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ABSTRACT
Internet-of-things (IoT) devices are widely used in industry as well
as in research and are deployed inmany applications. Thesemassive
amounts of devices are connected in large decentralized networks
and produce unbounded data streams with continuous data. To pro-
cess these data streams timely, current stream processing engines
(SPEs) collect all data in a centralized data center. This approach
leads to high network utilization and can create a bottleneck in the
data center, as all data is transmitted via the network and results are
computed centrally. State-of-the-art solutions push down partial
window aggregations to machines that are near data streams. How-
ever, these solutions are limited to a single simple query. In this
paper, we present our work on three solutions for different decen-
tralized aggregations: Desis, Deco, and Dema, which significantly
improve the performance of stream processing in decentralized
networks. Our solutions reduce network traffic by up to 99.9 %.
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1 INTRODUCTION
The Internet of Things (IoT) is pervasive in many domains such
as healthcare, Industry 4.0, and smart cities [8]. These applications
involve massive amounts of IoT devices distributed across many de-
centralized networks. To process the unbounded data streams gen-
erated by these devices, current stream processing engines (SPEs)
such as Apache Flink [2] and Apache Spark Streaming [13] split
data streams into windows. Once a window ends, they perform
window aggregation and output the results. Current Stream Pro-
cessing Engines (SPEs) perform centralized window aggregation to
process data from decentralized networks. In this approach, both
the creation of windows and the processing of computations occur
at a central node. All data is transmitted via the internet to this
central node and the center is the only node that processes data. To
reduce network overhead and resource consumption, state-of-the-
art approaches [1, 6, 14] suggest decentralized aggregation. This
method shifts window aggregations to devices that are closer to
the data streams. These devices create windows, perform partial
window aggregations, and output partial results. Instead of send-
ing all data events to the central node, only the partial results are
transmitted.
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There are three issues in current stream processing: (i) decentral-
ized window slicing, (ii) decentralized aggregation of count-based
windows, and (iii) decentralized aggregation of windows with non-
decomposable functions.

Decentralized window slicing. The processing of data streams
often involves many simultaneous queries, resulting in concurrent
windows. These windows might overlap and lead to redundant
computations and unnecessary resource consumption if processed
individually. Current approaches [3, 10] use window slicing to
merge the partial results of slices instead of repeatedly calculating
overlapping parts of windows. However, these approaches are lim-
ited to sharing partial results only between windows with the same
aggregation functions and are not suitable for decentralized setups.

Aggregation of count-based windows. These approaches are
limited to time-based windows with decomposable functions. Time-
based windows can be easily divided based on time intervals, allow-
ing multiple nodes to process equally sized time windows. Count-
based windows, instead, require data elements to be accumulated
based on a fixed number of events, e.g., 1 million events per window,
making them challenging to split. This is because the center node
requires prior information on the incoming event rates from local
nodes to ensure the correctness of splitting windows.

Non-decomposable functions. Windows with decomposable
functions, e.g., sum and count, can calculate final results by merging
partial results from split windows. Non-decomposable functions,
e.g., median and quantile, require sorting all data and cannot be
accurately computed using partial results only.

To deal with the above limitations we propose three approaches.
(1) We design Desis [12], a stream processing system that efficiently
processes concurrent windows in decentralized networks. (2) We
propose Deco [11] that has three schemes and enables processing
count-based with decentralized aggregation while output correct
results. (3)We introduceDema that pushes downwindowswith non-
decomposable functions close to data sources to calculate window
aggregations decentralized.

In this paper, we will discuss these three approaches which
are already published (Desis, Deco) or currently work in progress
(Dema). Our work aims to propose a stream processing system that
can efficiently process concurrent windows with different window
types and aggregation functions in decentralized networks.

2 DESIS
Desis is a stream processing system designed to process multi-
queries in decentralized networks. In this section, we discuss how
to handle concurrent windows with decentralized aggregation.

2.1 System Overview
In a decentralized topology, there are many local nodes and in-
termediate nodes but only one root node. Local nodes connect to
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data streams and link to the root node via intermediate nodes. In
complex networks, multiple intermediate nodes interconnect local
and root nodes. In simple networks, local nodes may connect to the
root node directly, and intermediate nodes might not be necessary.

2.2 Aggregation Engine
Desis proposes an aggregation engine to share partial results be-
tween multiple windows with different window types and different
aggregation functions. Before discussing our approach, we define
two terms: (i) Query-group: A set of queries that can share partial re-
sults between them. (ii) Punctuation: Used to mark the lifespan of a
window, the start punctuation (sp) denotes the window’s beginning,
and the end punctuation (ep) indicates its end.

Also, we propose aggregate operators as the most basic aggrega-
tion functions. We support many operators, e.g., count, sum, mul-
tiplication, square root, decomposable sort, and non-decomposable
sort. Instead of directly processing aggregation functions, the ag-
gregation engine breaks down them into operators. Given two
overlapping windows, one calculates sum and the other one cal-
culates average, the aggregation engine shares the sum operator
between them. is because the average function can be decomposed
into sum and count operators
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Figure 1: Aggregation engine processing multiple queries

In Figure 1, we process three example queries. 𝑄𝑎 has tumbling
windows with a average aggregation, 𝑄𝑏 has sliding windows and
a sum function. Query 𝑄𝑐 contains session windows and a count
function. As these queries can share partial results in between, they
are in the same query-group. The aggregation engine splits three
functions into two operators (sum and count) and then processes
queries. Whenever there is a punctuation, e.g., sp or ep, the aggrega-
tion engine terminates the current slice and creates a new slice. For
example, window a1 (𝑄𝑎) has three slices: slice1, slice2, and slice3.
The slice1 is shared between window a1 and window b1. The slice2
is shared between window a1, window b1, and window c1. The
slice3 is shared between window a1, window b1, window b2, and
window c1. Instead of calculating three aggregation functions, the
system only processes two operators for each slice. The result of
window b1 is merged from partial results of slice1, slice2, and slice3.

2.3 Decentralized Aggregation
Instead of pushing down windows to local nodes, Desis slices win-
dows on the root and sends slices. Desis can performwindow slicing
and share partial results on all nodes in the decentralized networks.
Also, Desis does not send partial results per window but per slice.
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Figure 2: Window aggregation in decentralized networks

In Figure 2, the three queries are the same from the Figure 1 but
they are time-based. On the root node, all three queries (𝑄𝑎 , 𝑄𝑏 ,
and 𝑄𝑏 ) are grouped into the same query-group, which consists of
two operators: sum and count. Then, the window attributes of this
query-group are distributed to local and intermediate nodes. On
the local node, the aggregation engine slices windows into local
slices and performs incremental aggregation for every incoming
event. When a slice ends, the aggregation engine sends the partial
results to the intermediate node. On the intermediate node, the
aggregation engine creates the intermediate slice to collect partial
results from local nodes connected to it. Once the intermediate
slice has all partial results from local nodes, it aggregates results
again and sends the aggregated partial results to the root node. For
example, the intermediate s1 only collects two local s1s. On the root
node, the partial results of intermediate slices are incrementally
aggregated into root slices. For example, root s1 is terminated only
if it has collected partial results from all intermediate s1. The local
node also marks the partial result with the sp or ep of its slice. When
there is an ep, the root node aggregates the window and outputs
the final result.

2.4 Evaluation
We evaluate Desis with three baselines: Cebuffer (hand-coded),
Disco [1], and Scotty [10]. Cebuffer and Scotty are centralized ap-
proaches, Scotty uses window slicing techniques but Cebuffer does
not. Disco is a decentralized solution that can only share partial
results on local nodes and is limited to windows with the same
aggregation functions.
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Figure 3: End-to-end throughput and network utilization

In Figure 3a, we run all systems initially on one local node and
gradually add new local nodes, and they process 1000 concurrent
windows. In Figure 3b, all systems are deployed on two local nodes
and gradually scale to process more concurrent windows. We learn



that Desis significantly outperforms all baselines and scales well.
Also, Desis can reduce over 99 % network cost.

3 DECO
Deco is a decentralized aggregation approach that enables the split
of count-based windows in decentralized networks. In this section,
we discuss technical details about Deco.

3.1 System Overview
Deco has local nodes, intermediate nodes, and the node root node
in its setup, but intermediate nodes only transfer data. We define
the number of events received per second as event rate. We let
the f be the event rate and l be window size. For a decentralized
network with n local nodes, the total event rate of the root node
is 𝑓𝑟𝑜𝑜𝑡 =

∑𝑛
𝑖=1 𝑓𝑖 . Also, let 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 be the global window size and

𝑙𝑎 =
𝑓𝑎

𝑓𝑟𝑜𝑜𝑡
∗ 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 be the local window size of node a.

An approximate solution is to calculate the local window sizes
for each local node once and then keep them fixed. The local nodes
reuse these same local window sizes to perform window aggrega-
tion regardless of changes in the event rate. Because this method
relies on static local window sizes, it does not produce correct
results.

3.2 Decomon
To adapt to changing event rates and produce correct results, we
propose Decomon. It monitors the event rates and updates local
window sizes for every global window. Decomon has three steps:
(i) Initialization: All local nodes send event rates to the root node.
(ii) Verification: The root node calculates local window sizes and
assigns them to local nodes. (iii) Calculation: Local nodes create
windows based on local window sizes and send partial results to the
root node. The root node aggregates these partial results to produce
the final results. Although Decomon moves computations from the
root node to local nodes, it requires three communication rounds
between local nodes and the root node for each global window.

3.3 Decosync
To reduce communication overhead, we propose Decosync a syn-
chronized approach that uses predicted local window sizes instead
of actual local window sizes. Decosync has three steps: predic-
tion, calculation, and verification. In the first two global windows
Decosync is the same as the Decomon.

Prediction. In Decosync, we assume that the event rates change
slightly and the local window sizes of two consecutive global win-
dows are close. Given a node a, We let the predicted local window
size be 𝑙𝑎,𝐺𝑖 , which is the actual local window size of the previ-
ous window. To correct potential prediction errors, we define Δ,
the difference between the local window sizes of the previous two
consecutive windows.

Calculation. Once the local node (a) receives the predicted local
window size and Δ, it creates a new local window. The local window
is divided into two parts, local slice and local buffer. Local slice size
is equal to 𝑙𝑎,𝐺𝑖 minus Δ and local buffer size is equal to 2 ∗ Δ𝑎,𝐺𝑖 .
Decosync aggregates all events in the local slices and sends partial

results to the root node. Also, Decosync transmits all events in the
buffer and the event rate to the root node.

Verification. The root node verifies the predicted local window
sizes with event rates from local nodes. The prediction of node a
is acceptable when 𝑙𝑎,𝐺𝑖 conforms Equations (1) and (2), otherwise
the prediction is wrong and we call this a prediction error.

𝑙𝑎,𝐺𝑖 < 𝑙𝑎,𝐺𝑖 + Δ𝑎,𝐺𝑖 (1)

𝑙𝑎,𝐺𝑖 >= 𝑙𝑎,𝐺𝑖 − Δ𝑎,𝐺𝑖 (2)

If the prediction is correct, the root node collects partial results
to the root slice and local buffers to the root buffer. It aggregates
the root slice with events from the root buffer that belong to the
current window to output the final results. The root node then
starts the prediction step of the next window. There are still two
communication rounds for every global window.

3.4 Decoasync
To further reduce communication overhead, we design Decoasync an
asynchronous approach that moves the prediction from the root to
local nodes. There are only two steps: calculation and verification.
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Figure 4: Calculation and verification steps of Decoasync

In the calculation step, local nodes predict the local window sizes
and Δ from the previous windows. In Figure 4, the local window
is divided into three parts. Local nodes send events from Fbuffer
and Ebuffer, partial results of local slices, and event rates to the
root node. They then immediately begin the calculation step of the
next global window without waiting for the message from the root
node. In the verification step, the root node verifies the predictions
made by the local nodes. If the predictions are correct, the root
node aggregates the root slice with events from root buffers. The
root node then outputs the results and updates the information of
the local nodes. In this case, the root node and local nodes do not
need to wait for each other, resulting in only one communication
round.

3.5 Correctness of Deco Approaches
Decomon monitors the event rates and always produces correct
results even if the event rates change significantly. Decosync and
Decoasync predict window sizes and their predictions are verified
in the verification step. If the prediction is wrong, the system will
ask for the correction step, which is similar to the verification
and calculation steps of Decomon. Therefore, both Decosync and
Decoasync always produce correct results.



3.6 Evaluation
We compare Decoasync with three baselines: Central, Disco, and
Scotty. The central is the same as Cebuffer.
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Figure 5: End-to-end throughput and network utilization
In Figure 5a, all systems are processed on eight local nodes.While

in Figure 5b, the cluster only has two local nodes. The results show
that Decoasync has the highest throughput and lowest network cost
since it moves calculations from the root node to local nodes and
only sends partial results and a few events via the internet.

4 DEMA
Dema is a decentralized approach designed to process windows
with non-decomposable functions in decentralized networks. Dema
currently only supports functions that require sorting, such as
median and quantile. The core concept of Dema is similar to Deco,
which involves multiple steps of coordination between local nodes
and the root node. In Figure 6, Dema has three steps: prediction,
correction, and calculation. We illustrate this process using a time-
based tumbling window with the median function as an example.
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Figure 6: Three steps of Dema

In the prediction step, the local node creates a window and
collects data. Once the window ends, the local node sorts events
and sends candidate events to the root node. We define Δ as the
prediction rate, it can be configured by users. For example, if Δ is
set to 5, the local node divides the window into groups of size 5.
The local node selects the first event of each group and sends the
selected events and range of each group to the root node.

In the correction step, the root node sorts groups and removes
all independent groups at the beginning and end. As the root node
knows the range of each group, it can calculate which group in-
cludes the median. The root node then requests the local node to
send all events belonging to that group. Also, the groups come from
different local nodes, and they may overlap with each other. In this
case, the median is involved with multiple groups from different
local nodes. In the calculation steps, the root node receives all the
required events and computes the median value.

5 RELATEDWORK
Current work on window slicing [4, 9] can share partial results
between windows, but is limited to tumbling and sliding windows.
The centralized approaches Scotty [10] support arbitrary time-based
windows, but windows with different functions are still processed
individually. Disco [1] employs decentralized window aggregation
but it only executes window slicing on local nodes. Existing efforts
to split count-based windows or windows with non-decomposable
functions [5, 7] are based on approximated aggregation or execute
sampling on data streams, which leads to incorrect results.

6 CONCLUSION
In this paper, we present three approaches to improve window
aggregations in decentralized setups. We present Desis, a stream
processing system that can efficiently process multiple queries in
decentralized networks. Desis facilitates the sharing of partial re-
sults among overlapping windows with varying window types and
aggregation functions. We also describe the Deco approaches, in-
cluding three schemes, Decomon, Decosync, and Decoasync, which
split count-based window aggregation in decentralized networks.
Deco adapts to changing event rates and ensures correct results.
Additionally, we introduce Dema, which allows decentralized ag-
gregation to support non-decomposable functions.
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