Automatic SQL Tuning in Oracle 10g

Benoit Dageville, Dinesh Das, Karl Dias,
Khaled Yagoub, Mohamed Zait, Mohamed Ziauddin

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
US.A

{Benoit.Dageville, Dinesh.Das, Karl.Dias, Khaled.Yagoub, Mohamed.Zait, Mohamed.Ziauddin} @oracle.com

Abstract

SQL tuning is a very critical aspect of database
performance tuning. It is an inherently complex
activity requiring a high level of expertise in several
domains: query optimization, to improve the
execution plan selected by the query optimizer;
access design, to identify missing access structures;
and SQL design, to restructure and simplify the text
of a badly written SQL statement. Furthermore, SQL
tuning is a time consuming task due to the large
volume and evolving nature of the SQL workload
and its underlying data.

In this paper we present the new Automatic
SQL Tuning feature of Oracle 10g. This technology
is implemented as a core enhancement of the Oracle
query optimizer and offers a comprehensive solution
to the SQL tuning challenges mentioned above.
Automatic SQL Tuning introduces the concept of
SQL profiling to transparently improve execution
plans. It also generates SQL tuning
recommendations by performing cost-based access
path and SQL structure “what-if” analyses.

This feature is exposed to the user through both
graphical and command line interfaces. The
Automatic SQL Tuning is an integral part of the
Oracle’s framework for self-managing databases.
The superiority of this new technology is
demonstrated by comparing the results of Automatic
SQL Tuning to manual tuning using a real customer
workload.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment

Proceedings of the 30™ VLDB Conference,

Toronto, Canada, 2004

1098

1. Introduction

Over the past decade two clear trends have emerged: (a)
database systems have been deployed in new areas, such
as electronic commerce, bringing a new set of database
requirements, and, (b) database applications have
become increasingly complex with support for very large
numbers of concurrent users. As a result, the
performance of database systems has become highly
visible and thus critical to the success of the businesses
running these applications.

One important part of database system performance
tuning is the tuning of SQL statements. SQL tuning
involves three basic steps:

1. Identify high load or top SQL statements that are
responsible for a large share of the application
workload and system resources, by looking at the past
SQL execution history available in the system;

. Attempt to find ways to improve execution plans
produced by the query optimizer for these statements;
and

. Implement possible corrective actions to generate
better execution plans for poorly performing SQL
statements.

The three steps outlined above are repeated in that
order until the overall system performance reaches a
satisfactory level or no more statements can be tuned.
The corrective actions include one or more of the
following:

1. Enable the query optimizer to find a better plan by:
a. Gathering or refreshing the data statistics it uses to
build an execution plan. For example, by creating
a histogram on a column that contains skewed
data.

Changing the value of configuration parameters
that will affect the optimizer behavior. For

example, by changing the optimization mode for
the SQL statement from “all rows” to “first <n>
rows” to produce an execution plan minimizing
the time to produce the first <n> rows.

. Adding optimizer hints to the statement. For
example, by using an access path hint to replace a
full table scan by an index range scan.

2. Manually rewrite the SQL statement, not necessarily
into a semantically equivalent form, to enable more
efficient data processing. For example, by replacing
UNION operator by UNION ALL.

3. Create or drop a data access structure on a table. For

example, by creating an index or a materialized
view.

Typically the database administrator (DBA) or an
application developer performs the tuning process.
However, it is often a challenging task even for a tuning
expert. First, it requires a high level of expertise in
several complex areas: query optimization, access
design, and SQL design. Second, it is a time consuming
process because each statement is unique and needs to be
tuned individually. Third, it requires an intimate
knowledge of the database (i.e., view definitions,
indexes, table sizes, etc.) as well as the application (e.g.
process flow, system load). Finally, the SQL tuning
activity is a continuous task because the SQL workload
and the database are always changing.

To help the DBA and the application developer
overcome these challenges, several software companies
have developed diagnostics tools that help identify SQL
performance issues and suggest actions to fix them [3,
4]. However, these tools are not integrated with the
query optimizer, the system component that is most
responsible for SQL performance. Indeed, these tools
interpret the optimization information outside of the
database to perform the tuning, so their tuning results are
less robust and limited in scope. Moreover, they cannot
directly tackle the internal challenges faced by the query
optimizer in producing an optimal execution plan.
Finally, the recommended actions often require
modification of the SQL text in the application source
code, making the recommendations hard to implement
by the DBA.

In Oracle 10g, the SQL tuning process has been
automated by introducing a new manageability feature
called Automatic SQL Tuning. This feature is designed
to work equally well for OLTP and Data Warehouse
workloads. Unlike existing tools, Automatic SQL
Tuning is performed in the database server by the Oracle
query optimizer itself, running in a special mode. When
running in this mode, the Oracle query optimizer is
referred to as the Automatic Tuning Optimizer.

It is important to point out that the Automatic Tuning
Optimizer is a natural extension of the Oracle query
optimizer. In fact, the goal for both modes of the
optimizer (i.e., regular optimization mode and tuning

1099

mode) is to find the best possible execution plan for a
given SQL statement. The main difference is that the
Automatic Tuning Optimizer is allowed to run for a
much longer period of time, generally minutes versus a
sub-second during the regular optimization mode. The
Automatic Tuning Optimizer takes advantage of this
extra time to profile the SQL statement and validate the
statistics and estimates used in the process of building an
execution plan. In addition, the Automatic Tuning
Optimizer can also explore execution plans that are
outside the search space of the regular optimizer. This is
because these execution plans are only valid if some
external changes made by the DBA (e.g. create a new
index) or by the application developer (e.g. rewrite the
SQL statement, possibly into a semantically non-
equivalent form) are assumed. The Automatic Tuning
Optimizer uses this what-if capability for access path and
SQL structure analysis.

Among all the above aspects, SQL profiling is
probably the most novel one. The main goal of SQL
profiling is to build custom information (a SQL Profile)
for a given SQL statement to help the query optimizer
produce a better execution plan. SQL profiles are stored
persistently in the database and are transparently used
every time their associated SQL statements are
optimized. This new technology allows tuning SQL
statements without altering their text, a key advantage
for users of packaged applications. As such, SQL
profiling can be considered an integral part of the
optimization process. Given that it is a resource-intensive
process, we believe it works best when it is limited to a
subset of SQL statements, namely those that have the
highest impact on the system resources or whose
performance is most critical to the database application.

Except for SQL profiling, all other aspects of SQL
tuning require interaction with the end user (the DBA or
the application developer). As a result, the Automatic
SQL Tuning feature is exposed to the end user via an
advisor called the SQL Tuning Advisor. The SQL
Tuning Advisor takes one or more SQL statements, and
produces statement-specific tuning advices to help
produce well-tuned execution plans. Here, the term
“advisor” should not confuse the reader. It is important
to remember that the SQL Tuning Advisor is neither a
tuning tool nor a utility but rather an Oracle server
interface that exposes a comprehensive tuning solution
implemented inside the Oracle optimizer.

Finally, the Automatic SQL Tuning feature is fully
integrated in the Oracle 10g manageability framework
making it an end-to-end solution to the SQL tuning
challenges [7].

The rest of the paper is organized as follows. In
Section 2, we present the architecture of the Automatic
SQL Tuning. In Section 3, we give details about SQL
profiling. In Section 4, we describe the access path
analysis. Section 5 details SQL structure analysis. The
manageability framework is discussed in Section 6.

Section 7 contains a real case study comparing manual to
automatic tuning. Related work is summarized in Section
8. Finally, we conclude the paper in Section 9.

2. Automatic SQL Tuning Architecture

The Automatic SQL Tuning is based on an extension of
the Oracle query optimizer called the Automatic Tuning
Optimizer. The Automatic Tuning Optimizer performs
additional tasks such as SQL profiling and what-if tuning
analyses while building an execution plan for a SQL
statement being tuned. The result of SQL profiling and
tuning analyses is a set of tuning recommendations. The
tuning output is presented to the user via the SQL
Tuning Advisor.

The Automatic Tuning Optimizer and the SQL
Tuning Advisor constitute the Automatic SQL Tuning
component in Oracle 10g. Figure 1 shows the Automatic
SQL Tuning architecture and the functional relationship
between its two sub-components.

MLSS‘t”? saL Missing Poor SQL
and stale Profile Indexes Constructs
statistic

SQL Tuning Advisor

SQL statement II

Automatic Tuning Optimizer

- Access SQL
Statistics SQL
. - Path Structure
Analysis Profiling Analysis Analysis

Figure 1. Automatic SQL Tuning Architecture

There are several advantages from using the Oracle
query optimizer as the basis for the Automatic SQL
Tuning:

The tuning is done by the same component that is
responsible for picking the execution plan, and
knows best what additional information help
produce a better plan.

Future enhancements to the query optimizer are
automatically taken into account in the tuning
process.

The tuning process uses the execution history of a
SQL statement and customizes the optimizer
settings for that SQL statement because it knows the
effect of a particular setting on the query
performance.

The Oracle query optimizer normally has stringent
constraints on the amount of time and system resources it
can use to find a good execution plan for a given SQL

1100

statement. For example, it is allotted an optimization
budget in the form of a number of join permutations.
Therefore, it uses a combination of cost-based and
heuristics-based techniques to reduce the optimization
time. Furthermore, it cannot validate the size estimates of
intermediate results when standard estimation methods
based on data independence assumption are known to
cause large errors. Most validation techniques require
running part of the query on a sample of the input data,
which can be time consuming. As a consequence of these
constraints, a sub-optimal plan can be generated.

In contrast, the Automatic Tuning Optimizer is given
a larger time budget, e.g., several minutes, to perform
necessary investigation and verification steps as part of
the tuning process. It uses the extra time mainly to
profile the SQL statement, verify data statistics, and
perform what-if tuning analyses. The output of SQL
profiling and verification gives it a much better chance to
generate a well-tuned plan. The Automatic Tuning
Optimizer uses dynamic sampling and partial execution
(i.e. execute fragments of the SQL statement) techniques
to verify its standard estimates of cardinality, cost, etc. It
also uses the past execution history of the SQL statement
to determine appropriate settings of the optimization
parameters.

The SQL Tuning Advisor accepts a SQL statement
and passes it to the Automatic Tuning Optimizer along
with other input parameters, such as a time limit. The
Automatic Tuning Optimizer then performs SQL
profiling and what-if tuning analyses while building a
query plan, which may produce one or more tuning
recommendations as output.

The Automatic Tuning Optimizer results are relayed
to the user via the SQL Tuning Advisor in the form of
tuning advices. An advice consists of one or more
recommendations, each with a rationale and an estimate
of the benefit. The user is given an option to accept one
or more recommendations, thus completing the tuning of
the corresponding SQL statement.

3. SQL Profiling

The query optimizer relies on data and system statistics
to function properly. For example, it uses the number of
blocks and number of rows to estimate the cost for a full
scan of a table. From these base statistics, the query
optimizer derives, using probabilistic models, various
data size estimates such as the table cardinalities, the join
cardinalities, and the distinct cardinalities (e.g., the
number of rows resulting from applying aggregate or
duplicate elimination operation).

Some of the factors that lead the query optimizer to
generate a sub-optimal plan are:
e Missing or stale base statistics. Missing statistics
cause the optimizer to apply guesses. For example,
the optimizer assumes uniform data distribution

even though the column contains skewed data when
there is no histogram.

Wrong estimation of intermediate result sizes. For
example, the predicate (filter or join) is too complex,
such as (a*b)/c > 10) to apply standard statistical
methods to derive the number of rows.

Inappropriate optimization parameter settings. For
example, the user may set a parameter that tells the
query optimizer that he intends to fetch the complete
query result but actually fetches only few rows. In
this case, the query optimizer will favor plans that
return the complete result fast, while a better plan
would be the one that returns first few rows fast.

To cope with the factors mentioned above, we
provide a SQL profiling capability inside the optimizer,
to collect auxiliary information specific to a SQL
statement. A SQL Profile is built from the auxiliary
information generated during 1) statistics analysis (e.g.,
provide missing statistics for an object), 2) estimates
analysis (e.g., validation and correction of intermediate
result estimates), and 3) parameters settings analysis.
When it is built, the Automatic Tuning Optimizer
generates a recommendation for the user to either accept
or reject the SQL profile.

In the remainder of this section we provide more
details about the three tasks outlined above, and then
describe the content of the SQL profile.

3.1 Statistics Analysis

The goal of statistics analysis is to verify that statistics
are neither missing nor stale. The query optimizer logs
the types of statistics that are actually used or needed
during the plan generation process, in preparation for the
verification process. For example, when a SQL statement
contains an equality predicate, it logs its use of the
number of distinct values statistic of predicate column.

Once the statistics logging is complete, the
Automatic Tuning Optimizer checks if each of these
statistics is available on the associated query object (i.e.
table, index or materialized view). If the statistic is
available then it samples data from the corresponding
query object and compares its result to the stored statistic
to check its accuracy (or staleness). However, the
sampling result must be sufficiently accurate before it
can be used to verify the stored statistic. Iterative
sampling with increasing sample size is used to meet this
objective.

If a statistic is found to be missing, auxiliary
information is generated to supply the missing statistic.
If a statistic is available but found to be stale, auxiliary
information is generated to compensate for staleness.

Note that the statistics analysis phase produces two
kinds of output:

1101

Recommendations to gather statistics for the objects
that are found to have either no statistics or stale
statistics,

Auxiliary information to supply missing statistics or
correct stale statistics.

It is preferable to implement the recommendation to
gather statistics and re-run the SQL Tuning Advisor. The
auxiliary information is used in case the recommendation
to gather statistics is not accepted by the user.

3.2 Estimates Analysis

One of the main features of a cost-based query optimizer
is its ability to derive the size of intermediate results. For
example, the query optimizer estimates the number of
rows from applying table filters when deciding which
join algorithm to pick. One of the main factors causing
the optimizer to generate a sub-optimal plan is the
presence of error in its estimates. Wrong estimates can
be caused by a combination of the following factors: a)
standard statistical methods cannot be used to derive the
number of rows because the predicate (filter or join) is
too complex, b) assuming uniform data distribution in
the absence of a histogram when, in fact, there is skewed
data, and c) data in different columns is correlated but
the query optimizer is not aware of it, causing it to
assume data independence.

During SQL profiling, various standard estimates
are validated, and when errors are found, auxiliary
information is generated to compensate for errors. The
validation process may involve running part of the query
on a sample of the input dataset, or on the entire input
dataset when efficient access paths are available.

3.3 Parameter Settings Analysis

The Automatic Tuning Optimizer uses the past
execution history of a SQL statement to determine the
correct optimizer settings. For example, if the execution
history shows that the output of a SQL statement is often
partially consumed, the appropriate setting is to optimize
it to quickly produce the first #n rows, where 7 is derived
from this execution history. This constitutes a
customized parameter setting for the SQL statement.
Note that the past execution statistics for SQL statements
are automatically collected and stored in the Automatic
Workload Repository (AWR) presented in section 6.

3.4 SQL Profile

The result of the above three analyses is stored in a SQL
Profile. It is a collection of customized information for
the SQL statement that is being tuned. Thus SQL Profile
is to a SQL statement what statistics is to a table or index
object. Once a SQL Profile is created, it is used in
conjunction with the existing statistics by the Oracle
query optimizer to produce a well-tuned plan for the
corresponding SQL statement.

High-load SQL Statement

® Tune

~
\\\® Execute

~

SQL Tuning Advisor

@ store o ®@ Well-tuned
SQL Profile Optimizer L ——J» Execution
Plan
. 4

b’

7
7
//’@ Use SQL Profile

s
s

Dictionary

Figure 2. Creation and Use of SQL Profile

Figure 2 shows the process flow of the creation and
use of a SQL Profile. The process consists of two
separate phases: an Automatic SQL Tuning phase, and a
regular optimization phase. In figure 2, the solid arrows
are used to show the Automatic SQL Tuning process
flow, while the broken arrows are used to show the
regular optimization process flow.

During the Automatic SQL Tuning phase, a DBA
selects a SQL statement and runs the SQL Tuning
Advisor using either the Oracle Enterprise Manager
(Oracle’s database server GUI), or the command-line
interface (step 1). The SQL Tuning Advisor invokes the
Automatic Tuning Optimizer to perform SQL profiling
and what-if analyses on the SQL statement (step 2). The
Automatic Tuning Optimizer generates tuning
recommendations possibly with a SQL Profile (step 3).
Assuming a SQL Profile is built, it is stored in the data
dictionary once it is accepted by the DBA (step 4).

Later, during the regular optimization phase, a user
submits the same SQL statement for execution (step 5).
The Oracle query optimizer finds the matching SQL
Profile from the data dictionary (step 6), and uses it
together with other statistics to build a well-tuned
execution plan (step 7). The use of SQL Profile remains
completely transparent to the user.

1102

It is important to note that the creation and use of a
SQL Profile doesn’t require changes to the application
source code. Therefore, SQL profiling is the only way to
tune SQL statements issued from packaged applications,
such as Oracle E-Business Suite, where the users have no
control over the application source code.

4. Access Path Analysis

Creating suitable indexes is a well-known tuning
technique that can significantly improve the performance
of SQL statements because the amount of data fetched
from an object is typically a small fraction of the data
stored on disk. The Automatic Tuning Optimizer
recommends the creation of indexes based on what-if
analysis of various predicates and clauses present in the
SQL statement being tuned. It recommends an index
only when the query performance can be improved by a
large factor because it is based on tuning of a single
statement without knowing the workload characteristics.

The Automatic Tuning Optimizer determines the
candidate indexes that could potentially improve the
performance of the statement were they to exist. This
what-if analysis can result in the discovery of several
promising indexes. The following are some examples of
the techniques used to identify index candidates:

e Equality predicate on a column, e.g., State="CA’. In
this case, an index with State as a leading column
will help to access only the relevant rows from the
table and avoid a full scan,

Predicates on several columns, e.g., State="CA’
AND Age > 33. In this case, a multi-column index
on State and Age, in that order, is considered a
candidate,

The query contains an ORDER BY on a column,
and creating an index on that column could
eliminate an expensive sort operation.

Once candidate indexes are identified, the next step is
to verify their effectiveness. To do that, the Automatic
Tuning Optimizer derives statistics for each candidate
index based on the statistics of its table and relevant
columns. It then optimizes the SQL statement pretending
that these indexes actually exist. If the cost of a plan that
uses one or more candidate indexes is cheaper by a large
factor compared to the cost of best plan using no
candidate indexes, then the Automatic Tuning Optimizer
alerts the user that these critical indexes are missing, and
recommends to add them.

Since Automatic SQL Optimizer does not perform an
analysis of how its index recommendations are going to
affect the entire SQL workload, it also recommends
running the SQL Access Advisor [6] on the SQL
statement along with a representative SQL workload.
The SQL Access Advisor is a workload-based server-
side tuning solution of the Oracle 10g database. The SQL
Access Advisor collects tuning advice given on each

statement of a SQL workload, and consolidates them into
a global advice for the entire SQL workload. The SQL
Access Advisor takes into account the level of DML
activity on the related objects in its global
recommendations. It also recommends other types of
access structures like materialized views, as well as
indexes on the recommended materialized views.

5. SQL Structure Analysis

Often a SQL statement can be a high load SQL statement
simply because it is badly written. This usually happens
when there are different, but not semantically equivalent,
ways to write a statement to produce same result.
Knowing which of these alternate forms is most efficient
is a difficult and daunting task for application developers
since it requires both a deep knowledge about the
properties of data they are querying as well as a very
good understanding of the semantics and performance of
SQL constructs. Besides, during the development cycle
of an application, developers are generally more focused
on how to write SQL statements that produce desired
results than improving their performance.

It is important to note that the Oracle query optimizer
performs extensive query transformations while
preserving the semantics of the original query. Some of
the transformations are based on heuristics (i.e. internal
rules), but many others are based on cost-based selection.
Examples of query transformations include subquery
unnesting, materialized view (MV) rewrite, simple and
complex view merging, rewrite of grouping sets into
UNIONSs, and other types of transformations. SQL
profiling improves the outcome of this process by
reducing the errors in various cost estimates, thereby
improving the cost-based selection of query
transformations.

However, the query optimizer applies a transformation
only when the query can be rewritten into a semantically
equivalent form. Semantic equivalence can be
established when certain conditions are met; for
example, a particular column in a table has the non-null
property. However, these conditions may not exist in the
database but enforced by the application. The Automatic
Tuning Optimizer performs what-if analysis to recognize
missed query rewrite opportunities and makes
recommendations for the user to undertake.

There are various reasons related to the structure of a
SQL statement that can cause poor performance. Some
reasons are syntax-based, some are semantics-based, and
some are purely design issues.

1. Syntax-based constructs: Most of these are related
to how predicates are specified in a SQL statement.
For example, a predicate involving a function or
expression (e.g. func(col) = :bnd, coll + col2 =
:bnd) on an indexed column prevents the query
optimizer from using an index as an access path.

Therefore, rewriting the statement by simplifying

1103

such complex predicates can enable index access
paths leading to a better execution plan.

Semantic-based constructs: A SQL construct such
as UNION, when replaced by a corresponding but
not semantically equivalent UNION-ALL construct
can result in a significant performance improvement.
However, this replacement is possible only if there
is no possibility of duplicate rows (e.g., a unique
constraint is maintained in the application), or
duplicate rows when produced do not matter to the
application. If this is the case, it is better to use
UNION-ALL instead thus eliminating an expensive
duplicate elimination operation from the execution
plan. Another example is the use of NOT IN sub-
query while a NOT EXIST sub-query could have
produced same result much more efficiently.

Design issues: An accidental use of a cartesian
product, for example, occurs when one of the tables
is not joined to any of the other tables in a SQL
statement. This can happen especially when the
query involves a large number of tables and the
application developer is not very careful in checking
all join conditions. Another example is the use of an
outer-join instead of an inner-join when the
referential integrity together with non-null property
of the join key is maintained in the application.

The SQL structure what-if analysis is performed by
the Automatic Tuning Optimizer to detect poor SQL
constructs falling in one or more categories listed above.
This analysis is performed in two steps.

In the first step, the Automatic Tuning Optimizer
generates internal annotations to remember the reasons
why a particular rewrite was not possible. The
annotations include the necessary conditions that were
not met, as well as various choices that were available at
that time. For example, when the Automatic Tuning
Optimizer explores the possibility of merging a view, it
will check necessary conditions to see if it is logically
possible to merge the view. If not possible, it will record
the reasons for not merging the view. It will also record
other alternatives that were available, such as pushing
join predicates inside of the view to make it into a
LATERAL view.

The second step of the analysis takes place after the
best execution plan has been built. The Automatic
Tuning Optimizer examines the annotations associated
with costly operators in the execution plan. A costly
operator can be defined as one whose individual cost is
more than 10% of the total plan cost. Using the
annotations associated to expensive plan operators, it
produces appropriate recommendations. For example, if
it was not possible to merge a view because of rownum
predicate (i.e., a limit to clause) present in the view, the
recommendation would be to move rownum predicate
outside of the view. With each recommendation, a
rationale is given in terms of cost improvement.

Since the implementation of SQL structure
recommendations requires rewriting the problematic
SQL statements, the SQL structure analysis is much
more suited for SQL statements that are being developed
but not yet deployed into a production system or
packaged application. Another important benefit of the
SQL structure recommendations is that it can help
educate the developers in writing well-formed SQL.

6. Automatic SQL Tuning in the Oracle10g
Self Managing Database

As shown in the previous sections, the main focus of the
automatic SQL Tuning feature is to tune a SQL
statement by profiling it and by recommending other
tuning actions to the end user. However, the scope of
SQL tuning goes far beyond tuning a single statement.
Indeed, the SQL tuning task usually starts by identifying
high-load SQL. High-load SQL typically represents a
small subset of SQL statements (generally a small
fraction) that are either consuming a large share of
system resources (e.g., more than 80 percent) or account
for a large portion of the time spent by a database
application to perform one of its essential functions.

In Oraclel0g, a substantial amount of development
effort and focus has been put into making the database
self-managing. Automatic SQL Tuning is an integral part
of the manageability framework that was developed for
this purpose. The goal is to provide an end-to-end
solution to the many SQL tuning challenges faced by the
database administrators and application developers.
Figure 3 represents a typical illustration of the SQL
tuning life cycle as it is now performed in Oraclel0g. It
includes four key manageability components: AWR
(Automatic Workload Repository), ADDM (Automatic
Database Diagnostic Monitor), STS (SQL Tuning Set),
and STB (SQL Tuning Base). These components are
described in detail below.

In-memory
M Statistics
anual

Selection
Filter/Rank A

Automatic
Selection

Improved
Execution Plan

Custom

High-load
sQL

SQL

Query
Automatic Optimizer
SQL Tuning
Accept SQL

Profile

Figure 3. SQL Tuning Life Cycle in Oraclel0g

The SQL tuning life cycle follows the three phases of
the Oracle10g self-managing loop: Observe, Diagnose,
and Resolve. Each of the components of the self-
managing framework (labeled AWR, ADDM, STS and
STB in Figure 3) plays a key role in one or more of these
three phases.

6.1 Observe Phase

This phase is automatic and continuous in Oracle10g. It
provides the data needed for analysis. To enable accurate
system performance monitoring and tuning, it is
imperative that the system under consideration expose
relevant performance measurements. The manageability
framework allows for instrumentation of the code to
obtain precise timing information, and provides a
lightweight comprehensive data collection mechanism to
store these measurements for further online or offline
analysis.

The chief component of the observe phase is the
Automatic Workload Repository (AWR). The AWR is
a persistent store of performance and system data for
Oracle10g. The database collects performance data from
in-memory views every hour and stores it in AWR. Each
collection is referred to as a snapshot. A snapshot
provides a consistent view of the system for its
respective time period. For example, among other things,
the AWR identifies and captures top SQL statements that
are resource intensive in terms of CPU consumption,
disk reads, parse calls, memory usage, etc. for each time
interval.

AWR is self-managing, and based on internal
measurements its overhead is less than 2 percent of the
system load. AWR has standard policy for data retention
but also accepts user input and, if required, proactively
purges data should it encounter space pressure.

6.2 Diagnose Phase

The activities in this phase refer to the analyses of
various parts of the database system using the data in
AWR or in-memory performance views. Oraclel(Og
introduces a framework for analyzing and optimizing the
performance of its respective sub-components, such as
the buffer cache, SQL execution, undo management, etc.

At the heart of the diagnose phase is the Automatic
Database Diagnostic Monitor (ADDM). ADDM is a
central database-wide performance diagnostic engine
that optimizes for system throughput by taking a holistic
view of the entire database system for a given analysis
period. It runs automatically and identifies the root
causes of the top performance bottlenecks and excessive
resource consumption along with the exact impact on the
workload in terms of time. It also provides a set of
recommendations to alleviate the problems detected.

In the case of SQL statements consuming excessive
resources, ADDM will recommend the invocation of the
SQL Tuning Advisor for those high-load SQL
statements. Besides the automatic selection performed by

ADDM, OraclelOg also provides a user driven
mechanism to manually select the set of SQL statements
to tune. This manual path (illustrated by downward
arrows on the right side of Figure 3 exists because the
user - generally the application developer or the DBA -
might have to tune the response time of a subset of SQL
statements involved in a critical function of the database
application, even if that function accounts for a small
percentage of the overall load.

The SQL Tuning Set (STS) feature is introduced in
Oraclel0g for the user to create and manage the SQL
workload to tune. A SQL Tuning Set is a database object
that persistently stores one or more SQL statements
along with their execution statistics and execution
context. The execution context stored with each SQL
statement includes the parsing schema name, application
module name, list of bind values, and compilation
parameters. This enables the system to replicate the
runtime environment under which the SQL statement
was detected. The execution statistics include elapsed
time, CPU time, disk reads, rows processed, statement
fetches, etc.

SQL statements can be loaded into a SQL Tuning Set
from different SQL sources. The SQL sources include
the Automatic Workload Repository, the statement
cache, and custom SQL statements supplied by the user.
The capability to specify complex filters and rankings for
the SQL statements are provided while loading into or
reading data from the STS. For example, the user can
create a STS storing the top N SQL statements issued by
application module “order entry”, where top N is based
on the cumulative elapsed time of each statement.

Once created and populated, a SQL Tuning Set
becomes the main input of the SQL Tuning Advisor.

6.3 Resolve Phase

The various advisors, after having performed their
analyses, provide as output a set of recommendations
that need to be implemented or applied to the database.
The recommendations may be automatically applied by
the database itself or be initiated manually. This is
referred to as the Resolve Phase.

In the context of SQL tuning, the action part includes
accepting SQL Profiles recommended by the SQL
Tuning Advisor. When a SQL Profile is accepted, it is
stored in the SQL Tuning Base (STB). The SQL Tuning
Base is an extension of the Oracle dictionary that stores
and manages all the tuning actions targeting specific
SQL statements.

Accepting SQL profile recommendations closes an
iteration of the SQL tuning loop; SQL Profiles will most
likely improve the execution plan of the targeted set of
SQL statements, hence reducing their overall
performance impact on the system. This will be reflected
in the performance measurements being collected. The
next tuning cycle can then begin with a different set of
high-load SQL statements. The process can be repeated

1105

several times until the desired performance level is
achieved.

7. Experimental Results

The Automatic SQL Tuning feature was evaluated
using a decision support workload obtained from one of
Oracle’s customers, a market research firm. Even though
we do not demonstrate it in this paper, Automatic SQL
Tuning can also tune OLTP queries equally well. In fact,
we used it successfully on several queries from our
internal OLTP systems. It is commonly assumed that
OLTP queries are very simple with obvious execution
plans, and thus do not offer many optimization
opportunities. However, this is generally not true. Some
OLTP queries can be very complex, joining more than
20 tables with multiple sub-queries and predicates. In
this type of environment, the optimizer can fail to find
optimal execution plans. Additionally, most OLTP
applications run complex batch and reporting queries.
Our SQL tuning methodology can be very effective in
tuning OLTP queries.

For this experiment, we chose 73 decision support
queries that had the highest impact on the performance
of the customer’s database system. As a result, the
customer and an Oracle consulting team spent a
significant amount of time to manually tune each of
these queries. Figure 4 shows the response time of all 73
queries prior to tuning. Throughout this section, graphs
show response time in ascending order (i.e. from fastest
to slowest) using a logarithmic scale to improve
readability. One can observe that without tuning, most
queries perform very poorly. The worst response time for
a query is almost 2 hours (5,751s) with an average
response time of 817s and a cumulative response time
(time to run the entire workload sequentially) close to 16
hours. This was unacceptable to the customer who had to
resort to manual tuning of these SQL statements.

Time (s)

10000

1000

100

10

1

1 65 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Queries

Figure 4. Response Time Without Tuning

Most statements were manually tuned using
optimizer hints to improve their execution plans. In this
particular instance, the Oracle query optimizer was
unable to find the most optimal execution plan because
these SQL statements used complex join predicates (e.g.
inequality join predicates like “T1.C1 between T2.C1

and T2.C2”) and had filters on highly correlated columns
originating from different tables being joined (i.e. inter-
table correlation). The combination of these two factors
made it very hard for the Oracle query optimizer to
properly estimate the cardinality of some intermediate
joins. Hence, the optimizer would sometime fail to
produce a good join order, leading to a sub-optimal
execution plan and poor query performance.

Figure 5 below graphs the response time after
performing manual tuning. As one can see, manual
tuning was able to dramatically improve the response
time of most queries in the set. The worst response time
was reduced to 275s - instead of the initial 5,751s - with
an average response time of 30s - instead of the initial
817s - and a cumulative response time of 2131s, instead
of the initial 16 hours.

hours before tuning or the 35 minutes after manual
tuning. Table 1 below summarizes these results.

Average Maximum Cumulative
Response Response Response
Time Time Time
No Tuning 817s 5,751s 58,821s
Manual Tuning 30s 275s 2131s
Auto Tuning 13s 59s 929s

Time (s)

1000

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Queries

Figure 5. Response Time after Manual Tuning

The initial set of 73 queries was then stored in a SQL
Tuning Set, which was then tuned using Oracle 10g
Automatic SQL Tuning feature. For the purpose of this
particular test, we decided to implement only SQL
profile recommendations since our goal was to show
how the execution plans for these statements could be
improved without performing any SQL rewrite (i.e.,
altering SQL source code), and without modifying the
underlying database schema. Figure 6 presents the new
response time after the SQL Profiles recommended by
the Automatic SQL Tuning were all accepted.

Time (s)
1000

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Queries

Figure 6. Response Time after Automatic Tuning

Overall, the results show dramatic improvements
over manual tuning. The maximum response time was
reduced from 275s to 59s. The average response time
reduced from 30s to 13s. The cumulative SQL workload
response time was less than 15 minutes instead of the 16

Table 1. Result Summary

These first results are very encouraging and
demonstrate that SQL profiling represents a very
effective way to empower the query optimizer in finding
better execution plans. Overall, SQL profiling even
surpassed manual tuning.

The last aspect of the benchmark is the performance
of the Automatic SQL Tuning process itself. Internally,
the goal of SQL profiling is to regulate its time such that,
at worst, the time spent to tune a query is no more than
the response time of that query before tuning. To achieve
this goal, a cost-based and bottom-up tuning approach is
used to determine which internal optimizer estimates are
worth verifying. This, combined with the use of dynamic
and iterative sampling techniques, makes Automatic
SQL Tuning very efficient.

Figure 7 validates this goal. On average, the time to
tune a query ranged from less than a minute to a
maximum of less than two minutes. The entire workload
was tuned in a little more than an hour (74 minutes)
versus 16 hours to run the set of queries before tuning.
This should be contrasted with the significant man-hours
spent by domain experts to perform the manual tuning
task, making Automatic SQL Tuning a very cost-
effective solution.

Time (s)
1000

100 -

10

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Queries

Figure 7. Automatic Tuning Time

8. Related Work

Several research groups, commercial databases and tools
vendors have tried to solve the SQL tuning problem.
Their solutions have concentrated on one of many areas.
These include improving the optimizer itself; providing
novel data statistics; rewriting the SQL statements into
semantically equivalent forms; and making
recommendations for new indexes to improve
performance. However, none of the commercially

available query optimizers exploit a selective body of
knowledge built by a learning component to influence
future query plan generation. In Oraclel0g, this body of
knowledge is encapsulated by SQL profiles built by the
Automatic Tuning Optimizer, our learning component.

The LEO (LEarning Optimizer) research project at
IBM [1] [2] corrects errors in cardinality estimates made
by the query optimizer by comparing them with the
actual values measured at each step of the execution
plan. The corrections are computed as adjustments to the
query optimizer estimates and stored in dictionary tables.
When a SQL statement is compiled, the query optimizer
first checks whether any adjustments are available as a
result of previous executions of a related query and if so,
it applies them. The idea of correcting errors in optimizer
estimates to produce a better execution plan is similar to
SQL Profiling. However, the two approaches differ in
several ways:

1. LEO detects cardinality estimate errors only in the
final plan selected by the optimizer. In contrast,
SQL profiling error detection is performed when the
Oracle optimizer is searching for an optimal plan.
As a result, SQL profiling guides the optimizer in its
plan search algorithm so that the true optimal plan
can be found. On the other hand, LEO tries to find
an optimal plan through several iterations, each of
which requires a new execution of the SQL
statement by the application. Several issues with
LEO?’s iterative error correction model are detailed
in [2] and outlined here:

a. Performance of intermediate execution plans is
not guaranteed to improve because of partial
error corrections. Indeed, during the learning
phase, performance can even degrade making
this method hard to use in production systems.
By contrast, the Automatic Tuning Optimizer
produces a SQL profile in a single iteration,
without impacting the application.

b. The process of converging to an optimal plan
can extend over a long period of time since a
single estimate error can be the source of many
other estimate errors. For example, an error in
the cardinality estimate of a join between tables
A and B, will cascade to every join permutation
that includes A and B (e.g., C, A, D, B). Hence,
before finding the optimal join permutation,
LEO might have to correct many join
permutations, each correction requiring a full
execution of the SQL statement by the
application. This issue does not exist for SQL
profiling since all relevant estimates are
validated during the plan search process, using
partial query execution techniques on data
samples.

c. Finally, there is no guarantee that LEO will be
able to find the optimal plan. For example, two

1107

errors can cancel each other out, making the
real error impossible to detect. Also, it may not
be possible to pinpoint the source of an estimate
error in a combination of predicates (e.g.,
C1<10 and C2>50) because the optimizer chose
to evaluate them together, e.g. during a full
table scan. Identifying the exact source of an
error is important since it could enable a
different access path (e.g., an index range scan).
On the other hand, the Auto Tuning Optimizer
judiciously verifies cardinality estimates during
the plan search process. In the above example, it
will verify in isolation the selectivity of
predicates that are access path enablers.
Another difference between LEO’s approach and
our approach is the usage model. SQL Profiling can
target a small subset of SQL statements, generally
the ones that have the highest impact on the
performance of the system. By contrast, LEO will
potentially gather corrections for every statement
executed in the system and what is learned could
impact many other statements. This could be viewed
as an advantage for LEO since it could learn even
for queries executed only once (e.g. purely ad-hoc
queries) while SQL profiling cannot do this. On the
other hand, the corrections gathered by LEO can be
overwhelming, both in terms of storage
requirements and time spent in managing them. SQL
Profiling maximizes the benefit/overhead ratio since
it can be used in a very selective way to focus on a
small subset of important statements, while not
disturbing the performance of other statements. In
addition, the impact of SQL profiling is easier to
understand and evaluate, making this feature
probably less risky to deploy in a real world
production system.
The feedback mechanism used by LEO is defined in
very general terms, simply by saying that predicate
corrections are stored in the dictionary. In our
opinion, this aspect is one of the most challenging.
That is, how to represent, store, lookup, and manage
feedback information. In LEO’s approach, it is not
clearly explained how cardinality corrections can be
applied in cases other than for single table estimates,
e.g., join, aggregate, set operations. By contrast,
SQL Profiles allow correction of any type of
estimate made by the Oracle optimizer during the
plan search process. Also, lookup of a SQL Profile
is simply done by computing a signature on the text
of the SQL statement, making the feedback retrieval
process very efficient.
A SQL Profile is a general feedback mechanism to
deliver any type of information to the optimizer to
influence query plan generation. For instance, in
addition to correcting optimizer estimates, we use it
to customize the optimization mode of a SQL

statement. As far as we know, LEO has no provision
for this.

Microsoft SQL Server offers an Index Wizard [5] to
provide recommendations to the DBA on the indexes
that can potentially improve the query execution plans.
This approach is similar to the DB2 Advisor [10], and
SQL Access Advisor [6] component in Oracle 10g
manageability framework. However, Index Wizard is
limited to access path recommendations and cannot be
used to improve the quality of execution plans, unlike
what SQL Profiles can do.

There are a number of commercial tools that assist a
DBA in some aspects of tuning inefficient SQL
statements. None of them, however, provides a complete
tuning solution, partly because it is not integrated with
the Oracle database server. Quest Software's SQLab
Vision [3], provides a mechanism for identifying high
load SQL based on several measures of resource
utilization. It also can rewrite SQL statements into
semantically equivalent, but potentially more efficient,
alternative forms and suggests creation of indexes to
offer more efficient access path to the data. Since the
product resides outside of the Oracle RDBMS, the actual
benefit of these recommendations is unknown until they
are actually implemented and executed by the user.

LeccoTech's SQLExpert [4] is a toolkit that scans
new applications for problematic SQL statements as well
as high load SQL statements in the system. It generates
alternative execution plans for a SQL statement by
rewriting it into all possible semantically equivalent
forms. There are three problems with this approach.
First, it cannot identify all forms of rewriting a SQL
statement (which is normally the domain of a query
optimizer). Second, equivalent forms of a SQL statement
do not guarantee that the query optimizer will find an
efficient execution plan if the bad plan is a result of
errors in the optimizer estimates, such as cardinality of
intermediate results. Third, all the alternative plans will
have to be executed to actually determine which, if any,
is superior to the original execution plan found by the
optimizer.

9. Conclusion

In this paper, we have described the Automatic SQL
Tuning feature introduced in OraclelOg. It is tightly
integrated with the Oracle query optimizer, and is an
integral part of the manageability framework for self-
managing databases introduced in OraclelOg. The
Automatic SQL Tuning is based on the Automatic
Tuning Optimizer, the new generation Oracle query
optimizer. The SQL Tuning Advisor tunes SQL
statements and produces a set of comprehensive tuning
recommendations including SQL Profiles. The user
decides whether to accept the recommendations. Once a
SQL Profile is created, the Oracle query optimizer will
use it to generate a well-tuned plan for the corresponding

1108

SQL statement. A tuning object called the SQL Tuning
Set is also introduced that enables a user to create a
customized SQL workload, e.g., in order to tune it. The
interface to the Automatic SQL Tuning is provided
primarily through Oracle Enterprise Manager but is also
accessible via a programmatic interface.

Many of the techniques we have described in this
paper have been proposed before in different contexts
[11, [2], [5], [10], [11]. But SQL Profiling is a novel
technique that we have described here. Also, we have
shown how these techniques have been combined
together in order to offer an innovative end-to-end SQL
tuning solution in Oracle 10g.

Finally, we have illustrated the feature using a real
customer workload. It works equally well for OLTP and
DSS workloads, because it helps the query optimizer
cope with query complexity by improving its estimates.
Although the feature is in its first production release,
initial case studies have demonstrated the superiority of
Automatic SQL Tuning over manual tuning. This
position is further cemented by the fact that Automatic
SQL Tuning results can scale over a large number of
queries, and they can evolve over time with changes in
the application workload and the underlying data.
Automatic SQL Tuning is also far cheaper option than
manual tuning. Together, these reasons position
Automatic SQL Tuning as an effective and economical
alternative to manual tuning.

References

[1] Michael Stillger, Guy M. Lohman, Volker
Markl, Mokhtar Kandil: LEO — DB2’s Learning
Optimizer, The VLDB Journal, 2001.

V. Markl, G.M. Lohman, V. Raman: LEO: An
autonomic query optimizer for DB2, IBM
Systems Journal, Vol 42, No 1, 2003.

[3] Quest Software, Quest Central for Oracle:
SQLab Vision, http://www.quest.com, 2003.

[4] Leccotech, LECCOTECH Performance
Optimization Solutions for Oracle, White
Paper, http://www.leccotech.com/, 2003.

[5] S. Chaudhuri, V. Narasayya: An Efficient, Cost-
driven Index Tuning Wizard for Microsoft SQL
Server, 23 International Conference on Very
Large Data Bases, 1997.

[6] Oracle Corporation: Performance Tuning using
the SQL Access Advisor, Oracle White Paper,
http://otn.oracle.com, 2003.

Oracle Corporation: Database 10g: The Self-
Managing Database, Oracle White Paper,
http://otn.oracle.com, 2003.

(8]

(9]

Oracle Corporation: The Self-Managing
Database: Automatic Performance Diagnosis,
Oracle White Paper, http://otn.oracle.com,
2003.

Oracle Corporation: The Self-Managing
Database: Guided Application and SQL Tuning,
Oracle White Paper, http://otn.oracle.com,
2003.

[10]Gary Valentin, Michael Zuliani, Daniel Zilio,

Guy Lohman, Alan Skelley: DB2 Advisor: An
Optimizer Smart Enough to Recommend Its
Own Indexes, 16th International Conference on
Data Engineering, 2000.

[11] Hamid Pirahesh, Joseph Hellerstein, Waqar

Hasan: Extensible/Rule Based Query Rewrite
Optimization in Starburst, ACM SIGMOD
Conference, 1992.

1109

