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ABSTRACT
In the era of big data, data lakes have become pivotal for storing vast
amounts of diverse data types. These repositories are increasingly
leveraged for machine learning (ML) applications, yet significant
challenges remain, particularly in data integration and the efficient
use of hardware resources. Traditional data preparation and in-
tegration processes are resource-intensive and time-consuming,
creating bottlenecks that hinder ML training efficiency. This paper
introduces novel methodologies to address these challenges by en-
abling direct ML training over columnar files, thus bypassing costly
materialization processes. Additionally, it explores the use of GPUs
to accelerate both data integration and ML training, enhancing
overall efficiency. Our approach leverages factorized learning and
matrix-represented metadata for effective ML training on columnar
storage formats and employs autoencoders for multimedia data
compression. This framework aims to significantly improve the
speed and efficiency of ML model training within data lakes, paving
the way for broader and more effective use in various domains.
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1 INTRODUCTION
In the era of big data, the concept of a "data lake" [12, 21] has
emerged as a pivotal architecture for storing vast amounts of un-
structured and structured data. A data lake retains data in its native
format, including files, multimedia, documents, and more, offering a
scalable and flexible environment for data storage and analysis. As
businesses continue to accumulate a wealth of raw data—from text
documents and videos to complex tabular data—these repositories
are increasingly recognized as invaluable resources for machine
learning (ML) models aimed at driving digital transformation and
enhancing business capabilities.

The trend of applying ML training over data lakes is gaining
momentum [12, 24], particularly with the integration of classic ML
models and advanced deep learning frameworks. These data lakes,
often ubiquitous yet not always identified as such in both personal
and business contexts, present a rich source for ML training. The
raw data stored within, now commonly processed into embeddings,
blur the traditional boundaries between different data formats. This
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Figure 1: Workflow of ML model training in data lakes.
transformation facilitates the advancement of deep learning and
multimodal learning, harnessing the potential to revolutionize how
businesses leverage their data assets.

Despite these attractive opportunities, significant challenges im-
pede the efficient utilization of data lakes for ML training. One of
the most prominent issues is the high cost associated with data
integration—preparing and unifying data from diverse sources for
ML models. In a ML pipeline, substantial portion of resources is
expended during data preparation phase [25] , overshadowing the
actual model training efforts. The traditional paradigm necessitates
a materialization process where data must be collected and related
to create a unified view for training. This process, typically reliant
on costly relational joins, involves intensive data access, movement,
and replication. When dealing with large datasets, these opera-
tions become bottlenecks that severely limit the throughput of ML
training tasks.

Furthermore, there exists a divergence in the hardware platforms
used for data integration andML training.While GPUs have become
the standard infrastructure for modern ML computations, data lake
operations are predominantly executed on CPU-based platforms [4–
6]. This disparity necessitates frequent and intensive data transfers
between heterogeneous hardware systems, further degrading the
efficiency of ML training processes.

Addressing these challenges, this paper proposes novel method-
ologies for efficient ML training within data lakes, leveraging both
the disparate and multimodal data in data lakes. We introduce an
innovative approach that allows direct training over columnar files,
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bypassing the need for costly data materialization. Additionally, we
explore the utilization of GPUs not only for ML training but also
for accelerating the data integration process, thereby minimizing
the performance bottlenecks caused by hardware disparities.

This paper is structured to methodically explore these issues and
solutions. We begin with a review of related work, highlighting
the current methodologies and their limitations. Following this, we
detail our problem statement and break it down into more specific
research questions. In the section on preliminary solutions, we
present our proposed architecture and methodology for training
models directly over columnar files using GPU acceleration. This
setup promises a significant enhancement in the efficiency and
speed of ML model training within data lakes, setting the stage for
transformative impacts across various domains.

2 RELATEDWORK
This section introduces related works on ML model training over
disparate data sources in data lakes. We categorize the relevant
studies into two main categories: ML training over disparate tables
and ML training over columnar files.

2.1 ML training over normalized tables
The integration of data preparation and machine learning (ML)
training is a significant challenge due to the costly data integration
processes in traditional ML pipelines. Various studies have aimed to
address these inefficiencies by proposing methods to train models
directly over normalized tables, thereby avoiding the expensive
materialization required for table joins and data movement.

Factorized learning [8, 15, 18] methods have been explored to
address this challenge. For instance, some approaches focus on
Generalized Linear Models (GLMs), decomposing data into man-
ageable parts for independent processing. However, these methods
are limited to GLMs and do not extend to more complex models.
Tree-based models [13] have also been adapted to work without
materialization, but these often require specific modifications to the
underlying algorithms, limiting their general applicability across
different types of ML models.

Advancements in factorized learning have aimed to support
feature interactions, extending applicability beyond simple linear
relationships. However, these methods remain limited to linear
or slightly non-linear models and struggle with highly non-linear
models such as deep neural networks (DNNs). One recent study [9]
show that factorized methods are constrained to neural networks
with specific architectures, such as those using ReLU activation
functions, highlighting significant limitations.

A notable gap in existing research is the lack of utilization of
Graphics Processing Units (GPUs) to bridge the divide between
data lake systems and ML training. GPUs can accelerate both data
integration [19, 23] and ML training processes, but current method-
ologies have not fully leveraged this potential.

One promising approach [19] proposes a metadata representa-
tion that unifies relational joins and linear model training using
linear algebra operations. This method enables the use of GPUs
to accelerate the entire pipeline, including both data integration
and ML training. However, the effectiveness of this approach is

highly dependent on data characteristics, and the speedup is not
consistent across different datasets.

Moreover, the single-table granularity of data organization poses
additional challenges. In real-world scenarios, especially with large-
scale tables, data is often stored in columnar file formats such as
Parquet [3] and ORC [2]. Even if an ML model can be trained
on a single table, the aggregation of data from these columnar
files remains a necessary and costly step, especially when data is
distributed across multiple storage systems.

Despite these efforts, significant gaps remain in integrating data
lakes and ML training. Current solutions either do not effectively
utilize GPUs or require extensive modifications to ML algorithms,
limiting their usability and performance. Additionally, these ap-
proaches primarily focus on structured data, overlooking the de-
mand for ML training with multimodal data in data lakes.

2.2 ML training over columnar storage
ML training over columnar storage [1–3] is an emerging field that
integrates data processing and ML training. Torcharrow, for ex-
ample, adapts tensor processing operators to columnar storage,
enhancing data preprocessing speed and enabling joint optimiza-
tion with ML training. However, these methods typically focus on
individual columns rather than entire columnar files, leading to
costly file aggregation steps.

Research has also explored accelerating ML training by lever-
aging columnar file structures. ColumnML [14] optimizes SGD for
columnar storage by basing weight updates on features rather than
rows. Features are partitioned, and the algorithm processes each
partition before moving to the next, reducing intermediate data
size and improving data locality. FPGA accelerators are introduced
to streamline decompression and decoding stages, enhancing per-
formance.

A recent study [20] proposes a modified Parquet file format for
efficient ML training with sparse features. This method improves
compression and I/O performance and introduces binary meta-
data to identify frequently used features, thus enhancing feature
projection in ultra-wide tables. Unlike ColumnsML, this approach
modifies the file format itself, making it more suitable for large-
scale, data-centric workloads. However, changing the file format
necessitates reprocessing all historical data, which makes its indus-
trial applicability questionable.

3 RESEARCH QUESTIONS
In light of the challenges and existing methodologies for ML model
training over disparate data sources in data lakes, this paper aims
to address the following research questions:

• How can ML models be efficiently trained directly
over columnar files without the need for costly data
materialization processes?
– This question investigates the feasibility of bypassing

the traditional materialization step, which involves ex-
pensive relational joins and data movement. It explores
methods that enable direct ML model training on data
stored in columnar file formats such as Parquet and
ORC.
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Figure 2: Illustration of how data in columnar files can be
mapped to a virtual target table using matrix-represented
metadata.

• What modifications to file formats, such as Parquet,
can make columnar storage more compatible with
training a wide range of ML models?
– This question focuses on the design and implementa-

tion of optimized columnar file structures and com-
pression methods that enhance compatibility with the
training processes of popular ML models, such as neu-
ral networks, while maintaining comparable compres-
sion ratios.

• What techniques can be employed to leverage GPU
acceleration for both data integration andML training
tasks within data lakes?
– This question explores the utilization of GPUs not only

for ML model training but also for accelerating the
data integration process, addressing performance bot-
tlenecks caused by data movement between heteroge-
neous devices.

By addressing these research questions, this paper aims to con-
tribute to the development of more efficient and scalable ML train-
ing methodologies over columnar storage in data lakes.

4 PRELIMINARY SOLUTION
This section presents preliminary solutions to the research ques-
tions outlined in Section 3. The proposed solutions serve as a mid-
dleware that bridges data lakes and ML systems. Our objective in
conceptualizing this middleware is to avoid the impracticality of
introducing an entirely new columnar file format, which would
necessitate the conversion of all historical data by practitioners
seeking efficient ML training in data lakes. Conversely, developing
new algorithms compatible with existing columnar storage formats
would require extensive modifications to current ML training algo-
rithms, resulting in a substantial workload. Therefore, our approach
aims to balance innovation and practicality, facilitating efficient ML
training without imposing excessive burdens on practitioners.

4.1 ML training over Parquet files
The core of training models over columnar files lies in understand-
ing the relationships between these files. Similar to factorized learn-
ing over tabular data, which describes the relationships between
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Figure 3: Autoencoders can be utilized as compression algo-
rithms for multimedia data in place of traditional lossless
algorithms. By stacking autoencoders with subsequent mod-
els, it is possible to enable multimodal model training over
columnar files.

schemas and records in normalized tables, factorized learning can
push ML training algorithms to operate on separated tables. Thus,
if we comprehend the relationships between files, we can further
push the training algorithms directly to the files without converting
them into tables.

A notable study [19] proposes a matrix-represented data inte-
gration metadata, where schema and entity mappings between
normalized tables are represented by binary sparse matrices. Specif-
ically, suppose the target table after materialization is𝑇 , the schema
mapping matrix𝑀 specifies how the columns of 𝑆 are mapped to
the columns of 𝑇 .

Definition 4.1 (Mapping matrix).

𝑀 [𝑖, 𝑗 ] =
{
1, if the 𝑗-th column of 𝑆 is mapped to the 𝑖-th column of𝑇
0, otherwise

Similarly, the indicator matrix 𝐼 can preserve row matching
between the source table 𝑆 and the target table 𝑇 .

Definition 4.2 (Indicator matrix [8]).

𝐼 [𝑖, 𝑗 ] =
{
1, if the 𝑗-th row of 𝑆 is mapped to the 𝑖-th row of𝑇
0, otherwise

In Fig. 2, we take Parquet files as an example. Based on this rep-
resentation, we can further derive that if the meaning of matrices
𝑀 and 𝐼 is modified to reflect how columns and row groups are
mapped to the target table 𝑇 , the operators in ML models can be
directly applied to columns and row groups in Parquet files. More
importantly, with this representation, the relationships between
rows are now extended to the content within row groups, which
are not necessarily tabular data. This modification facilitates multi-
modal learning over Parquet files, significantly enhancing usability
compared to factorized learning, which is limited to tabular data.
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4.2 Autoencoder-based compression
Another obstacle in integrating columnar files with ML training
arises from the necessity of compression during storage. Compres-
sion and decompression algorithms often do not preserve semantics
[11, 17], posing a significant challenge, particularly when dealing
with multimedia data such as videos and audios. For instance, mod-
ern computer vision models [7, 16] typically take image patches,
represented by matrices, as input. However, compressed data in
traditional columnar files cannot maintain the semantic integrity of
image patches. As a result, directly applying ML training over com-
pressed files is not feasible. Furthermore, decompression becomes
a significant overhead, especially for large multimedia datasets.
Therefore, the endeavor to train models over Parquet files also
demands the development of semantic-preserving compression
algorithms.

One potential solution, as illustrated in Fig. 3, is to utilize au-
toencoders as compression algorithms [10, 26] for multimedia data
in data lakes. The nature of data compression achieved by autoen-
coders has been extensively explored in computer vision domains.
Autoencoders use a lower-dimensional hidden space to represent
raw data. Although autoencoders are inherently lossy compression
algorithms, considering the general robustness of neural network-
based models, the degradation in effectiveness may be acceptable.
However, it is essential to empirically evaluate the extent of loss
and establish mathematical frameworks to determine error bounds
associated with this approach.

4.3 GPU-accelerated ML pipeline
Expanding upon the preliminary solutions discussed in Sections 4.1
and 4.1, we can envision a pathway where the ML pipeline, from
Parquet file to model training, leverages modern hardware for inte-
grated acceleration. The matrix-represented metadata transforms
file operations into linear algebraic operations. Subsequently, after
locating the data in specific locations within each file, autoencoders
can be employed for decompression. Due to the linear algebraic na-
ture of operations involved in handling files, autoencoders, and sub-
sequent model training, leveraging GPUs becomes advantageous.
Consequently, the entire pipeline can now be adapted to harness
the computational power of GPUs. While some works [14, 22] have
explored external accelerators to expedite the decompression stage
of columnar files, these methods typically require specifically de-
signed hardware or circuits rather than utilizing general-purpose
computing units. Furthermore, the autoencoder itself can be stacked
with other deep learning models, opening up additional opportuni-
ties to discover more effective autoencoders for compression while
simultaneously mitigating loss incurred during compression.

5 CONCLUSION
This paper has explored the challenges and potential solutions
related to ML model training over columnar files in data lakes.
Through our investigation, we have proposed preliminary solu-
tions, including leveraging factorized learning methodologies and
matrix-represented metadata to facilitate direct ML training over
columnar files. Additionally, we explored the potential of using
autoencoders as compression algorithms for multimedia data in

data lakes, thereby enabling the integration of modern hardware
acceleration, particularly GPUs, into the ML pipeline.

Looking ahead, our aim is to consolidate these solutions into a
cohesive middleware. This middleware will seamlessly integrate
with existing data lakes and ML frameworks, providing a robust
platform for efficient and scalable MLmodel training. By combining
these solutions, we envision a future where ML practitioners can
harness the full potential of columnar files in data lakes while
leveraging the power of modern hardware acceleration
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