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ABSTRACT
Multi-model databases are an increasingly popular solution to to-
day’s data management challenges of Big Data. However, their
inherent complexity and lack of standardization stand in the way
of their widespread adoption. In our research, we focus on reducing
the complexity by automating the management of such databases.
The goal is to provide a robust framework capable of unified mod-
elling, transformation, querying, and evolution management of
multi-model data and to leverage AI techniques to optimize data
distribution among the database systems.
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1 INTRODUCTION
More than 2/3 of the 50 most widely used database management
systems (DBMSs)1 fall under the category of multi-model.2 The
multi-model data is organised in various mutually interlinked for-
mats and models, often with contradictory features [17]. In addition,
its structure may change over time, and its size can grow to the
extremes of Big Data. These aspects create one of the most complex
challenges of effective data management.

As handling such a complex task manually is impossible, we
focus on the automatic management of dynamic multi-model Big
Data. We want to create a robust framework capable of accepting
different types of data, queries, changes, and propagation strategies.
Based on such rich input, the system will learn to provide self-
adapting evolution management, ensuring a complete, correct, and
efficient propagation of changes. Particularly, it will support the
following features:

• Multi-Model Modeling: We need to model the data in one
unified and formally backed schema. The model can either
(1) be created manually or (2) automatically inferred from
sample data. We can also combine these approaches, i.e.,
infer a reasonable schema and then manually improve it.

• Multi-Model-to-Multi-Model Transformations: Transforma-
tion from one model to another is a simple process. But, we
must be able to migrate the data between different combina-
tions of models represented by different database systems.
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1https://db-engines.com/en/ranking
2I.e., consisting of multiple data models (relational, document, graph, . . . ).

• Cross-Model Querying: We need to query over the whole
dataset, not just a single database system. Also, the queries
should be independent of the underlying datamodels so that
we can use the same query language for the whole system
and thus not force the user to learn different languages.

• Multi-Model Evolution Management: As we have mentioned,
each system evolves over time, whereas in the case of multi-
model data, the evolution must cover all combined models.
Primarily, we want to be able to update the model, the data
itself, and the queries. And, when possible, automatically.

Several solutions have already implemented these features, many
of which are widely used. However, they all have one thing in com-
mon: they are either tightly coupled with the underlying database
systems or too limited to fully model multi-model data. For example,
the UML and ER models are industry standards. But, they cannot
generally model complex properties, maps, or graphs.

Outline. In Section 2, we discuss the current functionalities of our
framework consisting of a family of tools. In Section 3, we describe
our planned steps. In Section 4, we outline the open problems.

2 INITIAL FRAMEWORK
In our research group, we have proposed several solutions to se-
lected aspects of unified and efficientmulti-model datamanagement.
We have also implemented tools for their experimental verification.
This toolset represents the initial framework we currently intend
to enhance by exploiting AI to automate data management.

First, we needed a sufficiently abstract approach to handle all
the conflicting requirements because we deal with varied data
models and database systems. Therefore, we proposed a system-
independent representation based on category theory [12]. We can
view a category as a directed multigraph for simplicity. The nodes
(called objects) represent entities, and the edges (called morphisms)
represent relationships between them. For example, object 𝐴 repre-
sents a User and object 𝐵 represents a Name. Then, we can have
a morphism 𝑓 : 𝐴 → 𝐵, meaning that a User has a Name. We can
create structures representing arrays, sets, weak-entity types, etc.
In our framework, we call such category a schema category.

This unifying representation enables us to “grasp” any combina-
tion of models and to process it in a system-independent manner.
When a particular operation has to be done at this abstract level, it
is propagated to the underlying database system.

Example 2.1. An example of a schema category can be found in Fig. 1.
The schema category is mapped only to the relational database model
(denoted using the violet colour). On the other hand, in Fig. 2, we can see
the same schema category after an evolution of the mapping. It is now
mapped to relational (violet) and document (green) models. □
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Figure 1: A sample schema category. Each violet node repre-
sents a complex object. In this case, all of them are mapped
to respective tables of the relation model, e.g., PostgreSQL.

id name surname

1 Mary Smith

2 John Newlin

3 Anne Maxwell

{ _id : 2023002, 
  customer: { id: 2, name: John, surname: Newlin},
  street: Technická, city: Prague, postCode: 162 00,
  items: [
    { pid: P7, title: Pyramids, quantity: 1, price: 275 }
  ] }
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{ _id : 2023001, 
  customer: { id: 1, name: Mary, surname: Smith},
  street: Ke Karlovu, city: Prague, postCode: 110 00,
  items: [
    { pid: P5, title: Sourcery, quantity: 1, price: 350 },
    { pid: P7, title: Pyramids, quantity: 1, price: 250 }
  ] }
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Figure 2: The example schema category from Fig. 1 after an
evolution. The schema category did not change, but the af-
fected tables (Items and Orders) were replaced by a collection
of documents (Order), e.g., in MongoDB. The change intro-
duced redundancy to query orders more efficiently.

Our toolset involves two tools that enable the creation of a
schema category:MM-cat [14] enables the modelling of the schema
category manually, as well as the creation of its decomposition and
mapping of the selected components to particular logical models.
MM-infer [13] enables one to infer a schema category from the
given sample multi-model data (semi-)automatically.

2.1 Transformations
As indicated in the introduction, not only do we need to be able
to model the multi-model data using a unified representation, but
we also need to be able to transform them. In particular, we need a
support for transforming any combination of the (sub-)models to
any other combination of (sub-)models.

For this purpose, as a part of MM-cat, we have developed algo-
rithms that leverage mapping between the schema category and the
logical models to transform data between them [12]. To work with
each database system in the same way, we have to create wrappers
for each of them. Then, we can use the same algorithm to transform
data between any two database systems.

This is an important distinction from other approaches. For ex-
ample, the ETL (Extract-Transform-Load) process is usually tightly

coupled with the underlying database systems. In our solution, we
can use the same algorithm to transform data between any two
database systems, even multi-model ones. Another example are
data lakehouses which can store data in multiple (single-model)
formats, but they do not provide a unified way to work with them.

2.2 Querying
Querying the data is an essential feature of any database. However,
this is a much more challenging task in multi-model databases as
each system has its own set of supported models and their com-
binations [17] and a specific query language [4]. There is no gen-
eral standard for multi-model querying except for the standards
SQL/XML [7] and SQL/JSON [8] for relational/document models.

We have proposed the Multi-Model Query Language (MMQL), a
query language based on the SPARQL syntax that enables one to
query over the schema category. Then, within a tool called MM-
quecat [11], we developed the query-evaluation algorithm that uses
a similar approach as the transformation algorithms: First, the query
is parsed and mapped to the schema category. Then, we use the
mappings to split it into query parts that can be executed in the
specific underlying systems. We perform the maximum amount of
work in the databases, minimising cross-database joins. Finally, we
combine the intermediate results.

The global workflow with the indicated functionalities of the ini-
tial framework is depicted in Fig. 3. First, the schema category is
inferred from sample data or modelled manually. Then, it has to
be decomposed into the system-specific sub-models. Finally, the
user can specify queries over the schema category. All these actions
require user input. On the other hand, all data transformations and
query resolutions are automated.
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Figure 3: Workflow of the initial framework. The full arrows
represent the flow of information with the U symbols mark-
ing user inputs. The dashed lines represent the flow of data.

2.3 Evolution Management
On the most basic level, evolution means changing a database
schema over time. However, when the schema changes, the data
and the queries must also be updated. Thus, in the context of our
framework, we do not see evolution as just another feature but as
a fundamental quality of each part of the system.



The change usually starts with a modification of the schema
category. First, we have identified several key schema modification
operations (SMOs) [1], e.g., creating a new object or a newmorphism.
Then, we can build more complex operations from them, such as
grouping several objects into a new one or moving objects around
the graph. Then, we again leverage the mappings to propagate
the changes to the system-specific models and the data. Lastly, the
changes are propagated to the queries in two ways. On the one
hand, we have to update the queries to reflect the changes in the
schema. On the other hand, we use the mappings to decompose
and translate the queries into the system-specific languages, which
are also affected by the changes.

However, the change might start with the mappings (compare
Figs. 1 and 2). For example, we might want to alter the way we store
data in a specific database system or add a new system altogether. In
that case, we have to update the mappings and then propagate the
changes to the queries, though the schema category is unaffected.

Example 2.2. The evolution process is depicted in Fig. 4. The user
changes the schema category, the mappings, or both. The changes are then
automatically propagated to the rest of the system.

The propagation of the changes to the data can be, in some cases, me-
diated by the querying feature. For example, suppose we want to split an
object (e.g., an Address) into two (e.g., a Street and a City) based on a specific
rule. In that case, we may first create the new objects and then internally
use a query with a SPLIT function to extract the data about the street and
the city from the original object. □
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Figure 4: Evolution in the framework.

Currently, evolution is managed in the framework by two tools:
MM-evocat [10] (dealing with propagation of SMOs to logical sche-
mas and data instance) and MM-evoque [2] (dealing with propaga-
tion of SMOs to MMQL and system-specific query languages).

3 FUTURE PLANS
Currently, we have a solid theoretical background and proof-of-
concept tools to integrate and extend to the final robust solution. It
may seem that the only work left is to optimize the algorithms and
finish the implementation. And that would be the case in the world
of single-model databases, where we can rely on a skilled database
administrator to manage the whole system. In the case of multi-
model data, however, we still have to deal with different database
systems, models, optimization strategies, etc. Our framework can
shield the users from all databases’ complexity and specific (often
contradictory) features. But the principal question now becomes:
“How to optimally distribute data between the particular data models

and respective database systems with requirements changing over
time?".

We cannot rely only on human experts for more complex use
cases. Therefore, our main future aim is an AI-powered solution.
The general idea is that the user would design the system-indepen-
dent schema while the framework would decide how to distribute
the data among the available database systems. And over time, the
framework will propose modifications to the schema category.

Generally, there are three possible approaches – rule-based, search-
based, and model-based. The first relies on a hard-coded rule set to
generate optimal database settings [20]. The second one (e.g., [23])
searches the space of all possible configurations. The last one uti-
lizes novel techniques such as deep reinforcement learning (as
discussed in Section 3.1). However, to our knowledge, none of these
approaches has been considered for multi-model databases. The
rule-based strategy is not very flexible and extensible, so it would
not be easy to cover all possible scenarios of the multi-model world.
Similarly, the search-based onewould be too expensive as the search
space grows exponentially with the number of models and database
systems. Hence, the model-based one is the most promising because
it should be able to adapt to all possible scenarios, although it would
require a lot of data to train the model.

3.1 AI for DB
The cooperation of AIwith database systems can be divided into two
categories [15]. The DB4AI approaches use databases to improve AI
models. For example, the AI-native DBMS openGauss [16] supports
native AI computing engine, model management, AI operators,
native AI execution plan, etc.

Conversely, theAI4DB techniques leverage AI to improve DBMSs.
These approaches include learning-based methods that utilize rein-
forcement or deep learning to optimize database functionality. Ex-
amples include configuration tasks such as index selection [9], par-
titioning advisory [5], and general knob tuning [22]. Additionally,
AI4DB techniques extend to optimizing query performance [21],
join selection [19], and influencing database design through learned
indexes [3] or key/value design [6]. The applications also involve
predicting, e.g., query arrival rates [18].

Our planned extension of the framework falls into the second
category. We aim to optimize the management of multi-model
databases by exploiting AI. All user inputs necessary in the current
framework are depicted in Figs. 3 and 4. The schema category has to
be modelled by the user (unless we can infer it from the data, which
is still not fully automatic). Similarly, only the user knows what to
query (but there are already techniques to infer this information
from the application code, e.g., various ORM frameworks). Hence,
we will primarily focus on automating the decomposition process
and the evolution (in the form of a gradual optimization of how the
schema is decomposed).

3.2 Data for Training
The quality of an AI model is highly dependent on the quality
of training data. In our case, the expected data will be primarily
logs from real-world databases. A member of our research group is
already working on a wrapper for commonly used database systems
that collect metadata for each query, ranging from the execution



time, through the number of entities, to the percentage of entities
that were filtered out in each step of the execution plan. The dataset
collected during the process will have a value on its own. It can
be used to train various AI models utilised for data management
purposes or just as an insight into the performance of underlying
database systems of our toolset.

There are also many open datasets and even some query datasets.
But they usually lack the statistical information we need. Moreover,
they tend to be not very diverse, usually focusing on a single single-
model database system, which is quite the opposite of what we
need. Hence, another task being solved by a member of our research
group is a tool for transforming single-model real-world data sets
to pseudo-realistic multi-model versions.

Both these approaches solve us the core problem of AI-based
approaches – where to gain high-quality training data.

4 OPEN PROBLEMS
Besides identifying the data management tasks where AI can be
utilised to lower user interaction and to select the optimal approach,
we face more specific challenges.

Extensible Approach. Most contemporary AI4DB approaches are
based on the ER model, thus suitable for relational databases only.
The question is how challenging it will be to adapt them to themulti-
model world. Generally, we want to adjust the existing approaches
for the graph model because the schema category is, in essence, a
graph. There are some similarities that we can exploit (e.g., both
models are aggregate-ignorant), but there are also many differences
that we must consider.

Information Aggregation. Primarily, we want to use the above-
specified database logs as training data as they are not extensive.
However, it is unclear what parts of the logs are the most important.
Also, we are not sure if we need all the logs or just some kind of
aggregation (e.g., the average execution time for each type of query).
If we aggregate the data, we can fit much more information into
the model, but we might lose some essential details.

Data Quality. To clean the real-world data sets, we will use veri-
fied techniques like anomaly detection to improve the data quality.
Again, there are not many applications of such techniques in the
multi-model world yet. Each data model brings challenges, and
their solutions might require decisions from domain experts. For
example, it is a common practice to remove a whole row if we find
a single anomaly. However, if we apply the same approach to a
document database with large documents, we might remove many
otherwise valid data.

Model Scale. There are two options for the scale of the AI model.
We can create a single general model trained on statistical data
from many multi-model database instances. Alternatively, each
instance can have its model and be trained on its data. The first
option is more efficient in justifying a larger model. On the other
hand, the second one might give us better results because of its
customization. There is also a third option – create a single general
model but fine-tune it for each instance.

In each of the cases, we plan to compare the most promising ap-
proaches experimentally and identify optimal approaches together
with their parameters.
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