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Abstract 
SQL in the IBM® DB2® Universal Database™ 
for Linux®, UNIX®, and Windows® (DB2 
UDB) database management product has been 
extended to support nested INSERT, UPDATE, 
and DELETE operations in SELECT statements. 
This allows database applications additional 
processing on modified rows. Within a single 
unit of work, applications can retrieve a result set 
containing the modified rows from a table or 
view modified by an SQL data-change operation. 
This eliminates the need to select the row after 
an INSERT or UPDATE, or before a DELETE 
statement. As a result, fewer network round trips, 
less server CPU time, fewer cursors, and less 
server memory are required. In addition, 
deadlocks can be avoided. The proposed 
approach is integrated with the set semantics of 
SQL, and does not require any procedural logic 
or modifications on the underlying relational data 
model. Pipelining multiple update, insert and 
delete operations using the same source data 
provides a very efficient way for multi-table 
data-change statements typically found in ETL 
(extraction, transformation, load) applications. 
We demonstrate significant performance benefit 
with our experiences in the TPC-C benchmark. 
Experimental results show that the new SQL is 
more efficient in query execution compared to 
classic SQL. 
 
 

1. Introduction 
Commercial DBMS vendors constantly extend the SQL 
query language to address emerging business demands for 
increasing functionality and improving performance. One 
aspect of new features is to push more processing into the 
database engine. While most language extensions apply to 
data retrieval, extending UPDATE, DELETE, and 
INSERT statements (henceforth called data-change 
statements) has found less attention. 

Prominent language extensions in the context of data-
change statements are triggers, MERGE statement, 
identity columns using sequences, expression-generated 
columns, and default values. Modern RDBMS can use 
these features to produce surrogate keys. In doing so it 
becomes apparent that a way needs to be found to retrieve 
data back from data-change statements, which 
traditionally only provide a very limited set of 
information. The information returned today is usually 
limited to the number of rows changed. 

Another area where performance of data-change 
statements plays a key role is a data-cleansing 
environment, where large quantities of data need to be 
imported into the RDBMS. The data needs to be 
processed efficiently in several phases, and dispatched 
into the appropriate tables such as fact and dimension 
tables in a star-schema scenario. 

There are band-aid solutions in the industry today, 
which allow the return of specific properties. Examples 
include functions to return the last generated 
identity_value or sequence value to retrieve generated 
primary keys. Other more general solutions allow for 
returning data back into the procedural context using 
temporary tables or set-valued host variables.  

We found that the problem of returning data from 
data-change statements needs to be solved in a more 
holistic and set-oriented fashion. A general, more 
relational approach needs to address more complex 
scenarios such as data cleansing in addition to covering 
the simple cases described above. 
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One of the challenges the authors faced was to 
maintain the spirit of the relational model within the 
context of standard SQL while allowing for optimal 
performance through pipelining and parallelization. 

In the following sections, we propose a fairly small set 
of changes SQL, which result in a major extension to the 
expressive power of SQL. The changes include: 

• The exposure of the NEW and OLD 
transition table as defined for SQL statement 
triggers in the FROM clause of an SQL 
SELECT statement. 

• A definition of the order of execution for 
nested queries. 

• An extension of the column lists for data-
change statements using an include clause. 

These three simple changes allow data-change 
statements to fully integrate with the select statement and 
hence exploit the expressive power of SQL. 

The structure of this paper is as follows. Section 2 
introduces our major SQL extensions. In Section 3 we 
discuss how we approached the implementation of the 
new statement type. We demonstrate a pipelining 
mechanism for update, delete and insert operations in 
Section 4, which leads to significant performance benefit 
for multi-table data-change statements. In Section 5 we 
discuss our experiences with the new SQL in the TPC-C 
benchmark, and the performance benefit of OLTP 
applications. Related approaches for returning modified 
data are discussed in Section 6. Section 7 provides a 
conclusion. 

2. SQL Changes 
In this section, we introduce the SQL extensions for data-
change statements. We show how insert, update, or 
delete operations can be embedded in the from clause 
of a select statement. We enhance common table 
expressions to provide a way for embedding multiple 
data-change operations within one SQL statement. 
Finally, we introduce modifying table functions, which 
allow more complex scenarios for returning modified 
data. All language extensions introduced in this chapter 
are available in DB2 UDB for Linux, UNIX, and 
Windows Release 8.1.4. The complete new SQL can be 
found in the SQL Reference [5]. 

Select From Data-Change Statement 

In the simplest form, an SQL data-change statement is 
characterized as a select statement having an insert, 
update or delete operation embedded in the from 
clause. The columns of the target object of the specified 
SQL data-change statement are considered the columns of 
this intermediate result table and can be referenced by 
name in the select list of the query. 

create table orders ( 
      purchase_date date, 
      sales_person varchar(16), 
      region varchar(10), 
      quantity varchar, 
      order_num integer not null 
         generated always as identity  
         (start with 100, increment by 1))    
 
select * from new table  
    (insert into orders 
          (pdate, salesp, region, quantity) 
     values 
      (current date,’Judith’,’Beijing’,6), 
      (current date,’Marieke’,’Medway’,5), 
      (current date,’Hanneke’,’Halifax’,5)) 
 
PDATE       SALESP   REGION    QUANT  ONUM  
----------- -------- --------- ------ ---- 
12/22/2003  Judith   Beijing   6       100 
12/22/2003  Marieke  Medway    5       101 
12/22/2003  Hanneke  Halifax   5       102 
 

Note that the syntax of the insert statement is not 
changed by this approach. The insert operation is 
wrapped in a from clause to indicate that the 
intermediate result table represented by the inserted rows 
should be returned. A data-change-table-reference can be 
specified as the only table-reference in the from clause 
of the outer fullselect that is used in a select-statement, a 
select into statement, a common-table expression, 
or as the only fullselect in an assignment statement. To 
execute select from data-change statements, the user must 
have the proper SQL authorization. For example, to 
perform a select from insert statement on a table 
ORDERS, the user would have to hold both, select and 
insert privileges on the ORDERS table. 

The contents of the intermediate result table 
dependend on the qualifier specified in the from clause. 
If old table is specified, the rows in the intermediate 
result table will contain values of the target table rows at 
the point immediately preceding the execution of before 
triggers and the SQL data-change operation. For the new 
table qualifier, the rows in the intermediate result table 
will contain values of the target table rows at the point 
immediately after the SQL data-change statement has 
been executed, but before referential integrity evaluation 
and the firing of any after triggers. The old table 
qualifier applies to update and delete operations, the 
new table qualifier applies to update and insert 
operations. 

Include Columns 

We introduce the concept of include columns, which 
allows you to specify additional columns that do not exist 
in the target table of a select from data-change statement. 
These additional columns are available for use in the 
select list or order by clause of the query 
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containing the SQL data-change statement in the from 
clause, but have no effect on the SQL data-change of the 
target table. One typical example for using include 
columns is to provide a way for update statements to 
return both, the new and the old value of a column. The 
following select from update statement defines an include 
column old_salary, and assigns the salary value to 
old_salary in the set clause of the update 
operation. Additional examples can be found in chapter 4 
and the IBM TPC-C disclosure report [9]. 
 
create table employee ( 
  ssn char(10), salary integer); 
insert into employee values  
  (‘1234567890’, 90000); 
 
select * from new table  
    (update employee  
     include (old_salary integer) 
     set old_salary = salary, 
         salary = salary * 1.2); 
 
 
ssn        salary   old_salary 
---------- -------- ---------- 
1234567890 108000   90000 
 

Views 

Special care needs to be taken when the target of a 
select from data-change statement is a view containing a 
where clause. A view containing a where clause in its 
definition is by default non-symmetric. That is, a row 
modified by an insert or update operation does not 
need to remain in the view. In contrast, a symmetric view 
is defined by specifying the with cascaded check 
option clause during the creation of the view, which 
indicates that an inserted or updated row has to remain in 
the view after the modification [4].  

Non-symmetric views pose a security issue for select 
from data-change statements if, for example, a before 
trigger of an insert or update operation modifies a 
value of the row which should not be seen by the user. We 
concluded that non-symmetric views as the target of a 
select from data-change statement must satisfy the 
restrictions of symmetric views, if the qualifier new 
table is used. The following example shows a view 
containing employees having a salary less than 100.000, 
and a before trigger modifying the salary if the employee 
is promoted. The given select from update statement is 
rejected because the modified row with the updated salary 
(i.e., 108000) does not remain in the view. No row is 
updated or returned. 

 
 
 

 

create table employee ( 
   ssn char(10),  
  salary integer,  
  ranking integer); 
 
insert into employee values  
  (‘1234567890’, 90000, 3); 
 
create trigger promote  
before update on employee 
referencing old as o new as n for each row 
when (n.rank > o.rank)  
  set n.salary = n.salary * 1.2; 
 
create view lowemps as  
select * from employee  
where salary < 100000; 
 
select * from new table ( 
  update lowemps set rank = rank+1); 

Common Table Expressions 

In addition to simple select from data-change 
statements, we want to support a way to perform multiple 
data-change operations within one SQL statement. This is 
in particular useful for complex data-change scenarios, 
where the result of one data-change operation is used as 
input for another one. It allows us to construct better 
performing plans, since we can see multiple operations 
together when we rewrite and optimize a statement. 
Furthermore, it is not necessary to return the result of a 
select from data-change statement to the client in order to 
use the data as input for another statement. 

We use common table expressions for this purpose, 
and allow select from data-change statements in the 
definition of temporary views in a common table 
expression. The main advantage of using common table 
expressions for embedding multiple data-change 
statements is that the syntax specifies an order for 
temporary views, which determines the semantics of 
executing a common table expression. All temporary 
views are executed in the order they occur in the common 
table expression. 

In the following example, we illustrate common table 
expressions using two tables Employee (EmpNr, 
Name) and Project (ProjNr, Name, Lead). 
The common table expression replaces an employee ‘Old 
Emp’ with a new employee ‘New Emp’, assigns all 
projects lead by ‘Old Emp’ to ‘New Emp’, and 
returns the names of the updated projects. 
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with 
  NewEmp AS (select EmpNr from new table 
             (insert into Employee(name) 
              values (‘New Emp’))), 
  OldEmp AS (select EmpNr from Employee 
             where Name = ‘Old Emp’), 
  UpProj AS (select Name from new table 
             (update Project 
              set Lead = (select EmpNr 
                          from NewEmp))), 
  DelEmp AS (select EmpNr from new table 
             (delete from Employee 
              where EmpNr = (select EmpNr 
                             from OldEmp))) 
select Name from UpProj 
 
 

Modifying Table Functions 

We introduce modifying table functions as another 
concept for embedding multiple data-change operations in 
a single statement. In contrast to common table 
expressions, two additional tasks can be accomplished. 
First, the body of a modifying table function can be 
defined as a compound statement containing a sequence 
of SQL-procedure-statements [5] including data-change 
statements. Second, it allows applying a data-change 
operation multiple times for a collection of input data, as 
shown in the example below. Both features have been 
widely used in the implementation of our TPC-C 
benchmark [9]. 

A select statement can contain one modifying table in 
the from clause. To guarantee order of execution in case 
the from clause contains more than one table reference, 
the modifying table function has to be the last table 
reference in the from clause, correlated to all other table 
references.  

The following table function upsal() updates the 
salary of an employee, records the salary change in an 
audit table, and returns the salary increase. The 
subsequent select statement updates the salary using the 
upsal() function for three employees. 
 
create function upsal(upeid int,  
                      factor float)  
returns table (increase int)  
modifies sql data  
return  
with i1 as ( 
select eid, old_salary, salary 
       from new table  
           (update emp  
            include (old_salary int)  
            set salary = salary * factor, 
                old_salary = salary  
            where emp.eid=upeid)) 
select  new_salary-old_salary   
from new table ( 
  insert into audit select 
  eid,old_salary,salary from i1); 

 
select sum (increase)  
from table (values (1, 1.1), 
                   (2, 1.2), 
                   (3, 1.05))  
            as upemp(eid,factor),     
     table (upsal(upemp.eid,upemp.factor))   
            as upsal; 
 

The update effect on the emp and audit table is 
equivalent to the following sequence of insert and 
update statements: 
 
insert into audit 
with i1(eid,factor) as  
  (values (1, 1.1), 
          (2, 1.2), 
          (3, 1.05)) 
select emp.eid, emp.salary, 
       emp.salary * factor 
from emp, i1 
where emp.eid = i1.eid; 
 
update emp set salary = salary * 1.1 
           where eid=1; 
update emp set salary = salary * 1.2 
           where eid=2; 
update emp set salary = salary * 1.05 
           where eid=3; 
 

3. Implementation 
In this section, we provide a high-level summary of some 
of the key design issues we faced during implementation 
of the new SQL features. The proposed approach mostly 
takes advantage of existing “tooling” within and around 
the relational database engine. In the query compiler, we 
mostly applied “plug-and-play” of existing infrastructure, 
that is, combining constructs used for representing 
select statements as well as insert, update and 
delete statements. The optimizer is already capable 
handling data-change operations in a complex statement 
to ensure, for example, that predicates are not pushed 
down through data-change operations. We did not need to 
implement any changes for the client infrastructure. 

The first interesting problem when executing a select 
from data-change statement is to get hold on the new and 
old values of the rows modified by an insert, update 
or delete operation. Fortunately, this functionality has 
already been implemented for after statement triggers [3]. 
An after statement trigger for data-change statements can 
access the new and old transition table containing all 
modified rows. The following example shows an after 
update statement trigger for the emp table. The trigger 
inserts the content of both, old and new transition table 
into the audit table. 
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create table emp 
(eid int, name varchar(10), salary int); 
insert into emp values (1, ’Peter’,50000), 
                       (2, ’Paul’,60000), 
                       (3, ’Mary’,70000); 
create table audit(eid int, salary int); 
 
create trigger audtrig 
after update on emp 
referencing old_table as old 
            new_table as new 
for each statement 
insert into audit 
  select eid,salary from old union all  
  select eid,salary from new); 
 
update emp set salary=salary*1.1 
where eid<3; 
 
select * from audit; 
 
EID         SALARY 
----------- ----------- 
          1       55000 
          2       66000 
          1       50000 
          2       60000 
 

The data flow for select from data-change statements 
has to be constructed in a way that either the new or old 
transition table is returned to the client instead of flowing 
into a trigger. 

A table that has been modified by a data-change 
operation within a complex statement can be accessed in 
the same statement through a subquery or another data-
change operation. Consequently, all read and write 
operations on the same data within one statement need to 
be synchronized. The infrastructure for handling 
read/write conflicts is already required for standard SQL. 
For example, a before trigger or an after trigger can 
contain a subquery over the target table. The same 
concepts have been extended to ensure correct semantics 
for select from data-change statements. In the following, 
some examples for read/write conflicts are shown. 
 
select c1, (select sum(salary) from emp) 
from new table (insert into emp(eid,salary) 
                values (1,50000)); 
 
with v1 as (select * from new table  
             (update emp  
              set salary=salary+1000)), 
     v2 as (select * from new table  
             (update emp  
              set salary=salary*1.1)) 
select * from emp 
 
 
 
 
 

In the first example, the subquery select 
sum(salary) from emp includes the salary 50.000 
inserted in the nested insert operation. In the second 
example, the table emp is updated twice. First, the salary 
is increased by 1000 for each row, the intermediate result 
is then multiplied by 1.1. The fullselect select * 
from emp returns the final result in the salary 
column after executing both update operations. 

The most fundamental change in the infrastructure we 
made was the execution of select from data-change 
statements at runtime. In general, a select statement 
returning more than one row is performed using a cursor. 
The typical execution of a cursor consists of three 
consecutive tasks: declare, open, and fetch. The statement 
is compiled when the cursor is declared. In theory, 
opening the cursor completes the operation and positions 
the cursor on to the first row of the result set. Each row of 
the result set can be accessed through the fetch command, 
which moves the cursor towards the end of the result set. 
However, in practice we are trying to avoid executing a 
statement completely at one time, as it requires temporary 
storing the result.  

Instead, we execute the statement as we fetch the 
rows, such that no temporary storage for the result set 
needs to be used, unless, for example, the statement 
contains an order by clause and the statement needs to 
be completely executed in order to determine the first 
row. 

For select from data-change statements, this strategy 
does not work. Any insert, update or delete 
operation is an atomic operation which needs to be driven 
to completion at one time. Data-change operations cannot 
be executed on a row-by-row basis. Instead, they are 
processed as follows: first, the before triggers for all 
modified rows are performed. Second, all insert, update, 
and delete operations are applied. Third, constraints for all 
modified rows are checked. Finally, all after statement 
triggers are executed.  

We have chosen to completely execute select from 
data-change statements at cursor open time. This allows 
applications to keep X locks for a minimum amount of 
time when using cursors specified as with hold, and 
committing the transaction right after opening the cursor. 
The following example shows typical use of cursors for 
select from data-change statements: 
 
declare emp_cur cursor with hold for 
   select id from new table  
    (insert into emp(name)  
     values ‘Peter’, ‘Paul’, ‘Mary’); 
 
open emp_cur; 
commit; 
 
fetch emp_cur; 
... 
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All X locks are acquired at cursor open time, and 
immediately released at commit. The application can then 
fetch the result set without blocking other transactions. 

We call the execution at cursor open time do-at-open 
semantics. In order to achieve do-at-open semantics, we 
need to teach the optimizer to include an additional 
operator at the top of the generated plan, which is called a 
zero-key sort operator. A zero-key sort is a specialized 
sort operator where the set of keys is empty. This concept 
has several advantages. First, it is an elegant way to drive 
execution of a statement to completion using an existing, 
slightly modified operator. Second, we are using existing 
infrastructure in terms of the sort buffer to efficiently 
store the result set. Note that a zero-key sort does not 
actually sort any data, it only indicates that runtime has to 
drive the execution of the statement to completion. 

In the following, we illustrate the do-at-open 
semantics using two interleaving transactions T1 and T2 
in isolation level uncommitted read. T1 declares a cursor 
for a select from insert statement modifying a table emp, 
T2 reads the content of table emp. T2 can see all the rows 
inserted by T1 as soon as the cursor is opened. 

 
T1 T2 
declare emp_cur  
cursor for 
select id from new table 
  (insert into emp(name) 
   values ‘Peter’, 
          ‘Paul’, 
          ‘Mary’);        

 
 

 select id from emp; 
0 rows selected 

open emp_cur;  
 select * from emp; 

1 
2 
3 
3 rows selected 

fetch emp_cur; 
1 
fetch emp_cur; 
2 
... 

 

 
Since our approach for returning modified rows makes 

use of select statements as the data carrier, no change was 
needed for the client infrastructure. Regardless of which 
client is used to perform select from data-change 
statements, the statement is always considered a select 
statement, and the APIs can be used respectively. 
Typically, a cursor containing a select from data-change 
statement can be declared, and after opening the cursor 
the modified rows are available in the result set for fetch. 

 
 

4. Pipelining 
The fact that multiple data-change operations can be 
embedded in a single SQL statement gives the compiler a 
chance to optimize the data flow between operations. In 
this section, we describe how performance of multi-table 
data-change statements can be significantly increased 
when constructing a plan as a pipeline of insert, update, 
and delete operations. 

In the following example, we introduce two tables 
emp and mgr used as target for insert operations, and a 
table src containing some source data for both, 
employees and managers. 
 
create table emp ( 
  eid    int not null primary key, 
  salary int); 
 
create table mgr ( 
  eid   int not null primary key, 
  bonus int); 
 
create table src ( 
  eid    int not null primary key, 
  salary int, 
  bonus  int, 
  ismgr  char(1)); 
 
 

We are now looking for an SQL statement which 
transfers data from the source table to the two target 
tables. The first example shows a classic SQL solution 
with two insert statements, embedded in an atomic 
compound statement. The plan shows that the two 
insert statements are executed in sequential order, 
reading the data from the source table twice. 
 
begin atomic  
insert into emp select eid,salary from src; 
insert into mgr select eid,bonus from src  
 where ismgr='Y';  
end; 
 
                  RETURN  
                    | 
                  FILTER  
                    | 
  +-------------+---+------------+ 
TBSCAN       INSERT           INSERT  
  |             |                | 
  |         /---+---\        /---+---\ 
TABFNC:  TBSCAN   TABLE:  TBSCAN   TABLE:  
GENROW     |      MGR       |      EMP 
           |                | 
         TABLE:           TABLE:  
         SRC              SRC 
 

 
With a common table expression and two nested select 

from insert operations, the query can be expressed in a 
way that the result of the first insert operation is used as 
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source for the second one. In the generated plan, the two 
insert operations are stacked upon each other, which 
allows pipelining the data flow through both operations. 
 
with i1 as ( 
  select eid,bonus,ismgr  
  from new table ( 
         insert into emp  
         include (bonus int, ismgr char(1)) 
         select eid,salary,bonus,ismgr  
         from src))  
select count(*) from new table ( 
 insert into mgr  
 select eid,bonus from i1 where ismgr='Y'); 
 
                  RETURN  
                    | 
                  TBSCAN  
                    | 
                  SORT    
                    | 
                  GRPBY   
                    | 
                  INSERT  
                    | 
                /---+---\ 
            FILTER   TABLE: MGR  
              | 
            INSERT  
              | 
          /---+---\ 
     TBSCAN   TABLE: EMP  
       | 
 TABLE: SRC 
 

With the above approach, the total cost of the query is 
reduced by 20% and the CPU cost is reduced by 40%, 
independent of the number of rows in the source table. 

The example above has the property that all rows 
inserted into the mgr table must be inserted into the emp 
table as well. An insert operator is not able to pass rows 
not participating in the insert operation to the following 
operator. Consider a revised example, where the source 
data is partitioned into employees and manager tables. 
Rows in the src table are inserted into either emp or 
mgr table, but not into both. 
 
create table emp ( 
  eid    int not null primary key, 
  salary int); 
 
create table mgr ( 
  eid    int not null primary key, 
  salary int, 
  bonus  int); 
 

In order to solve this problem, we propose an 
extension of our approach to support the merge 
statement in the from clause of a select statement. 
The merge statement is a combination of insert, 
update, and delete statements, and allows 

conditional insert, update, and delete operations 
on a table. We need to extend the merge statement with a 
set clause, so that rows not participating in any data-
change operation can be returned.  

The following SQL statement contains nested select 
from merge and select from insert operations. The merge 
operation inserts source rows into the emp table where 
ismgr=’N’, and includes source rows where 
ismgr=’Y’ in the result of the inline view i1. The 
subsequent insert operation inserts the rows from i1 
where ismgr=’Y’ into the mgr table. 
 
 
 
with i1 as ( 
  select eid,salary,bonus from new table ( 
    merge into emp  
    include (bonus int, ismgr char(1)) 
    using src on (1=0) 
    when not matched and ismgr=’N’ then 
      insert (eid,salary)  
      values (src.eid,src.salary) 
    when not matched and ismgr=’Y’ then 
      set eid    = src.eid, 
          salary = src.salary, 
          bonus  = src.bonus, 
          ismgr  = src.ismgr) 
select count(*) from new table ( 
  insert into mgr  
    select eid,salary,bonus 
    from i1 where ismgr=’Y’) 
 

SQL queries such as above are very common in the 
area of ETL (Extraction, Transformation, Load), for 
transforming, cleansing and integrating data from 
operational databases to a data warehouse. With the full 
support the merge statement in the from clause of a 
select statement, we are able to provide efficient plans for 
multi-table insert, update, and delete statements. 

5. TPC-C Benchmark 
In this section, we describe the impact of the new SQL 
statement type on the result of the TPC-C benchmark. The 
TPC-C benchmark [10] represents a typical workload for 
online transaction processing, based on an order-entry 
application for a wholesale supplier. The logical database 
design is composed of 9 relations: Warehouse, District, 
Customer, Stock, Item, Order, New_Order, Order_Line, 
and History. A more detailed description of the schema 
can be found in [7][10]. 

The application defines five types of short, moderately 
complex transactions: entering and delivering orders, 
recording payments, checking the status of orders, and 
monitoring stock level. Three of these transactions modify 
data: entering and delivering orders, and recording 
payments.  

In the following sections, we introduce how the three 
modifying transactions are implemented using classic 
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SQL statements. We illustrate how we rewrite the 
statements using the new select from data-change 
statement type. For better readability, we will use 
simplified examples out of the three transactions to 
illustrate the benefit of the new SQL. The complete SQL 
statements we used for the transactions can be found in 
the disclosure report [9]. 

Generally, several assumptions are made for 
improving performance of OLTP applications. First, the 
codepath in the database engine for executing transactions 
should be reduced. Second, network traffic can be 
reduced through decreasing the number of I/O operations 
between client and database. Finally, lock contention 
should be minimized and deadlocks avoided. 

New Order Transaction 

The New Order transaction places an order for an average 
10 items from a warehouse. The following database 
operations (in a simplified pseudocode) are required: first, 
the new order ID is retrieved from the District table; for 
each item, the stock level will be updated; the order is 
stored in two tables Order and New_Order (containing 
pending orders), and each item is stored in the table 
Order_Line. The Stock table is updated 10 times, so in 
total 17 statements are executed in classic SQL. 

1. Select from District 
2. Update District 
3. Select from Item 
4. for each item: Update Stock 
5. Insert into Order_Line 
6. Insert into Orders 
7. Insert into New_Order 
8. Select from Warehouse, Customer 
Our New Order transaction contains only three SQL 

statements. The first statement implements the first two 
operations, select and update the District table. This table 
contains an ID and an order number, which represents the 
next order number to be used for a new order in this 
district. The new order transaction needs to read and 
increment the next order ID from the DISTRICT table. 
With classic SQL, two separate statements are required 
for this task: 
 
select d_next_o_id into :new_id  
from district  
where d_id = :district_id; 
 
update district  
set d_next_o_id = d_next_o_id+1  
where d_id = :district_id; 
 

The approach above has two problems. First, we 
observe two I/O operations, one for each statement, such 
that the row in the district table is fetched twice. Second, 

the fact that we first read the district row and 
subsequently update the same row, is causing lock 
conversion. This is a typical scenario for a deadlock, 
where two transactions concurrently read the same row, 
and later on attempt to write it, requesting to upgrade a 
read lock to a write lock [1]. 

With the new SQL, the scenario can be implemented 
in one single SQL statement containing a nested update 
operation. The plan of the statement shows only one table 
scan for the District table. 
 
select d_next_o_id from old table 
    (update district  
     set d_next_o_id = d_next_o_id+1  
     where d_id = :district_id)) 
 
 
           RETURN  
              | 
           UPDATE  
              | 
          /---+--\ 
     TBSCAN     TABLE:  
       |        DISTRICT  
    TABLE:      
    DISTRICT 
 

The second statement implements the operations 3 to 
5. A table function is provided which retrieves the price of 
the item, updates the stock level and inserts a row into the 
Order_Line table. The following example shows a 
(simplified) table function, and a select statement 
referencing the order items and the table function in the 
from clause.  
 
create function new_ol 
(i_id int, i_qty int, o_id int, ol_nr int) 
returns table (i_price int) 
modifies sql data 
begin atomic 
  declare i_price int; 
  set i_price = 
    (select i_price from item 
     where item.i_id = new_ol.i_id); 
  update stock set qty = qty - i_qty 
    where s_i_id = new_ol.i_id; 
  insert into order_line 
    values (o_id, ol_nr, i_id, i_qty, 
            (i_price * i_qty)); 
  return values (i_price * i_qty); 
end 
 

In the select statement calling the table function, we 
define a table ol containing the new order line items. 
Then, we join this table with the function new_ol, such 
that every row in ol is used as input for new_ol. 
Finally, we return the sum of the total price for each order 
line. 
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select sum(i_price) into :total_price 
from table (values (1, 15, 200), 
                   (2, 31, 150), 
                   (3, 47, 250)) 
        as ol(ol_nr, i_id, i_qty), 
     table(new_ol(i_id, i_qty, 17, ol_nr)) 
        as new_ol(i_price); 
 

As shown below, the plan of the new SQL statement 
contains only one update and one insert operation. The 
subtree below the UNION box represents the table 
function. 
 
            RETURN  
              | 
            GRPBY   
              | 
            NLJOIN  
              | 
   /----------+--------\ 
TBSCAN                NLJOIN  
  |           /---------+---------\ 
TABFNC:     NLJOIN              TBSCAN  
GENROW        |                   | 
              |                   | 
   /----------+-----------\     TABFNC: 
TBSCAN                  UNION   GENROW           
  |                        |      
  |        +-----------+---+--------------+ 
TABFNC:  TBSCAN      UPDATE            INSERT  
GENROW     |            |                 | 
           |        /---+---\         /---+--\ 
         TABLE:   TBSCAN   TABLE:  TBSCAN  TABLE:     
         ITEM       |      STOCK      |  ORDER_LINE 
                    |                 | 
                  TABLE:           TABFNC:    
                  STOCK            GENROW 
 

The third statement implements operations 6 to 8 in 
another table function. 

Payment Transaction 

The Payment transaction processes a payment for a 
customer and updates the Warehouse, District and 
Customer tables. A History table contains the history of 
payment transactions. Seven statements are executed for 
the payment transaction in classic SQL. 
1. Select from Customer 
2. Update Customer 
3. Select from District 
4. Update District 
5. Select from Warehouse 
6. Update Warehouse 
7. Insert into History 

We managed to collapse all 7 operations into one new 
SQL statement, providing one table function containing a 
sequence of 4 select from update and insert statements. 
The benefit is similar to the New Order transaction, 
avoiding separate select and update statements. 

Delivery Transaction 

The Delivery transaction processes one order per district. 
The next order to be processed is identified by the oldest 
order number in the New_Order table. 
1. Select min(order_id) from New_Order 
2. Delete from New_Order 
3. Update Order 
4. Select sum(ol_amount) from Order_Line 
5. Update Order_Line 
6. Update Customer 

The table function we used for the delivery transaction 
contains one select from delete and three select from 
update statements. The deletion of a new order shows a 
select from delete statement with other SQL features like 
order by and fetch first in subqueries, and fullselect as 
target of delete statements. In order to deliver a new 
order, the oldest order of a given district (i.e., the smallest 
order id), needs to be deleted and returned. All this can be 
contained in one SQL statement, which we call a 
destructive read. The plan shows that the New_Order 
table needs to be scanned only once in order to find and 
delete the oldest order. 
 
select no_o_id, … into :no_o_id, … 
from old table ( 
      delete from (select * from new_order 
                   order by no_o_id 
                   fetch first row only)); 
 
 
                 RETURN  
                    | 
                 DELETE  
                    | 
                /---+---\ 
           FETCH      TABLE:  
              |       NEW_ORDERS  
          /---+---\ 
     TBSCAN     TABLE:  
       |        NEW_ORDERS  
     SORT    
       | 
     TBSCAN  
       | 
   TABLE:   
   NEW_ORDERS 

Summary 

In our implementation of the TPC-C transactions, all 
insert, update, and delete operations are embedded in the 
from clause of a select statement, or in a modifying table 
function. As a consequence, we have been able to 
significantly reduce the total number of SQL statements 
executed for each transaction. In addition, less data has to 
be bound into and out of the database server. We 
summarized the result for the three modifying transactions 
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in Fig. 1 and Fig. 2. The first row shows a remote New 
Order transaction for a remote good customer, the second 
row shows a Payment transaction for a good customer 
identified by ID, and the third row shows a Delivery 
transaction. For the new order transaction we assume 10 
order lines associated. 

Fig. 1 shows the number of SQL statements that are 
executed in one transaction for the classic case and for 
using the new SQL statement type. The last column 
shows the total codepath reduction of the transaction on 
the server achieved by having less runtime overhead for 
executing SQL statements. 

 
 Stmts 

classic 
Stmts 
new 

Codepath 
reduction 

New Order (remote good) 17 3 11% 

Payment (by CID) 7 1 16% 

Delivery 61 11 3% 

Figure 1 
 

Fig. 2 shows the number of rows passed between 
application and database server.  The first two columns 
denote how many times we bind in rows from client to 
server for the classic case and for using the new SQL 
statement type. The last two columns show the same 
information for rows returned from server to client. 

 
 Bindin 

classic 
Bindin 
new 

Bindout
classic 

Bindout
new 

New Order (remote good) 28 4 24 14 

Payment (by CID) 8 1 4 1 

Delivery 61 11 21 11 

Figure 2 

6. Related Work 
The idea of returning modified rows has already been 
adopted by the JDBCTM specification and other database 
vendors. The JDBC 3.0 Specification [6] introduces in 
chapter 13.6 an interface for retrieving auto-generated 
columns of insert statements. A method 
Statement.getGeneratedKeys() is provided, 
which produces a result set containing the generated key 
values for all inserted rows. The following example 
inserts a row into an ORDERS table, and returns the 
generated ORDER_ID value: 

 
 
 
 
 
 
 
 

 

Statement stmt = conn.createStatement(); 
int rows = stmt.executeUpdate 
            (“INSERT INTO ORDERS “ + 
             “(ISBN, CUSTOMERID) “ + 
             “VALUES (966431502, ‘SAMP’)”, 
             “ORDER_ID”); 
ResultSet rs = stmt.getGeneratedKeys(); 
boolean b = rs.next(); 
if (b == true) { 
     // retrieve the new key value 
     ... 
} 
 

Oracle has introduced a returning clause for 
insert, update and delete statements [8]. The 
returning clause specifies which columns are 
returned, followed by an into clause and a set of host 
variables in which the values are stored. The approach 
allows returning more than one row, in which case the 
host variables need to be declared as arrays. Applications 
require PL/SQL extensions to access the returned data; 
they are not returned as a result set to the client. Oracle is 
using the returning clause for update and delete 
statements in the Delivery and Payment transactions of 
the TPC-C benchmark. In contrast to the DB2 approach, 
an insert or update statement always returns all 
modified rows, even if the target is a view with a where 
clause, and a before trigger modifies a value so that it 
violates the view predicate. The following is an example 
of an insert with returning clause (the bind 
variables must first be declared). 
 
INSERT INTO employees 
      (employee_id, last_name, email, 
       hire_date, job_id, salary) 
   VALUES 
   (employees_seq.nextval, ‘Doe’, 
    ‘john.doe@oracle.com’, 
    SYSDATE, ‘SH_CLERK’, 2400) 
   RETURNING salary*12, job_id  
        INTO :bnd1, :bnd2; 
 

7. Conclusions 
We have proposed and implemented a clean SQL 
extension to provide applications a way to return values 
that have been modified by insert, update, or 
delete operations. The main contributions of our 
implementation are as follows. 

• We provide a way for applications to find out the 
value of an automatically generated column when 
a new value is inserted into a column. Similarly, 
default values or values changed by a before 
insert or update trigger can be returned to the 
application. 

• We support insert, update and delete 
operations embedded in the from clause of a 
select statement. For more complex scenarios 
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of data-change operations, modifying table 
functions can be used. 

• The approach is fully embedded in SQL and 
solves the problem in a set-oriented fashion, using 
select statements as carrier for returned values, 
using respective client APIs. 

• Common table expressions containing multiple 
data-change operations provide an efficient way 
for multi-table insert, update and delete 
operations using the same source data. The 
generated plans create a single data flow through 
all data-change operations, such that source data 
needs to be read only once. 

• Our experiences in the TPC-C benchmark have 
proven the performance of select from data-
change statements. The main reasons are 
significantly reduced number of SQL statements, 
generation of better performing plans, less data to 
be transferred between client and server, and 
deadlock avoidance. 

The idea of returning modified data can be applied to 
other query languages besides SQL. In particular, the new 
XQuery language [2] will address update capabilities for 
XML documents in the future. We expect that update 
composability and the ability to return updated data will 
be addressed when designing the language. 
 

References 
[1] P. Bernstein and E. Newcomer. Principles of 

Transaction Processing. Morgan Kaufmann, 1997. 

[2] Scott Boag, Don Chamberlin, Mary F. Fernandez, 
Daniela Florescu, Jonathan Robie, Jerome Simeon, 
and Mugur Stefanescu. XQuery 1.0: An XML 
Query Language. World Wide Web Consortium, 
Working Draft WD-xquery-2003. 

[3] D. Chamberlin. Using the New DB2. Morgan 
Kaufmann, 1996. 

[4] R. Cochrane, H. Pirahesh, and N. Mattos. 
Integrating triggers and declarative constraints in 
SQL database systems. In Proc. Inl. Conf. on Very 
Large Databases, 1996. 

[5] IBM. DB2 Universal Database(TM) Version 8.1.4. 
2003 

[6] John Ellis, Linda Ho, and Maydene Fisher. JDBCTM 
3.0 Specification, 2001. 

[7] Scott T. Leutenegger and Daniel Dias. A Modeling 
Study of the TPC-C Benchmark. In Proc. ACM 
SIGMOD Int. Conf. On Management of Data, 
1993. 

[8] OracleTM Database. SQL Reference 10g Release 1. 

[9] TPC Benchmark C Full Disclosure Report. IBM 
eServer™ pSeries® 690 Model 7040-681 Using 
AIX® 5L V5.2 and DB2 Universal Database 8.1, 
2004. 

[10] Transaction Processing Council. TPC Benchmark 
C, Standard Specification, Rev. 5.2, Dec. 2003. 

 
 
Trademarks 

AIX, DB2, DB2 Universal Database, eServer, 
IBM, and pSeries are trademarks or registered 
trademarks of International Business Machines 
Corporation in the United States, other countries, 
or both. 
 
Java and all Java-based trademarks are 
trademarks of Sun Microsystems, Inc. in the 
United States, other countries, or both. 
 
Linux is a trademark of Linus Torvalds in the 
United States, other countries, or both. 
 
Windows is a registered trademark of Microsoft 
Corporation in the United States, other countries, 
or both. 
 
UNIX is a registered trademark of The Open 
Group in the United States and other countries. 
 
Other company, product, and service names may 
be trademarks or service marks of others. 

 

997


