis to support multiple query types. So
far, gaps are defined for (a) dealing with frequency queries with
arbitrary many predicates in the scenario of turnstile streams and
(b) supporting query types, other than frequency, with arbitrary
many predicates. We will now discuss both.

Currently, when dealing with frequency queries with arbitrary
many predicates, there is only support for insertion-only streams,
by using the OmniSketch. Deletes are a problem for the min-wise
sampling method used in each cell of the attribute sketches. It is
easy to delete an element from a sample, but when this is done,
another element from the past stream should have been inside
the sample. When inserting an element from the future stream,
the sampling properties break. It is not known which of the two
elements should have been in the sample: the past or the future
element. In this project, we aim to solve this by either improving
the current sampling method or using a more robust method.

Besides frequency queries in the case of arbitrary many predi-
cates, there are many other query types. We aim to support query
types for other frequency moments, such as count distinct or L2-
Norm. An example query would be:

SELECT COUNT DISTINCT (*) FROM stream
WHERE attr1 = x AND attr2 > y AND ... attrA < z

Or estimating the size of queries with inner joins and predicates:
SELECT COUNT(*) FROM s1, s2, s3
INNER JOIN s2 ON s1.s2id = s2.id
INNER JOIN s2 ON s1.s3id = s3.id
WHERE s1.attr2 = "x" AND s3.attr6 = "z"

New research is needed for extending OmniSketch to support
these types. Possible directions can be found in the recent devel-
opments on sketches supporting more than one frequency norm
[13, 19, 20].

Selection policy for set of synopses. When gaps on query types are
filled, it is time to work towards the described system. An essential
component will be the policy for continuously selecting the set of
synopses and allocating resources. This policy must consider user-
provided information on the query types that need support and the
desired flexibility for other types of queries. The research challenge
lies in structuring this information and choosing the synopses. A
starting point are techniques as Taster, a self-tuning, elastic and
online approximate query processing engine designed by Olma et
al. in 2019 [15].
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