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ABSTRACT
In this PhD project, we will investigate enhancements for columnar
storage file formats, which play a crucial role in database work-
loads, but also increasingly in machine-learning workloads, with
the overall goal of improving security in next-gen Data Lakes. This
is investigated in three lines of proposed work to develop (i) a
vector-friendly encryption file layout that allows efficient process-
ing on both CPUs and GPUs in our new FastLanes format, (ii)
hybrid encrypted query processing, in which decryption happens
client-side, introducing new techniques that allow cloud servers to
skip encrypted data in predicate pushdown; and (iii) oblivious data
access techniques that exploit the compaction processes already
necessary for data life-cyle management in Data Lakes.
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1 INTRODUCTION
Data privacy and security are fundamental rights in our society. This
includes securing software and systems that run in cloud services,
which are commonly used for both computations and storage of
data. To strengthen the security of the end-to-end query processing
pipeline, we ought to secure data at rest (i.e. while being stored
on disk), data in use (i.e. while being processed), and data access
patterns, fromwhich amalicious actor could infer information about
the underlying data. Security of information processing however
has no one-size-fits-all solution and should be defined in terms of
a threat model specific to an application. For instance, one could
assume that an attacker has the ability to (i) obtain temporary access
to the server and obtain a snapshot, (ii) monitor cloud storage access
patterns and read or tamper with cloud-stored data, or (iii) gain full
access to cloud machines. Data Lakes are a popular way to manage
large amounts of data stored in the cloud, using open data formats.
Examples are Apache Iceberg and Delta Lake [6], which add a layer
of abstraction over tables stored in the cloud as large collections
of Parquet data files. This layer contains meta-data that specifies a
table schema and lists which files hold its (deleted) rows, enabling
e.g. access to multiple versions of the stored data.

Lack of security. At the very least, Data Lakes and columnar
formats should support encryption – a feature already supported
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Figure 1: We foresee three lines of work: (i) Vector-Friendly
Encryption to make decryption fine-grained to integrate it
in vectorized execution and optimize cache usage, (ii) Hybrid
Encrypted Query Execution, that can move decryption to the
client, while still allowing server-side skipping on encrypted
data, (iii) to introduce data cloaking in data re-organization
to create Access-Oblivious Data Lakes.

by Parquet and Iceberg but not yet by Delta Lake [6]. FastLanes [1,
2], a new columnar storage file format, is still in the prototype
stage and does not include any security features yet. At this point,
existing security measures (i.e. simple encryption) in both Data
Lakes and columnar file-formats are at most partly sufficient in all
three aforementioned scenarios. For example, processing encrypted
data requires its decryption into plaintext, where it is vulnerable in
cases (ii) and (iii). In theory, even in the case of (i), an attacker could
read decrypted data present in data caches and use this information
to infer other values. In addition, in case of an attacker in scenario
(ii) and (iii), plain encryption does not provide any mitigation for
access pattern leakage. This might reveal sensitive information about
the underlying data; in particular when data access patterns are
not uniformly distributed.

Security is a trade-off. Solutions that enhance security often
greatly reduce the performance or practicality of a system. En-
cryption on its own is already an expensive process, but we also
need to encrypt metadata to avoid leakage. As a consequence, data
skipping techniques in columnar file-formats and Data Lakes be-
come unusable. Instead, when processing encrypted data, we are
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often forced to decrypt chunks of data that would be skipped oth-
erwise. A straightforward solution for securely processing data
in use while exploiting efficient data skipping techniques would
be using Trusted Execution Environments (TEEs), such as origi-
nally Intel SGX [9], and more recently Confidential Virtual Machines
(CVMs), such as AWS Nitro Enclaves, Intel TDX and AMD-SEV.
However, its availability is limited and TEEs always reduce query
processing performance due to encryption mechanisms and expen-
sive cache misses [8, 9, 13, 15]. To mitigate the performance over
in TEEs, we therefore aim to minimize cache misses by means of
e.g. vector-friendly encryption.

Alternatives for TEEs. More concerns regarding the usage of
TEEs include that (i) e.g. Nitro requires trust in AWS, (ii) the se-
curity research community typically quickly succeeds in finding
vulnerabilities and (iii) TEEs do not prevent access pattern leakage.
Therefore, a TEE should be considered as a hardening technol-
ogy rather than guaranteed security for processing sensitive data.
However, despite the doubts regarding their sufficiency for some
applications, cloud vendors are increasingly adopting TEEs. This
is moslty due to a lack of mature alternatives to secure data in use.
For example, systems can adopt Homomorphic Encryption (HE) to
perform computations on encrypted data, or Property Preserving
Encryption (PPE) to evaluate an encrypted predicate. HE in fact has
the property to perform additions and multiplications on encrypted
data such that 𝐸𝑛𝑐𝑘1 (𝐴) + 𝐸𝑛𝑐𝑘2 (𝐵) = 𝐸𝑛𝑐𝑘 (𝐴 + 𝐵), where 𝐴 and
𝐵 are distinct plaintexts encrypted with key 𝑘1 and key 𝑘2 where
𝑘1 = 𝑘2 = 𝑘 . However, HE is too expensive in terms of performance
and storage overhead to be practical yet for an analytical DBMS
and PPE suffers from serious security concerns.

A more feasible alternative would be using a split-query process-
ing model [17] that performs as much processing as possible on the
server, without decrypting any sensitive data. Instead, it transports
the intermediate and encrypted query result to the client, which
then takes care of the decryption and the computation of the final
query result. Here, it is vital to minimize the data volume sent to the
client for faster query processing. A novel form of split-query pro-
cessing was recently introduced by MotherDuck [7], which hosts
a DuckDB cloud service. They leverage the fact that any DuckDB
application contains a local DuckDB, since all DuckDB APIs embed
one, by introducing hybrid query processing. In their processing
model, query work is split between a cloud DuckDB server and
a DuckDB instance embedded in the client application. Hence, it
could be useful to introduce encryption in hybrid query processing,
according to the split-query processing model mentioned above.

A GPU-friendly design. In this PhD project, we focus on security
for columnar storage and Data Lakes, since both are intertwined.
We however think that the current status quo with Parquet as the
dominant data file format for Data Lakes could be disrupted by
the increased importance of Machine Learning (ML) workloads. To
enable secure computing for ML workloads, the TEE space also
provides secure environments for GPUs – e.g. NVIDIA introduced
confidential computing hardware features in its Hopper and Black-
well GPUs1. However, decryption and other pre-processing tasks of
ML are commonly pushed upon CPUs, making sensitive data more

1www.nvidia.com/en-us/data-center/solutions/confidential-computing

vulnerable while being processed. Therefore, we aim to push Data
Lake scans, which perform decryption and decompression, into the
GPU. This is challenging for Parquet, since it heavily depends on
compression of relatively large pages using general-purpose codecs
like snappy, zstd and lz4. The decompression algorithms for these
have an irregular control-flow, which causes control divergence
among the threads in a GPU warp. The coarse decompression gran-
ularity of Parquet does not fit the GPU caches, leading to spilling
of decompressed data to global memory of the GPU, which in turn
significantly increases bandwidth usage. Therefore, reading Parquet
files on a GPU wastes many of its resources [18]. FastLanes is a
novel columnar storage file format under design at CWI [1, 2], that
achieves an order of magnitude higher decompression performance
than Parquet on CPUs, because compilers can auto-vectorize its
decompression kernels into efficient SIMD instructions [1]. This is
enabled by its novel data-parallel column encodings that also natu-
rally map on efficient GPU kernels, and is fine-grained so it does
not overrun GPU caches. Therefore, we aim to focus on enhancing
security for the FastLanes file-format, since it is suitable for both
CPUs and GPUs [2].

Research Questions. The main aim of this PhD research is to
investigate how we can enhance the security of columnar storage
formats, and making the design of FastLanes security-friendly, such
that it becomes a building block for (more) secure next-gen Data
Lakes. We formulate the following three research questions:

(1) Vector-Friendly Encryption: how to enhance the data
format such that it allows fine-grained vectorized decryp-
tion, to make it performant on both CPUs and GPUs?

(2) Hybrid Encrypted Query Processing: How can we lever-
age encryption techniques such as homomorphic encryp-
tion in ZoneMap/MinMax metadata to allow safe server-
side encrypted data skipping and how can we optimize the
column encryption layout to support encrypted predicate
pushdown?

(3) Access-Oblivious Data Lake Re-organization: how can
we enhance the re-organization strategies already part
of Data Lakes for compacting and re-clustering of large
amounts of big data files to cloak access patterns to these
files – and what consequences could this have for the secu-
rity design of the FastLanes format?

2 RELATEDWORK
Columnar File-Formats such as Parquet and ORC already offer
some form of encryption. For instance, Parquet provides modular
encryption, where footers, headers, metadata, columns and data
pages are encrypted separately. Its page encryption has a default
granularity of 1MB. This means that in a scan of multiple columns,
the decrypted pages will typically not fit the L1/L2 CPU cache.
However, in scenarios where data in usemust be processed securely,
Intel SGX and AMD-SEV are often used, and in such TEEs, cache
misses are very expensive [8, 9, 13, 15]. In addition, Parquet and
ORC are not optimized for ML workloads. Bullion [12] is a novel
columnar storage format that addresses specific characteristics of
ML datasets, such as columns holding quantized floating-point
types, compressed sparse feature vectors and very wide tables, for
which it provides random meta-data access without deserialization.
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However, while Bullion - similar to Data Lake formats - proposes
deletion vectors as a solution for deletion-compliance, it does not
focus on security.

Secure Databases ensure privacy and integrity by providing cryp-
tographic methods, e.g. homomorphic encryption, for computing
query results on encrypted data [5, 14]. However, existing solu-
tions have practical issues or are not performant. The early proto-
type CryptDB [14] as well as the currently most mature solution,
Microsoft Always Encrypted [5] are both transactional systems
rather then analytical. Using per-column encryption in a row-based
storage layout, introduces significant storage overhead, because
values are encrypted individually. Regarding analytical queries,
Monomi [17] introduced split client-server query execution, en-
abling to execute arbitrarily complex queries over encrypted data
between a server and a client. However, Monomi used PostgreSQL
as its database engine, which is an OLTP system; hence columnar
storage, MinMax statistics and vectorized execution (or decryption)
with or without predicate pushdown did not apply there.

Data Lakes can provide tabular or columnar- encryption to en-
hance security, by encrypting both data files and meta-data files.
Currently Apache Iceberg supports this, but Delta does not (yet) [6].
However, there is no security mitigation for passive attackers that
can observe access patterns. Opaque [19] hid access patterns by
performing full table scans, which imposes a significant perfor-
mance penalty. It used a modified SparkSQL to compute in TEEs,
and because it was a distributed system, it also ensured that com-
munication between distributed operators was oblivious, e.g., using
its padmode, which came at large additional cost. As an alternative,
ObliDB [10] introduced oblivious physical operators inside a hard-
ware enclave and introduced index data structures with oblivious
access. However, Data Lakes do not support indexes, and focus on
predicate pushdown (data skipping) to reduce table scan cost. Our
work seeks to enable this while still providing oblivious access.

3 ENVISIONED APPROACH
This PhD research poses several challenges; we will focus on three
lines of research, depicted in Figure 1, which entail (i) Vector-
Friendly Encryption, (ii) Hybrid Encrypted Query Processing and
(iii) Access-Oblivious Data Lake Reorganization.

3.1 Vector-Friendly Encryption
Efficient I/O in columnar storage is usually performed in blocks
and cached in compressed form in a buffer manager. A vectorized
query processor then takes small compressed vectors, where the
decompressing scan is the source operator in a query pipeline. We
can leverage this vectorized processing model by encrypting vec-
tors rather then single values or large pages, since vector-friendly
decryption can speed-up query processing by decrypting and de-
compressing in one-pass by keeping (intermediate) data in the
processor cache. Prior research [4, 8] suggests that the synergy
between compression and encryption could improve query pro-
cessing performance. We therefore argue that it makes sense to
first compress and then encrypt data to mitigate encryption over-
head. However, before integrating well-performing vector-friendly
encryption into FastLanes [1], we will investigate the synergy of

first compressing and then encrypting data in DuckDB [16], using
its compression API to test the performance on different readily-
available lightweight compression methods, such as ALP [3], RLE
and DELTA before designing a vector-friendly encryption mecha-
nism, that is suitable for both CPUs and GPUs.

Moreover, when processing encrypted data, we want to be able
to skip vectors that are not required to compute the query result.
This can be achieved by using AES Counter mode (AES-CTR) for
[en/de]cryption, from which a fast open-source implementation is
available by OpenSSL. A chunk of plaintext data to be encrypted
is usually randomized with a nonce or initialization vector (IV) to
ensure different ciphertexts. AES-CTR requires a nonce to be unique
but not random. We can leverage this characteristic to reduce stor-
age overhead by deterministically constructing the nonce from
the position of the vector, and e.g. the column name. Note that
we should carefully evaluate the possibilities for constructing the
nonce; nonce reusage with the same key can cancel out the encryp-
tion. We are aware that this mode of encryption does not offer an
integrity check. Hence, we will investigate alternatives to verify
integrity, such as comparing a hash or pre-computing a checksum.
Lastly, while it makes it harder for the attacker to pinpoint which
exact tuples are accessed, compression does give away important
characteristics of the underlying data. For example, when data is
highly compressible, the attacker could infer the actual data in
combination with e.g. the column name. Therefore, we investigate
ways to mitigate leaking the compression size, using padding or
clustering of thin columns belonging to multiple row-groups.

3.2 Hybrid Encrypted Query Processing
The hybrid query processing model of MotherDuck [7] is beneficial
in a threat model were we assume that the server (even if using
a TEE) is untrusted; the attacker can e.g. continuously monitor
the server’s main memory and read the content of caches. In this
scenario, we argue that data can remain encrypted on the remote
server, but once queried, we could push the decryption of the most
sensitive data to the local client, similar to [17]. This ensures a
higher level of security; encryption of data happens solely on the
client with their private key, which is also stored on their own
machine. Therefore, we aim to extend the hybrid query processing
model into hybrid encrypted query processing (HEQP), that allows
to securely and efficiently process encrypted data on the client.

Encrypted Data Skipping. An important challenge in HEQP is to
avoid transferring unneeded data from server to client. However,
analytical file-formats and Data Lakes cannot directly make use of
data skipping techniques, since the metadata of sensitive data needs
to stay encrypted on the server. Therefore, we propose encrypted
data skipping (EDS) for remote filtering of data while keeping data
encrypted at the server. This can be accomplished through en-
crypting lightweight indexes, such as MinMax with (Semi) Order
Preserving Encryption (OPE) or homomorphic encryption (HE).
This will allow to evaluate an encrypted predicate over encrypted
data to determine whether the corresponding column chunk, row
group, or vector should be skipped. There are some challenges
however with these encryption techniques. Specifically, HE is com-
putationally intensive, OPE leaks order, and both have a large data
footprint per encrypted value. However, to mitigate the leakage
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by OPE, CryptDB [14] encrypts tuples in so-called layers of an
onion, such that the order is only exposed to the attacker for a short
period of time. Note that even when the order of MinMax statistics
leaks, the attacker still does not know which exact tuples will be
accessed. In this line of research, we will carefully evaluate how
to best implement different cryptographic principles for providing
EDS while minimizing the performance and storage overhead. Fur-
ther, we will investigate how we can integrate these principles into
a column encryption layout for FastLanes, to support encrypted
predicate pushdown (EPP). We will evaluate the HEQP model with
standard benchmarks such as TPC-H and TPC-DS, and expect that
EPP will speed-up encrypted query processing client-side as it (i)
minimizes network transfer and (ii) decrypts only chunks of data
that are necessary for computing the final result.

Pushing decryption to the client requires a hybrid query opti-
mizer, such as provided by MotherDuck [7]. The hybrid optimizer
splits a query plan into pipeline fragments that are executed locally
(on the client) and remotely (on a server). To enhance security, we
will need to add optimizer rules to ensure that sensitive columns
are only processed client-side. An open question here remains how
to adapt the hybrid query optimizer, such that it chooses the most
performant hybrid query plans when encrypted data is included.

3.3 Access-Oblivious Data Lake Reorganization
A table stored in a Data Lake typically consists of a collection
of Parquet files that hold data, plus some meta-data files that de-
scribe this collection. To update and manage newly stored data,
Data Lakes perform data life-cycle management, in which these
collections of files are periodically re-organized, re-clustered and/or
re-partitioned. Thus, many small newly written files are re-written
into fewer larger files to enable efficient accesses. We think that
we can leverage this continuous maintenance by making access
patterns more oblivious. There are multiple ways to achieve this; for
example, a system that processes a continuous query workload can
artificially delay returning results of particular queries, in order to
obfuscate the relationship between query processing activities. This
is already unintentionally achieved in systems that e.g. use group
commit, where multiple updates are queued together and written in
bulk to reduce disk I/O. In addition, such updates could be written
in any random order. When the workload intensity decreases, one
could think about running decoy queries, i.e. executing artificial
queries that fuzz the system to introduce noise. These artificial
queries can be leveraged to do periodical maintenance.

Cloaking partial data access. We outlined our goal of enabling
efficient server-side predicate push-down on encrypted data earlier.
However, if a query accesses only certain ranges of certain files,
this leaks information, also if these files are encrypted. Even if
we use query result fuzzing and decoy queries suggested above,
the workload as a whole would still leak information, as certain
areas would be much hotter than others. This leaks will happen by
queries accessing only certain files and column ranges (skipping),
and also from accessing only certain columns and even tables (pro-
jection). To avoid leakage, one could see the whole Data Lake as
one collection of blocks, and scan these continuously in sequential
fashion. Even though shared or cooperative scan approaches [11]
can reduce the throughput damage of such a repeated-full-scan

approach, the damage to query latency is too large to be practical.
The nice property of a full scan workload is that it has (roughly)
the same access frequency to all blocks. We think this could also
be achieved by a system that continuously rewrites data, as Data
Lakes do anyway. Such a system could e.g., replicate blocks that
have a too high access frequency, reducing that by the replication
degree. With our research, we opt for an access-oblivious Data Lake
system that achieves good query latency and throughput, at limited
overhead, also in terms of replication degree. We will evaluate our
algorithms by extensive simulations of common workloads in Data
Lakes.

4 CONCLUSIONS
In this PhD research plan, we motivate and outline our goal to en-
hance the security of columnar storage formats and Data Lakes. We
reviewed existing columnar storage formats, secure databases and
security in Data Lakes to identify our research questions. Aiming
to answer these, we outlined three lines of research from which the
goal is to find (i) an efficient vectorized-friendly encryption mech-
anism suitable for both CPUs and GPUs, (ii) a way to integrate
hybrid encrypted query processing enabling encrypted data skipping
for client-server architectures in columnar storage layouts, and (iii)
to make data accesses more oblivious in Data Lakes. Ultimately, we
envision to integrate our findings into FastLanes [1], and serve as a
building block for future file-formats.
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