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ABSTRACT
Rationalizing and better-managing energy consumption have be-
come primary objectives in the global effort to prevent climate
change. In this context, enhancing our understanding of electricity
consumption behavior is crucial. Thus, electricity suppliers have
installed millions of smart meters worldwide over the past decade,
capturing time-stamped electricity consumption data of the total
main power consumed in individual households. Nevertheless, sup-
pliers face significant challenges in extracting detailed information
from these aggregated signals, such as identifying which appliances
the customer owns and their typical usage. This task is complicated
by the reliance on low-frequency smart meter readings, which
combine signals from various appliances operating simultaneously.
Moreover, the scarcity of annotations and the large amount of long,
variable-length consumption series collected further complicate
data analysis and interpretation. In this Ph.D. work, we propose a
set of new solutions to tackle the appliance detection problem and
extract detailed information from smart meter data that overcome
the challenges listed above. First, we propose to tackle this task as
a binary time series classification (TSC) problem and subsequently
describe the Appliance Detection Framework (ADF), designed to en-
hance classifiers’ performance using long and variable consumption
series. Moreover, we introduce TransApp, a deep-learning architec-
ture that is first pretrained in a self-supervised way to enhance its
performance on appliance detection tasks. Finally, we propose an
interactive system based on a combination of TSC and explainable
classification that enables the localization of appliance patterns
without the use of strong labels.
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1 INTRODUCTION
With the urge to fight against climate change, energy saving is
emerging as a major lever. One way to achieve this goal is to help
consumers better understand their consumption so that they can
play an active role in the energy transition. In the last decade,
millions of smart meters have been installed across the globe by
electricity providers [1], capturing detailed timestamped data of
the total electricity consumed in individual households (called load
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curve or electricity consumption time series). These data are sup-
posed to allow electricity suppliers help individual customers un-
derstand their consumption. However, suppliers face significant
challenges in extracting detailed information from them, such as
identifying which appliances the customer owns and their typical
usage. This information is valuable since it can help customers save
by identifying over-consuming devices. To overcome these chal-
lenges, we need to directly detect appliance use from the recorded
smart meter data. However, the very low-frequency readings com-
monly used worldwide (e.g., 30min in France and the UK, and 60min
in Spain [13]) aggregate the power consumption of multiple appli-
ances running simultaneously, smoothing out appliance patterns
and exacerbating the analysis of these data [8]. In addition, the large
number of long and variable-length consumption series collected
by suppliers, coupled with the scarcity of annotations available,
further complicated the task of training accurate solutions.

Detecting appliances [8] is related to Non-Intrusive Load Moni-
toring (NILM), a well-known and growing research field that aims to
identify the power consumption, pattern, or on/off state activation
of individual appliances using only the total recorded consumption
signal [10]. Many solutions have been proposed in the literature,
such as signature-based methods that use information related to the
unique patterns of specific appliances [5]. Most of these studies rely
on smart meters capable of recording data at frequencies 1Hz, or
higher. However, since these devices use the smart grid systems for
data transmission, the majority of data currently available to suppli-
ers are at much lower frequencies. In addition, these solutions must
be trained using individual appliance power, i.e., knowing each
appliance’s exact state of activation and consumption power for
each timestamp. Unfortunately, gathering such data is expensive, as
each appliance needs to be monitored with sensors to measure its
individual consumption. Most of the data available from suppliers
for training their solutions are based on customer surveys that only
indicate whether or not they own a particular appliance. Another
way to tackle this challenge is to cast the appliance detection prob-
lem as a binary classification task, where a time series classifier
is trained to detect an appliance in a consumption series. Time
series classification represents a growing field of interest, and many
algorithms have been proposed in the literature [6]. However, due
to the lack of publicly available labeled datasets, no method from
this family has been applied to the specific task of appliance detec-
tion with very low-frequency consumption series. In addition, even
though these methods can be used for detecting if an appliance
has been used, they cannot determine when it was used.

To address the aforementioned problems, we propose the follow-
ing research directions:

• Appliance Detection Framework (ADF) [9], a framework
that enhances the performance of time series classifiers on
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the appliance detection task using long and variable length
consumption series.

• TransApp [9], a deep learning time series classifier that is
first pretrained in a self-supervised manner to enhance its
performance on appliance detection tasks.

• DeviceScope [7], an interactive application that enables
the detection and localization of individual appliance pat-
terns within a given period using explainable time series
classification approaches.

2 BACKGROUND
An electricity consumption time series is defined as a univariate
time series 𝑋 = (𝑥1, ..., 𝑥𝑇 ) of ordered elements 𝑥 𝑗 ∈ R1

+ follow-
ing (𝑖1, ..., 𝑖𝑇 ) time consumption indexes (i.e., timestamps). Subse-
quently, the sampling frequency is defined as the time difference
between two records index Δ𝑡 B 𝑖 𝑗 −𝑖 𝑗−1. Each element 𝒙 𝑗 , usually
given in Watt, indicates either the actual power at time 𝑖 𝑗 or the
average electric power called during the interval time Δ𝑡 . In our
work, we refer to very low frequency consumption series for data
sampled at more than 1min.

Detecting if an appliance has been used in a period of time can
be cast as a time series classification (TSC) problem [8] where a
classifier is trained in a binary supervised manner to detect the
presence of an appliance using only one label (0 or 1) for an en-
tire series. The most prominent approaches to solve TSC include
random convolution-based (e.g., ROCKET, Minirocket, Arsenal),
deep-learning-based (ConvNet, ResNet, InceptionTime), dictionary-
based, and interval-based algorithms [6]. For the rest of the paper,
we define formally the Appliance Detection Problem as follows:

Definition 2.1 (Appliance Detection Problem). Given an aggregate
smart meter time series 𝑋 and an appliance type 𝑎, we want to
know if appliance 𝑎 was activated at least once in 𝑋 (i.e., was in an
"ON" state, regardless of the time and number of activations).

3 OURWORK: ADF & TRANSAPP
We first conducted an extensive performance comparison of time
series classifiers on the appliance detection task [8]. The results
showed that deep-learningmethods (convolutional-based) performed
best, but novel solutions were needed to achieve the desired ac-
curacy. Additionally, our work pointed to the need to operate on
variable-length time series, which reflects the complexity of dealing
with real-world client consumption data. Building on the insights
of these results, we developed the Appliance Detection Framework
(ADF) and TransApp [9]. ADF is our proposed framework, designed
to enhance the performance of time series classifiers in detecting
the presence/absence of appliances in long and variable-length con-
sumption time series. To do so, ADF takes as input subsequences of
an entire consumption series and outputs one prediction. TransApp
is our novel deep-learning classifier. It is first trained in a self-
supervised manner using non-labeled consumption time series and
then fine-tuned on labeled data to detect a specific appliance. We
propose this architecture to take advantage of the large amount of
non-labeled data currently available to suppliers.
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Figure 1: The Appliance Detection Framework (ADF).

3.1 ADF
The proposed Appliance Detection Framework is illustrated in
Figure 1. ADF takes fragments of an entire consumption time series
as input. Subsequently, the classifier used inside the framework is
trained using subsequences. We note that this general framework
can be used with any classifier able to predict probabilities. The
proposed framework uses the following steps to detect the presence
of an appliance 𝑎 in a consumption time series 𝑋 , as follows.
Step 1. A consumption time series 𝑋 of length 𝑙 is first sliced in 𝑛

new non-overlapping subsequences of length𝑤 , using a tumbling
window. In addition, to keep positional information about the time
of the days and hours, we concatenate the sliced subsequences
with temporal encoded features (see Section 3.1.a for details). This
results in 𝑛 = ⌊ 𝑙

𝑤 ⌋ new multivariate time series 𝒙𝑤×𝑚 . With𝑚, the
number of channels.
Step 2.Afterward, we feed each subsequence to a classifier instance
previously trained to detect the specific appliance 𝑎. The model
then predicts a given detection probability for each subsequence
𝒙𝑖 , resulting in a vector of probability 𝑃𝑋 = (𝑝 (𝒙1), ..., 𝑝 (𝒙𝑛)).
Step 3. The value of the 𝛼∗𝑎-th quantile is then extracted from 𝑃𝑋 .
This value is determined during training to maximize an accuracy
measure on a validation dataset. Unlike simple majority voting, this
approach accounts for the model’s confidence in each subsequence.
Step 4. At the end, the final predicted label is given by rounding
the extracted value.

a) Temporal Features Encoding. We introduce additional chan-
nels to encode time to improve the model’s understanding of time-
related patterns and enhance detection. More precisely, we add new
channels as encoded features related to the days and hours by pro-
jecting these discrete features on a sinusoidal basis as 𝑇𝑒𝑠𝑖𝑛 (𝑖𝑡 ) =
sin

(
2𝜋𝑖𝑡
𝑝

)
and 𝑇𝑒𝑐𝑜𝑠 (𝑖𝑡 ) = cos

(
2𝜋𝑖𝑡
𝑝

)
with 𝑖𝑡 = {1, ..., 24} and

𝑝 = 24 for hour encoding, and 𝑖𝑡 = {1, ..., 7} and 𝑝 = 7 for days
encoding.

3.2 TransApp
TransApp is a deep-learning architecture specifically designed to be
used inside the ADF. As shown in Figure 2(a), TransApp results in
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Figure 2: Overview of the TransApp architecture and the two-step training process.

an encoder that can be combined with a specific head to reconstruct
a corrupted series during the pretraining or perform classification.

The core of TransApp combines a robust embedding block based
on dilated convolutions followed by a Transformer block. The Em-
bedding Block, shown in Figure 2(b), is composed of 4 convolutional
Residual Units (ResUnit) that use a dilation parameter 𝑑 = 2𝑖 (with
𝑖 = 1, ..., 4) that exponentially increases according to the ResUnit’s
depth. This block serves as a features extractor, providing localized
patterns to help the model perform better on classification tasks.
The Transformer block results in 𝑁 stacked Transformer layers,
depicted in Figure 2(b). It is used to learn long-range dependen-
cies and is a key part of our architecture to extract representation
and benefit of our pretraining process. We note that we introduce
DMSA instead of the original Self-Attention mechanism [11] in
the Transformer layer as a strategy that emphasizes inter-token
relations and enhances the model’s ability to capture meaningful
dependencies. As depicted in Figure 2(c), DMSA involves applying
a mask to the diagonal elements of the attention score matrix that
forces the scores to be zero after the softmax operation.

3.2.1 Two-step training process. We introduce a two-step training
process for the proposed TransApp architecture (cf. Figure 2(a)).
[Self-supervised Pretraining] Leveraging self-supervised pre-
training of a Transformer architecture on auxiliary tasks has pre-
viously been employed to enhance model performance on down-
stream tasks [2, 3]. The proposed pretraining process, inspired by
the mask-based pretraining of vision transformers [3], involves uti-
lizing only the input consumption series without any label informa-
tion. As depicted in Figure 2(a), this step results in a reconstruction
objective of a corrupted (masked) time series fed to the model input
using a linear layer after the core model architecture. We note that
the masking process used in our approach aims to corrupt random
segments (i.e., values set to 0) into the consumption series channel
of the input sequence.

During the self-supervised process, the model is trained using
a Loss function that calculates the Mean Absolute Error between
the predicted and true values of the masked elements of an input
consumption time series (L𝑀𝐴𝐸 ), defined as L𝑀𝐴𝐸 = 1

#𝑀
∑
𝑖 |𝑥𝑖 −

𝑥𝑖 |1, with #𝑀 the number of masked elements in the input series.
[Supervised Training] As depicted in Figure 2(a), the supervised
training results in a simple binary classification process using la-
beled time series. For this step, we use a classification head after

the core model architecture that comprises a global average pool-
ing, followed by a linear layer and a softmax activation. During
this phase, TransApp is trained using the Binary-Cross Entropy
Loss (L𝐵𝐶𝐸 ). Note that the label of the entire consumption series
is assigned to all sliced subsequences during the training process.

4 EXPERIMENTAL ANALYSIS
We now present our experimental evaluation of ADF & TransApp.
First, we conducted a comprehensive evaluation to compare the
state-of-the-art time series classifiers [6], aiming to identify the
most accurate and scalable option for appliance detection, consid-
ering factors like meter reading and consumption series length [8].
Our study found that deep learning and random convolution-based
classifiers are the most effective. Based on these findings, we com-
pared the performance of our solutions (ADF+TransApp) against
the best 9 different time series classifiers on 16 appliance detection
cases using two labeled electricity consumption datasets. We des-
ignated the non-pretrained architecture as TransApp and the pre-
trained one as TransAppPT (pretrained only on the labeled dataset).
Additionally, we named TransAppPT-l, a larger architecture that
was pretrained on a large dataset of 200k consumption series and
then fine-tuned on the two labeled datasets. We report detection
accuracy (using the F1-Macro Score) and execution time, noting
that due to space constraints, only aggregated results are presented
here. Figure 3(a) shows detection performance for different base-
lines (inside/outside ADF) compared to our solutions, indicating
that all classifiers benefit from ADF and that our solutions are the
most accurate. Figure 3(b) presents the average detection score for
TransAppPT-l with different pretraining data sizes, showing that
the score increases proportionally with the data used. Figure 3(c) il-
lustrates the inference time to predict 1K consumption series labels
based on input sequence length, indicating that TransApp scales
nearly linearly within our framework, while inference time signifi-
cantly increases for long sequences outside the framework. These
preliminary results are auspicious, as they show the superiority of
the proposed approaches. Moreover, we demonstrate that pretrain-
ing TransApp on large consumption series data can significantly
improve its performance on downstream tasks. We note that this
solution can be applied to data series in different domains, and im-
prove classification performance in situations with limited labeled
data (e.g., in the health domain).
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Figure 3: Overview of the experimental evaluation results: (a) Avg. detection score results for the different approaches (in-
side/outsideADF); (b) Impact of the amount of unlabeled data used for pretraining; (c) Running time for classifiers (inside/outside
ADF) to predict 1K instances labels according to the entire input consumption series length.

5 ONGOING AND FUTUREWORK
In this work, we proposed new solutions to identify if the presence
of a specific appliance; we are now focusing on proposing solutions
to detect when the appliances have been used, as well as their
individual associated power consumption. We briefly describe our
ongoing and future work during this Ph.D.’s final year.
[DeviceScope] We are developing an interactive system named
DeviceScope [7] to allow non-expert users to better understand
electricity consumption data by detecting and localizing individual
appliance usage patterns. The system’s core is based on a combina-
tion of trained time series classifiers and explainable classification
approaches [12]. More specifically, if a time series classifier detects
the presence of an appliance over a time period, a classification-
based explainability method is then applied to identify the part of
the time series that contributed to the label prediction, enabling
the highlighting of the appliance usage pattern. To the best of our
knowledge, DeviceScope is the first system to enable appliance
localization using scarce labels for training.
[TransApp for energy disaggregation] Energy disaggregation
aims to retrieve individual power consumption using only the to-
tal aggregated main power recorded by a smart meter. Achieving
this task is valuable as this information can be used to provide a
detailed breakdown of power consumption for each appliance on
your electricity bill. This task is challenging as (1) the individual
appliance ground-truth data are scarce for training accurate so-
lutions, and (2) the non-stationary nature of consumption series
can cause shifts in data distribution and significantly affect model
performance [4]. Therefore, our future work involves enhancing
the TransApp architecture to perform energy disaggregation, while
accounting for the non-stationary aspect of electricity consumption
data and proposing new pretraining methods to benefit from the
large amount of unlabeled data currently available to suppliers.

6 CONCLUSION
This work introduces new approaches to address the appliance
detection task using real-world smart meter consumption series,
characterized by low-frequency readings and scarce labels. We in-
troduced ADF, a framework designed to enhance the performance
of time series classifiers on this task, and TransApp, a novel deep-
learning time series classifier that is first trained in a self-supervised
manner to leverage large amounts of unlabeled data. We showed
that ADF significantly improves time series classifier performance

for appliance detection tasks, and TransApp combined with ADF
is the most accurate solution. Based on this work, we introduce
DeviceScope, an interactive application for localizing individual
appliance usage patterns, using only weak labels. These prelimi-
nary results are very promising; they set the ground for further
advancements in this area, including the use of weakly supervised-
based approaches for appliance pattern localization and large-scale
pretraining for energy disaggregation.
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