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ABSTRACT
In the present era of big data, the challenges of data management
have grown significantly. One crucial aspect is the management of
data storage. As data volumes continue to expand, effective storage
management becomes increasingly essential. Meanwhile, evolving
hardware technologies offer various storage options, ranging from
HDDs to SSDs and NVRAMs. To this end, hierarchical (multi-tier)
storage systems (HSS) have emerged as a solution, organizing dif-
ferent storage devices hierarchically to provide various storage
options. However, managing multiple storage tiers and their data,
while optimizing performance and cost-efficiency, is extremely
complex. In this paper, we discuss the challenges in the manage-
ment of hierarchical storage system. We summarise our previous
contributions on tackling these challenges, including the proposal
of a reinforcement learning (RL) based data migration policy and
the design of an autonomous hierarchical storage management
framework HSM-RL. We also present the applications of HSM-RL
in scientific data management to demonstrate its adaptability and
scalability. Finally, we conclude our work to date and outline the
future research plans.
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1 INTRODUCTION
The advances in big data technologies and applications across di-
verse domains have catalyzed the generation and accumulation
of vast amounts of digital information. While these advancements
greatly enhance the development of powerful data-driven approaches,
they also bring significant challenges in managing large-scale data
effectively. Particularly, one essential aspect is storage manage-
ment, where the primary objective is to achieve a balance between
costs, performance, and capacity. To adapt the increasing amount
of data, storage systems evolve to scaling horizontally and ver-
tically, resulting in distributed storage (file) systems (DFS) such
as HDFS, GPFS, Ceph, and hierarchical storage system (HSS) for
instance HP AutoRAID [14], IBM storage hierarchies [3]. While
DFS mainly focuses on high data availability, fault-tolerance, and
system scalability, HSS arises from the natural structure of storage
hierarchy considering the available technologies and their cost and
performance characteristics. With the development of storage me-
dia, there are now various choices of storage devices ranging from
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RAMs and SSDs to HDDs and Tapes. Based on their different access
speeds and storage capacities, HSS is formed by integrating various
storage devices in a multi-tier hierarchical structure. Figure 1 illus-
trates an example of a three-tier HSS, where higher tiers offer fast
read/write (R/W) speed, but are expensive and consequently small
in size. Whereas lower tiers are less expensive, larger in capacity,
but significantly slower in terms of input/output (I/O).

As the heterogeneity of available storage devices becomes in-
creasingly remarkable, the HSS structure has gained significant
attention in the design of recent advanced distributed storage and
processing systems including StoRM-GPFS-TSM [1], OctopusFS [7],
Hermes [8]. However, efficiently managing data across multiple
tiers within HSS presents a highly challenging multi-objective op-
timization problem due to the diverse characteristics of storage
devices and the complex, variable workloads they encounter.
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Figure 1: Example of a three-tier HSS, in which various storage de-
vices are connected hierarchically in the system according to their
characteristics.

An effective Hierarchical Storage Management (HSM) strategy is
essential for balancing costs between infrastructures and end-user
demands while maximizing resource utilization and performance.
HSM achieves this balance by dynamically prioritizing frequently
accessed and important data for placement on faster, more expen-
sive storage tiers, while relegating less critical and infrequently
accessed data to slower, low-cost tiers. Given the inherent vari-
ability in workloads and the resulting fluctuations in data access
patterns [2], a dynamic HSM strategy capable of leveraging latent
information to accurately determine data importance and optimal
data placement is crucial. Such a strategy enhances performance
and ensures cost-efficiency, effectively addressing both infrastruc-
tural and user-end requirements. To achieve this, we propose an
autonomous HSM solution based on reinforcement learning (RL),
which provides an intelligent approach to managing the complexi-
ties of HSS.

This thesis explores the utilisation of RL in designing efficient
autonomous HSM. We first formulated the HSM problem into a
Markov Decision Process (MDP) to bridge the connection between
HSM and RL [17]. In the paper we also proposed a RL-based data
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migration policy and a scalable HSM framework built upon the pol-
icy (HSM-RL). We testified the proposed approach via experiments
on both simulation and cloud-based environments. Subsequently,
we zoomed into the scenario of scientific data management [16],
where we analysed the unique characteristics of data management
in scientific applications and provided corresponding solutions
with the HSM-RL framework. Specifically, we presented four differ-
ent scientific datasets, and dedicated efforts on using the HSM-RL
framework to manage them. With the empirical results, we further
demonstrated the effectiveness and scalability of the HSM-RL.

The remaining of this paper is structured as follows: Section 2 dis-
cusses recent developments in related fields and current limitations;
Section 3 elaborates the theoretical base and detailed design of our
HSM-RL framework; Section 4 covers the applications in scientific
data management and extends the discussion on adaptability and
scalability; Section 5 summarises the experimental results from our
previous works; Section 6 concludes our contributions and presents
the prospects for future research.

2 RELATEDWORKS
Early designs of HSM controlled data migration between tiers by
employing classical cache replacement policies, for instance LRU,
LFU, ARC, MQ, Greedy-Dual-Size [11]. These approaches rely on
predefined parameters such as recency, frequency, size, or their mix-
tures. While the usage of certain parameter(s) make them straight-
forward and simple to implement, it also weaken their adaptability
to changing workloads. Subsequent efforts aimed at incorporat-
ing more information from the workloads, for example EXD [5],
DUX [9], ReCa [12]. Yet these parameter-driven approaches require
manual reconfiguration when the workload changes, and have no
balance between performance and cost.

Machine learning and optimization methods were also explored
to develop more intelligent policies. K-means clustering was used
for data placement in [15]. Classification model XGBoost was ap-
plied to decide the upgrade and downgrade of files [6]. Neural
Network was also widely used in recent researches, including but
not limited to [13]. Evolutionary optimization methods were also
explored, such as Discrete Particle Swarm Optimiztion (DPSO) [4].
However, these methods either need extensive supervised pretrain-
ing or have slow convergence with changing request patterns.

Another major paradigm of machine learning and optimal con-
trol, RL however, has not been extensively explored in HSM. RL
focuses on training intelligent agent to take actions in a dynamic
environment to maximize cumulative rewards. In fact, RL is highly
suitable for HSM, which aims to manage data placement (actions) in
HSS (environment) under various workloads (dynamic) to achieve
high performance (reward).

3 HSM-RL
In this section, we motivate the usage of RL in HSM and present
the detailed design of HSM-RL.

3.1 Reinforcement Learning
RL is a broadly acknowledged decision-making approach aimed at
developing intelligent agents capable of learning from environmen-
tal interactions to make optimal decisions, adapt to new circum-
stances, and efficiently achieve defined objectives. RL accomplishes
these objectives by solving the Markov Decision Process (MDP),

which is an environment formulated as < 𝑆,𝐴, 𝑃, 𝑅,𝛾 >. Here 𝑆 is
the set of states,𝐴 is the set of actions, 𝑃 is the transition probability
matrix, 𝑅 stands for reward and 𝛾 is the discount factor. RL agent
solves MDP by learning the best policy (𝜋 : 𝑆 → 𝐴) that deter-
mines the most appropriate action based on the current state. This
determination of the best action derives from optimizing both the
state-value function and action-value function under the chosen
policy and action. The agent continuously updates its value func-
tions, learning from the states transitions, enabling it to perform the
best action based on the current state and its refined parameters.
3.2 RL-based policy
To address the HSM challenge using RL, we first formulate the HSM
problem into an MDP. In this MDP, the states 𝑆 include variables
that represent the status of tiers, while actions𝐴 correspond to data
migrations between these tiers. The transition probabilities 𝑃 are
assumed to follow a uniform distribution among all potential states.
The reward 𝑅 is defined as the negative of the system response time,
and the discount factor 𝛾 is considered as a hyperparameter.

Explicitly, with identifying the frequency, recency, size of file as
the most influential factors to data migration process, we define
the tier-wise state variables 𝑆 = {𝑠1, 𝑠2, 𝑠3} as follows:

• 𝑠1 : Average temperature of files in a tier, where the tem-
perature (or the hotness level) of a file is an measurement
of access frequency and recency1.

• 𝑠2 : Average weighted temperature, calculated as the aver-
age of file size times its temperature, taking into considera-
tion the file temperature as well as the file size.

• 𝑠3 : current queuing time in a tier, indicating the latency
level in the tier.

These three state variables are defined in the way that all influential
factors are considered. However, the definition of state 𝑆 is not
limited to these three variables, but a flexible design adaptable to
different use cases [16].

Subsequently, we define the value function 𝑣𝜋 (𝑠), which is the
expected return starting from state 𝑠 ∈ 𝑆 , following the policy
𝜋 . Since the state variables are continuous, to present the value
function we use a functional approximation in the form of the
Fuzzy Rule-Based function (FRB). The FRB function maps the input
𝑥 ∈ R𝑘 to a scalar output 𝑦 by a combination of rules such as
IF 𝑥1 ⊂ 𝐶𝑖

1, 𝑥2 ⊂ 𝐶𝑖
2, ..., 𝑥𝑘 ⊂ 𝐶𝑖

𝑘
THEN 𝑝𝑖 , where 𝑥1, ..., 𝑥𝑘 is the

components of 𝑥 ,𝐶𝑖
1, ...,𝐶

𝑖
𝑘
are fuzzy categories, and 𝑝𝑖 is the output

parameter of this rule. The output of the rule-based function is then

a weighted average of 𝑝𝑖 : 𝑣 (·) = 𝑦 =

∑𝑁
𝑖=1 𝑝

𝑖𝑤𝑖 (𝑥 )∑𝑁
𝑖=1 𝑤

𝑖 (𝑥 ) , where 𝑁 is the

number of rules, and𝑤𝑖 (𝑥) is the weight of rule 𝑖 .
With the definitions above, we form the migration policy for

making decisions of file transfers between tiers 𝑖 and 𝑗 in the fol-
lowing form: file 𝑘 should be upgraded from tier 𝑖 to tier 𝑗 if

𝑣𝑖up · 𝑠1𝑖 + 𝑣
𝑗
up · 𝑠1 𝑗 < 𝑣𝑖not · 𝑠𝑖1 + 𝑣

𝑗
not · 𝑠1

𝑗 (1)

where 𝑣𝑖/𝑗up/not is the value function of tier 𝑖/ 𝑗 after/before file 𝑘 is
upgraded; 𝑠1/𝑠1 is the average temperature of all files in tier if file 𝑘
is upgraded / not upgraded.

1For detailed explanation of the file temperature and how it is modeled, refer [16, 17]
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As the environment changes, the value function should be up-
dated to adapt to the new circumstance. We use an off-policy
method, Temporal Difference learning (TD(𝜆)). It updates the value
function 𝑣 (𝑠) as follows:

𝑣 (𝑠) = 𝑣 (𝑠) + 𝛼 (𝑅𝑡 + 𝛾𝑣 (𝑠𝑡+1) − 𝑣 (𝑠𝑡 ))𝑧𝑡 (𝑠),
𝑧𝑡 (𝑠) = 𝜆𝛾𝑧𝑡−1 (𝑠) + 1(𝑠 = 𝑠𝑛)

(2)

where 𝛼 is the learning rate, 𝑅𝑡 is the rewards at state 𝑠𝑡 at time
𝑡 , 𝛾 is the discount factor, 𝑧𝑛 is the eligibility trace, and 𝜆 is the
trace-decay parameter of TD(𝜆).

The HSM process with RL-based policy can be abstracted in three
steps, as shown in Figure 2. For each file access request, the RL-based
policy determines whether the file should be upgraded to faster
tier according to Equation 1, and sends migration request to the
storage system. Afterwards, the RL agents update their parameters
by Equation 2 in the back-end. These processes have also been
implemented in a cloud-based environment. For more details about
the framework structure and deployment, see [17].

HSS

RL agent3 

RL agent2

RL agent1

① Requests 
of file access 

② File migration 
based on RL-policy

③ update
parameters

Middle Tier

Slow Tier

Fast Tier

Figure 2: General processes of RL-based policy in HSM of the three-
tier HSS.
4 SCIENTIFIC APPLICATIONS
In our first article [17] we introduced a RL-based solution for HSM
in file systems, and demonstrated the efficiency and effectiveness
through experiments conducted on various regular datasets and
workloads in both simulation and real cloud-based environments.
However, following interdisciplinary discussions with colleagues,
we identified additional untapped potentials and challenging prob-
lems, particularly within scientific applications. Scientific datasets
often hold unique characteristics, for example in large-scale sci-
entific projects, multiple rounds of experiments are repeated to
investigate certain factors while maintaining consistent settings. In
these scientific datasets individual objects tend to have a defined
identical structure, resulting in uniform file sizes. Whereas unique
features related with the properties of applications differ each ob-
ject. These features also significantly impact access patterns, as on
many occasions a specific part of the data is required to perform a
specific analysis.

We showcased these special characteristics by presenting four
different scientific datasets: the BBBC fluorescence microscopy
images dataset, DNA sequences data from 1000 Genomes project,
Geometric mesh files generating by Finite Element Method for
solving airfoil angel of attack problems, and a phenotypic screening
dataset from a cell-based drug repurposing screen [16]. Each of
these datasets consists unique features, such as interestingness value,
population, angel of attack, antibody intensity. Meanwhile, as earlier
mentioned the file sizes in each dataset are equal, which makes

the file-size-related state variable 𝑠2 ineffective. To tackle these
challenges, we introduced new versions of HSM-RL with different
variables definition tailored to each use case.

The workloads in each scientific application are also diverse. We
presented six different workloads across the four datasets. These
workloads exhibit various access patterns, for instance repeated
request of files with their specific features valued within a range,
batch accesses of certain parts divided by unique features, decreas-
ing number of file requests after gradually applying filters. Ad-
ditionally, we conducted experiments in a multi-dataset scenario
where multiple datasets generated from different groups of settings
were simultaneously managed in one HSS. Further details about the
experimental settings will be described in the next section, along
with discussions on the results.

5 EXPERIMENTAL RESULTS
We first conducted simulation experiments with a synthetic dataset
as the proof-of-concept. 20,000 files with varying sizes between 10
KB and 200 MB were comprised, with the total size of the whole
dataset to be 20 GB. The access pattern of each file followed Poisson
distributions with different expectations. The left side of Figure 3
shows one result from the simulation experiments. We compared
three RL-based policy with different initialization against three
rule-based policies based on file frequency, recency, and size. To
evaluate their efficiency and effectiveness, we measured the aver-
age number of file migrations in time intervals and the estimated
system response time at certain timestep. Both RL-based policies
and the rule-based policies achieved similar system response time
(the orange bars), indicating their effectiveness in managing file
distributions among tiers according to the workload. However, the
rule-based policies resulted nearly ten times more file migrations
than the RL-based policies, illustrating the high efficiency of RL-
based policy.

Figure 3: Left: Average number of file migrations and the system
response time of experiments under different policies. Right: File
migrations amount in bulk deletion experiment

To further demonstrate the adaptability and scalability of the
HSM-RL, we carried out more experiments on various scenarios,
such as access patterns from different distributions, continuous
adding of new files, bulk deletions at certain points. The right side of
Figure 3 shows the explicit file migrations number in the experiment
of bulk deletion. From the plot it can be observed that the file
migration pressure resulted by the RL-based policy is constantly
much lower than rule-based policy.

Special use cases such as the scientific applications we discussed
in section 4 were also investigated in [16]. The focused research
questions include the effectiveness of proposed policy in terms of
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application response time, the adaptability of RL-based policy with
varying numbers of state variables, and the scalability of manag-
ing multiple datasets in one system. Table 1 records the average
response time per round of file accesses in each experiment of dif-
ferent datasets under diverse policies. The results demonstrate the
adaptability of our RL-based policy in effectively managing various
workloads and multi-datasets scenarios.
Table 1: Average response time (ms) per round for workloads
in each scientific dataset using different policies.

Policy Experiments on different dataset
BBBC Airfoil Genomes Screen Multi-

LFU 9061 3601 21581 18099 8132
LRU 9056 3534 15150 19431 9704
MF 8906 3523 20129 18062 8970

K-means 8810 3599 21078 18096 8076
RL 8681 3460 15006 17924 7988

6 CONCLUSION AND PROSPECT
In this paper we discuss the challenges in hierarchical storage man-
agement. We propose a reinforcement learning based approach for
autonomous HSM, and a scalable framework HSM-RL with flexible
design space. We also study the special scenarios in scientific appli-
cations, where we show the adaptability of the RL-based approach
to different use cases and the scalability of HSM-RL framework
in managing multiple datasets. The experimental results further
demonstrate the efficiency and effectiveness of our RL-based ap-
proach.

For future research plans, we envision two aspects. First we note
that modern storage devices offer increasingly fast read/write ac-
cess, with new technologies like NVMe, PCIe, M.2, Optane. More
specifically, modern SSDs differ from traditional HDDs in two ma-
jor ways: read/write performance asymmetry and access concur-
rency [10]. Therefore, we are designing a new RL-based policy
that is aware of the asymmetry and concurrency of devices in the
HSS, in order to fully exploit their I/O performance. Additionally,
beyond the general data placement at the file level in file systems,
page placement—where page is the smallest unit of data—is also
worth investigating, especially in data systems with page-oriented
bufferpools. Thus, we extend our RL-based method from file-level
data management to page-level data management.

Apart from the storage hierarchy we studied in previous works,
we introduce a new concept called InformationHierarchy.While the
storage hierarchy leverages access patterns and file properties (such
as temperature, size, and other use-case-specific features) along
with the hierarchical characteristics of storage devices to enable
efficient data management, the Information Hierarchy focuses on
utilizing the latent information within the data itself to create the
hierarchy. The information hierarchy could not only help users to
comprehend their datasets from scratch without the costly efforts
from domain experts, but also further guide the management of
the storage hierarchy. Currently we are investigating the recent
advances in self-supervised and unsupervised learning to explore
their potential applications in data management.
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