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ABSTRACT
Knowledge graphs (KGs), which store human knowledge facts in
intuitive graph structures, are widely used for multiple applications,
such as recommendation systems, information retrieval, question
and answer, etc. However, as the construction of KGs is always dy-
namic, the incomplete problem commonly exists no matter which
types of KGs they are, further hindering their effectiveness in knowl-
edge representation. To alleviate the problem, knowledge graph rea-
soning (KGR) has drawn increasing attention these years, aiming to
infer missing facts in a given KG. Although existing representation
learning models achieve promising performances, the structural
information, as the important characteristic between KGs and tradi-
tional knowledge bases, should be better leveraged. To this end, my
PhD research targets representation learning for KGR by designing
effective mechanisms to better utilize the information underlying
the graph structures in KGs and achieve several progresses. Beyond
my current research scope, I find that there are two key problems
restricting the development of KGR, i.e., efficiency, and the way to
cooperate with LLMs, which I plan to work on in the future.
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1 INTRODUCTION
Knowledge graphs (KGs), which store the human knowledge facts in
intuitive graph structures [5], are widely used for multiple applica-
tions, such as information retrieval [12, 18], question and answering
[21], etc. Current KGs can be roughly divided into three types, i.e.,
static KGs, temporal KGs and multi-modal KGs, as shown in Fig.
1. Although the basic KGs, storing the knowledge only as static
uni-modal facts, are powerful and expressive, they cannot fully
describe real-world scenarios, which contain information from var-
ious sources [9]. Thus, two more practical KGs have been proposed
recently, i.e., temporal KGs and multi-modal KGs, where tempo-
ral and multi-modal information are integrated with basic KGs.
However, as the construction of KGs is always dynamic [9], the
incomplete problem commonly exists no matter which types of
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Figure 1: Examples of three categories of the knowledge
graphs, i.e., static knowledge graphs, temporal knowledge
graphs, and multi-modal knowledge graphs [9].

KGs they are, further hindering their effectiveness in knowledge
representation. To alleviate the problem, knowledge graph reason-
ing (KGR) has drawn increasing attention these years, aiming to
infer missing facts in a given KG.

The KGRmodels can be categorized into two types, i.e., searching-
based models and representation learning-based models. Specif-
ically, searching-based models aim to infer the missing facts by
retrieving the logic chains which matched with predefined ones in
the given KGs. For example, we can easily get the relations between
A and C is uncle of by matching the logic chain (A, father of, B)

∧
(B,

cousin of, C). In this category, how to achieve (1) efficient path
searching, and (2) effective rule matching are two key problems,
where multiple models are developed based, such as DeepPath [16],
STAR [17], etc. However, these models suffer from poor scalability
due to the hard rule matching. Thus, more recent models are devel-
oped based on representation learning techniques, such as TransE
[1], MKGformer [2], etc. These models learn the embedding based
on existing facts and then rank top 𝑘 candidate facts based on the
likelihood calculated by scoring functions, where the 1𝑠𝑡 candidate
fact corresponds to the predicted fact.

Although existing representation learningmodels achieve promis-
ing performances, the structural information, as the important char-
acteristic between KGs and traditional knowledge bases, should
be better leveraged, thus leading to better reasoning performance
and more complete KGs. Actually, some models [6, 14] have made
some progress toward it, but there are still spaces to be explored.
To fill the gap, we first comprehensively review the existing works
for knowledge graph reasoning, and then observe four structural
attributes in KGs, i.e., two for basic static KGs, and two for temporal
and multi-modal KGs, and propose four models based on them.
Beyond my current research scope, I find that there are two key
problems restricting the development of KGR, i.e., efficiency, and
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the way to cooperate with LLMs, which I plan to work on in the
future. In summary, the contribution of our PhD thesis consists of
the following five main parts.

(1) We comprehensively review 211 existing KGR models and 69
typical datasets for three aspects, i.e., techniques, scenarios,
and graph types.

(2) We observe the relational symmetrical structures underlying
the KGs and design a contrastive learning strategy based on
it to enhance the discriminative capacity of different KGE
backbones.

(3) We leverage the structure information underlying the homoge-
neous view of the KG and the neighbour-enhanced subgraph
to improve the expressive ability of GraIL-based models.

(4) We observe the similarity within the KG structures around
periodic events, and design periodic and relational correspon-
dence units to leverage such information sufficiently for tem-
poral KGR.

(5) We better leverage the graph structure with two simple yet
effective strategies, i.e., weighted summation and alignment
constraint, for multi-modal KGR, rather than just treating it as
a retrieval map for matching attributes in different modalities
of the same entity.

2 LANDMARKS
My PhD thesis targets the research on representation learning
for KGR by designing effective mechanisms to better utilize the
information underlying the graph structures in KGs. Specifically,
five landmarks are reached as shown in Fig. 2, i.e., (1) comprehensive
survey [9], (2) a new static transductive KGR model (KGE-SymCL
[7]), (2) a new static inductive KGR model (MINES [10]), (3) a new
temporal KGR model (RPC [8]), and (5) a new multi-modal KGR
model (SGMPT [11]). We breify describe the main idea of these
works, and more details can be found in the corresponding papers.

2.1 Comprehensive Survey for KGR
Before working on KGR, we first conduct a comprehensive review
of it. Although there are several survey papers [3, 4, 19, 20], most
of them only focus on static KGR but omit the recent progress in
other KGs, i.e., temporal KGs and multi-modal KGs. Besides, the
review criterion mainly relies on the techniques of different KGR
models but ignores reasoning scenarios and graph types, which are
useful for new researchers to quickly select the KGR model suitable
for their own research scenarios or application scenarios. Besides,
in order to help new researchers like me better understand the
typical and latest KGRmodels, we conducted a more comprehensive
survey for KGR, tracing from static to temporal and then to multi-
modal KGs. Specifically, a bi-level taxonomy is designed, i.e., top
level (graph types) and base level (techniques and scenarios). In
particular, we carefully discuss reasoning scenarios for the reviewed
models, i.e., transductive and inductive scenario for static KGR,
and interpolation and extrapolation scenario for temporal KGR.
Moreover, the performances, as well as datasets, are summarized
and presented. Moreover, we point out the challenges and potential

Figure 2: The framework of my research.

opportunities to enlighten the readers. The corresponding open-
source repository is shared on GitHub 1 and the corresponding
paper is referred as [9].

2.2 Basic KGR Scenario
2.2.1 KGE-SymCL. Knowledge graph embedding (KGE) aims at
learning powerful representations to benefit various artificial in-
telligence applications. Meanwhile, contrastive learning has been
widely leveraged in graph learning as an effective mechanism to
enhance the discriminative capacity of the learned representations.
However, the complex structures of KG make it hard to construct
appropriate contrastive pairs. Only a few attempts [13, 15] have
integrated contrastive learning strategies with KGE. But, most of
them rely on language models (e.g., Bert) for contrastive pair con-
struction instead of fully mining information underlying the graph
structure, hindering expressive ability.

Surprisingly, we find that the entities within a relational sym-
metrical structure are usually similar and correlated. Concretely,
neighbors are usually treated to have similar semantics in existing
homogeneous graph contrastive learning methods, which benefits
the positive contrastive pair construction. However, it is not suit-
able for knowledge graphs as shown in Fig. 3 (b). Moreover, we
assume that such semantic similarity underlying the neighborhood
structures in homogeneous graphs is actually caused by the sym-
metrical positions of the neighbors. Inspired by it, we observe that
the relation-symmetrical structure, which can be commonly found
in KGs, will also bring a similar property. This specific structure
information will be a good criterion for contrastive KGE. Specifi-
cally, entities located in relation-symmetrical positions are usually
similar and correlated, and this property can be utilized to con-
struct contrastive positive pairs. For example, the Bob and Jones are
relation-symmetrical about Basketball in Fig. 3 (c), which reveals
the similar semantics between Bob and Jones (i.e., both playing
basketball). The observed property is overlooked by the existing
contrastive KGE models, thus leading to sub-optimal performance.

1https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning
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Figure 3: Illustration of neighborhood and relation-
symmetrical structures, where relationships are symmetrical.
Sub-Fig. (a) and (b) show the differences between neighbor-
hood structures in homogeneous graphs and KGs. The se-
mantics of neighbors may be opposite in KGs, while they are
assumed to be similar inhomogeneous graphs. Sub-Fig. (c)
shows symmetrical entities in relation-symmetrical struc-
tures will be similar in KGs. More details can be found in [7].

Thus, a knowledge graph contrastive learning framework is
proposed by [7], termed KGE-SymCL, which mines symmetrical
structure information in KGs to enhance the discriminative ability
of KGE models. Concretely, a plug-and-play approach is proposed
by taking entities in the relation-symmetrical positions as positive
pairs. Besides, a self-supervised alignment loss is designed to pull
together positive pairs. Experimental results show that KGE-SymCL
can be easily adopted to various KGE models for performance
improvements. More details can be found in paper [7].

2.2.2 MINES. Typically, there are two reasoning settings [9, 14]
in static KGR, including transductive setting and inductive setting.
Typically, in the transductive scenario, entities in test graphs are
all seen in the model during training. In contrast, inductive re-
lation reasoning for knowledge graphs, aiming to infer missing
links between brand-new entities, has drawn increasing attention.
The models developed based on Graph Inductive Learning, called
GraIL-based models, have shown promising potential for this task.
However, the uni-directional message-passing mechanism hinders
such models from exploiting hidden mutual relations between enti-
ties in directed graphs. Besides, the enclosing subgraph extraction
in most GraIL-based models restricts the model from extracting
enough discriminative information for reasoning. Consequently,
the expressive ability of these models is limited.

To address the problems, a novel GraIL-based inductive relation
reasoning model, termed MINES, is proposed in [10] by introduc-
ing a Message Intercommunication mechanism on the Neighbor-
Enhanced Subgraph. Concretely, the message intercommunication
mechanism is designed to capture the omitted hidden mutual infor-
mation. It introduces bi-directed information interactions between
connected entities by inserting an undirected/bi-directed GCN layer
between uni-directed RGCN layers. Moreover, inspired by the suc-
cess of involving more neighbors in other graph-based tasks, we
extend the neighborhood area beyond the enclosing subgraph to
enhance the information collection for inductive relation reasoning.

Figure 4: Illustration of temporal knowledge graph reasoning
(TKGR) [8]. Sub-graphs (a) and (b) are two different views
of the TKGs. By mining the logical patterns underlying the
TKGs, TKGRmodels aim to infer the missing event, which is
represented in red dotted edges. Besides, blue boxes indicate
different KG snapshots and two gray lines demonstrate that
"intra-" and "inter-" are used to describe the interactions
"within" and "between" snapshots, respectively.

Extensive experiments on twelve inductive benchmark datasets
demonstrate that our MINES outperforms existing state-of-the-art
models, and show the effectiveness of our intercommunication
mechanism and reasoning on the neighbor-enhanced subgraph.
More details can be found in paper [10].

2.3 KGR with Extra Information
2.3.1 RPC. Reasoning on temporal knowledge graphs (TKGR),
aiming to infer missing events along the timeline, has been widely
studied to alleviate incompleteness issues in TKG, which is com-
posed of a series of KG snapshots at different timestamps. Two
types of information, i.e., intra-snapshot structural information
and inter-snapshot temporal interactions, mainly contribute to the
learned representations for reasoning in previous models, as shown
in Fig. 4. However, these models fail to leverage (1) semantic cor-
relations between relationships for the former information and (2)
the periodic temporal patterns along the timeline for the latter one.
Thus, such insufficient mining manners hinder expressive ability,
leading to sub-optimal performances.

To address these limitations, a novel reasoning model, termed
RPC, is proposed by [8] which sufficiently mines the information
underlying the Relational correlations and Periodic patterns via
two novel Correspondence units, i.e., relational correspondence
unit (RCU) and periodic correspondence unit (PCU). Concretely,
relational graph convolutional network (RGCN) and RCU are used
to encode the intra-snapshot graph structural information for enti-
ties and relations, respectively. Besides, the gated recurrent units
(GRU) and PCU are designed separately for sequential and periodic
inter-snapshot temporal interactions. Moreover, the model-agnostic
time vectors are generated by time2vector encoders to guide the
time-dependent decoder for fact scoring. Extensive experiments
on six benchmark datasets show that RPC outperforms the state-
of-the-art TKGR models, and also demonstrate the effectiveness of
two novel strategies in our model.
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2.3.2 SGMPT. Multimodal knowledge graphs (MKGs), which in-
tuitively organize information in various modalities, can benefit
multiple practical downstream tasks, such as recommendation sys-
tems, and visual question answering. However, most MKGs are
still far from complete, which motivates the flourishing of MKG
reasoning models. Recently, with the development of general artifi-
cial architectures, the pretrained transformer models have drawn
increasing attention, especially for multimodal scenarios. How-
ever, the research of multimodal pretrained transformer (MPT) for
knowledge graph reasoning (KGR) is still in its early stages. As
the biggest difference between MKG and other multimodal data,
the rich structural information underlying the MKG still cannot be
fully leveraged in existing MPT models. Most of them only utilize
the graph structure as a retrieval map for matching images and
texts connected with the same entity. This manner hinders their
reasoning performances.

To this end, a graph Structure Guided Multimodal Pretrained
Transformer is proposed by [11] for knowledge graph reasoning,
termed SGMPT. Specifically, the graph structure encoder is adopted
for structural feature encoding. Then, a structure-guided fusion
module with two different strategies, i.e., weighted summation
and alignment constraint, is first designed to inject the structural
information into both the textual and visual features. To the best of
our knowledge, SGMPT is the first MPT model for multimodal KGR,
which mines the structural information underlying the knowledge
graph. Extensive experiments on different datasets demonstrate
that our SGMPT outperforms existing state-of-the-art models and
prove the effectiveness of the designed strategies.

3 FUTUREWORKS
Beyond my current research scope, there are two key problems
restricting the development of KGR, i.e., efficiency, and the way to
cooperate with LLMs, which I plan to work on in the future.

Efficient KGR. Existing KGR models require either full graph
propagation or full graph searching, which is hard to scale to real-
world scenarios, since billion-node-level graphs. To alleviate such
issues and make the existing models better benefit our real-world
applications, we plan to try to filter out the key entities in given
KGs by using techniques like graph pooling, subgraph extraction,
etc. Therefore, the scale of KGR models can be smaller, leading to a
more efficient algorithm.

Collaborative Reasoning with KGs and LLMs. Large lan-
guage models (LLMs), i.e., ChatGPT, GPT-4, have huge impacts due
to their promising reasoning capacity and generalizability. How-
ever, these models still suffer from their poor reliability, which
may be solved when well cooperated with KGR models, like using
knowledge graph-based retrieval augmented generation (KG-RAG)
techniques. Moreover, leveraging KGs to constrain the hallucination
problem in LLMs is also worth exploring.
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