Bridging the Operational and **Analytical Worlds** with Lakebase

Matei Zaharia

Analytics systems have changed dramatically since the 1990s

Columnar Storage 1995

Streaming ~2010

Vectorized Processing ~2000

Lakehouse
Open Formats
~2020

I Hope to Convince You That...

We're at an inflection point for OLTP systems due to changes in environment and workloads

There's potential for a new, open and scalable OLTP architecture, the Lakebase, extending the Lakebase

+ Lots of interesting open research questions

Three Motivating Trends

The cloud environment

New demands on analytics platforms

Al's impact on database systems

Three Motivating Trends

The cloud environment

New demands on analytics platforms

Al's impact on database systems

The Cloud: A Radically New Environment

Big, multitenant datacenters with everyone's apps & data in one place

Very fast intra-datacenter networks

Rapid elastic scaling (and user expectations thereof)

The Cloud Transformed Analytical DBs

Separate compute & storage to scale them elastically

Use open formats so any engine can access the storage (Lakehouse!)

The Cloud Transformed Analytical DBs

Separate compute & storage to scale them elastically

Use open formats so any engine can access the storage (Lakehouse!)

New: open cross-org sharing API (Delta Sharing at this VLDB!)

Delta Sharing: An Open Protocol for Cross-Platform Data Sharing

Krishna Puttaswamy
Abhijit Chakankar
Tao Tao
Zaheera Valani
Ramesh Chandra
William Chau
Mengxi Chen
Databricks
San Francisco, CA, USA

Akram Chetibi
Tianyi Huang
Jonathan Keller
Celia Kung
Andy Liu
Charlene Lyu
Databricks
San Francisco, CA, USA
firstname.lastname@databricks.com

Samarth Shetty
Xiaotong Sun
Steve Weis
Lin Zhou
Ryan Zhu
Reynold Xin
Matei Zaharia
Databricks
San Francisco, CA, USA

ABSTRACT

Organizations across industries increasingly rely on sharing data to drive collaboration, innovation, and business performance. However, securely and efficiently sharing live data across diverse platforms and adhering to varying governance requirements remains a significant challenge. Traditional approaches, such as FTP and proprietary in-data-warehouse solutions, often fail to meet the demands of interoperability, cost, scalability, and low overhead. This paper introduces Delta Sharing, an open protocol we developed in collaboration with industry partners, to overcome these limitations. Delta Sharing leverages open formats like Delta Lake and Apache Parquet alongside simple HTTP APIs to enable seamless, secure, and live data sharing across heterogeneous systems. Since its launch in 2021. Delta Sharing has been adopted by over 4000 enterprises and supported by hundreds of major software and data vendors. We discuss the key challenges in developing Delta Sharing and how our design addresses them. We also present, to our knowledge, the first large-scale study of production data sharing workloads offering insights into this emerging data platform capability.

an organization, across business units acting as different governance domains, is a critical necessity. However, securely, efficiently, and scalably sharing and managing data is a significant challenge today. Different organizations and divisions may be using different data platforms and clouds, may be enforcing different governance rules, and may be consuming data with a diverse set of tools, all of which makes data sharing hard.

There are two main approaches our customers have used for sharing, but they have faced severe limitations in them. Delivering files via FTP is the first approach, and has been a standard in some industries for decades. Many of our customers abandoned it because it was cumbersome for both providers and recipients [19]. Providers had to invest considerable development resources to maintain ETL pipelines to create the data for each recipient, build systems to manage the recipients, and scale the servers as data and number of recipients grew. Recipients, on the other hand, had to invest resources to ingest data regularly and integrate it with their data platforms. The second approach is using proprietary in-data-warehouse sharing features available in platforms such as Snowflake [34], BigQuery [9], Redshift [32], and Azure Data

The Cloud Transformed Analytical DBs

Separate compute & storage to scale them elastically

Use open formats so any engine can access the storage (Lakehouse!)

New: open cross-org sharing API (Delta Sharing at this VLDB!)

What Does the Cloud Mean for OLTP?

Traditional OLTP DBs have coupled compute & storage, limited elasticity, and limited support for sharing across engines

But if all the data is on the same disks in the cloud, can we rethink OLTP systems to get some of the same benefits we got in analytics?

NEON Database Properties

Open API: 100% Postgres

Decoupled compute & storage: cold data is on object stores

Rapid elasticity: scale up in seconds, or down to O

Fast sharing: branch a DB in milliseconds

Why Postgres?

NEON Architecture

Pageservers process updates, upload to object store & serve pages

Safekeepers manage WAL via Paxos

NEON Results

Creating a database is fast! Try it by going to pg.new

Cost is low, with performance competitive: for example, about 4x cheaper storage than Aurora Serverless v2, and 4x faster scaling

Reads scale out well to 10,000s of connections by default in Neon

Branching is virtually free, changing developer workflows

Postgres extensions just work

Three Motivating Trends

The cloud environment

New demands on analytics platforms

Al's impact on database systems

A Story from Mike Franklin

Today: Growing Need for Operational Apps on Analytics Data

As more of the world is digitized, more data is available in real-time and more actions can be taken in real-time

As algorithms improve, automated actions can be smarter

New Demands on Analytics Platforms

Ingest and transform data faster

Serve transformed data out to analytical apps

Examples from Databricks

Zerobus: Ingest rows rapidly into any existing Delta/Iceberg table

```
curl endpoint { json }
```

On by default for every table with no setup, no tuning, and fast scaling, supporting petabytes per day at <100ms latency

Examples from Databricks

Apache Spark Real-Time Mode: low latency continuous version of all streaming operators, with no changes to job logic

Examples from Databricks

Vector Search: Serve any Delta/Iceberg table for low latency vector or keyword search, with automatic sync on changes to the table

OLTP + Lakehouse Fits Hand-in-Glove!

This is Lakebase

An OLTP architecture built on cloud data lakes, characterized by:

- Separated compute and storage
- Open APIs
- Serverless elastic scaling, sharing and branching
- Easy integration with analytical lakehouse systems & data

How Databricks Customers use Lakebase

Serving analytical data: some customers had their own term, "lakeshore"

Real time features/metrics

Stateful data apps & agents

But Wait, is this HTAP?

A Zhou Sun 🛗 May 4, 2025 🕓 5 min read

HTAP: Still the Dream, a Decade Later

@convex-dev Subscribe

Organizational Challenge

Why Hybrid Transactional-Analytical Processing Remains an

But Wait, is this HTAP?

But Wait, is this HTAP?

However you define HTAP, it's usually useful to architect your operational and analytical tables differently, and if you're going to do that, then Lakebase can be a great solution on top of open lake storage!

The latencies and interop across engines will only get better

Wrapping It Up: HTAP Isn't Dead, It's Just Boring Now (That's a Compliment)

We've spent over a decade chasing the HTAP dream, and we still haven't built The One Engine. But maybe that's okay.

Three Motivating Trends

The cloud environment

New demands on analytics platforms

Al's impact on database systems

Al's Impact on Database Workloads

OLTP: agentic coding creates even more need for fast branching & scaling

OLAP: very different, non-BI access pattern

Both: vector search and semantic operators

Supporting Our AI Overlords: Redesigning Data Systems to be Agent-First

Shu Liu, Soujanya Ponnapalli, Shreya Shankar, Sepanta Zeighami, Alan Zhu Shubham Agarwal, Ruiqi Chen, Samion Suwito, Shuo Yuan, Ion Stoica, Matei Zaharia Alvin Cheung, Natacha Crooks, Joseph E. Gonzalez, Aditya G. Parameswaran UC Berkeley

Abstract

Large Language Model (LLM) agents, acting on their users' behalf to manipulate and analyze data, are likely to become the dominant workload for data systems in the future. When working with data, agents employ a high-throughput process of exploration and solution formulation for the given task, one we call agentic speculation. The sheer volume and inefficiencies of agentic speculation can pose challenges for present-day data systems. We argue that data systems need to adapt to more natively support agentic workloads. We take advantage of the characteristics of agentic speculation that we identify, i.e., scale, heterogeneity, redundancy, and steerability—to outline a number of new research opportunities for a new agent-first data systems architecture, ranging from new query interfaces, to new query processing techniques, to new agentic memory stores.

1 Introduction

Powered by Large Language Models (LLMs) that can reason, invoke tools, author code, and communicate with each other, we are on the precipice of a new agentic revolution that will transform how data

of LLM agents tasked with finding reasons for why profits in coffee bean sales in Berkeley was low this year relative to last. Since they are not limited by human cognitive bandwidth and response times, an army of agents could employ an enormous volume of queries to data systems, far more than any human could—all for a single task. Many of these queries are likely wasteful, and are simply providing the agents grounding. As another example, if an LLM agent is tasked with identifying a new crew for a delayed flight, it would need to consider various hypothetical transactions to surface to a human decision maker, each with dozens of updates to various databases.² For such tasks, agents may explore many alternatives in parallel by forking database state, running speculative updates, and rolling back branches. Overall, as agentic workloads become more and more prevalent, the sheer scale and inefficiencies of agentic speculation will become the bottleneck, and our data systems will need to evolve in response.

So we ask the question: how can data systems evolve to better support agentic workloads? In particular, can data systems natively—and efficiently—support agentic speculation, helping LLM agents determine the best course of action? This question—which as we

Al Impact on OLTP: Want Faster Dev Loops

Agents code fast and try things in parallel, so cheap dev loop matters!

Ideally, you want:

- Cheap branching
- Very fast spin up
- Easy rollback
- Anonymized data in some branches

And now, even more people are building apps with Al tools!

Al Impact on OLAP: New Access Pattern

Al agents explore data speculatively to produce rich reports

BI tools typically emit a giant SQL query with many joins, based on associative data model

All agents tend to *speculatively explore* to get context on the data and answer rich questions

Moreover, agents can explore many similar queries in parallel to increase quality

Al Across OLTP and OLAP: Unstructured Data is Now Queryable

LLMs can now answer bulk queries about unstructured data

 See Liana Patel's paper on LOTUS & Semantic Operators!

papers_df.sem_filter("the {research_paper} has an open source repo")
 .sem_topk("the {research_paper} has the most ground-breaking ideas", K=20)

Vector and classic search needs to power these new applications

- Huge use of pg_vector, Vector Search
- Could get much cheaper and smarter,
 e.g. see our LEANN lightweight index

The smallest vector index in the world. RAG Everything with LEANN!

LEANN is an innovative vector database that democratizes personal Al. Transform your laptop into a powerful RAG system that can index and search through millions of documents while using 97% less storage than traditional solutions without accuracy loss.

The Future of Lakebase

Tight integration across transactional updates, SQL analytics and Al analytics on the same data

Ability to call all those powerful AI agents and functions in online apps

Agent- and human-friendly development loop

What Does All This Mean for Research?

It's Very Early Days!

Many open problems around Lakebase and cloud-native OLTP

Very scalable writes (without losing compatibility!)

Cross-org sharing

Integrating streaming with transactional data

Querying across storage types

Beyond AI as a database user: can agents manage your database?

Conclusion

This is a very exciting time to rethink OLTP and operational data broadly

Beyond the shift to cloud, we have a whole new class of database users (agents + new people coding with them) and AI methods

Lakebase is one direction I think systems will go based on the cloud's affinity for open APIs and elasticity, but there's a lot more to explore!

