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Abstract 
The use of inaccurate or outdated database statistics by 
the query optimizer in a relational DBMS often results 
in a poor choice of query execution plans and hence 
unacceptably long query processing times. Configura-
tion and maintenance of these statistics has tradition-
ally been a time-consuming manual operation, requir-
ing that the database administrator (DBA) continually 
monitor query performance and data changes in order 
to determine when to refresh the statistics values and 
when and how to adjust the set of statistics that the 
DBMS maintains. In this paper we describe the new 
Automated Statistics Collection (ASC) component of 
IBM® DB2® Universal Database™ (DB2 UDB). This 
autonomic technology frees the DBA from the tedious 
task of manually supervising the collection and 
maintenance of database statistics. ASC monitors both 
the update-delete-insert (UDI) activities on the data as 
well as query feedback (QF), i.e., the results of the 
queries that are executed on the data. ASC uses these 
two sources of information to automatically decide 
which statistics to collect and when to collect them. 
This combination of UDI-driven and QF-driven 
autonomic processes ensures that the system can 
handle unforeseen queries while also ensuring good 
performance for frequent and important queries. We 
present the basic concepts, architecture, and key 
implementation details of ASC in DB2 UDB, and 
present a case study showing how the use of ASC can 
speed up a query workload by orders of magnitude 
without requiring any DBA intervention.  

1. Introduction 
 Query optimizers employ database statistics to determine 
the best execution strategy for a query. This metadata 

usually includes the number of rows in a table, the num-
ber of distinct values for a column, the most frequent 
values in a column, and, for numeric data, the distribution 
of data values in a column (usually stored as a set of 
quantiles). The optimizer uses these statistics to compute 
the cardinality (i.e., number of rows processed) at each 
intermediate step of a query execution plan. Advanced 
optimizers also use joint statistics on groups of columns 
within a table in order to deal with possible correlations 
between column values. 

The presence of inaccurate or outdated statistics 
causes the optimizer to inaccurately estimate the 
cardinalities and costs of the steps in a query plan, which 
can result in a poor choice of plan and lead to 
unacceptably long query processing times. Unfortunately, 
it is all too easy for the statistics in a DBMS to deteriorate 
over time. In general, database statistics are not 
incrementally updated during data manipulations such as 
insert, update, delete, and load, because such incremental 
maintenance is too expensive. Statistics for tables with 
high data change rates are therefore very likely to be out 
of date. Even if the statistics are refreshed frequently, they 
may still lead to inaccurate cost estimates if the 
configuration parameters for the statistics are not set 
properly. Examples of such parameters include the 
number of frequent values and the number of quantiles to 
maintain. These parameters depend heavily on the 
statistical properties of the data, which can change over 
time. 

Previous commercial database systems have required 
the DBA to manually configure and schedule the 
collection and maintenance of statistics, a tedious and 
time-consuming task. In this paper we describe the new 
Automated Statistics Collection (ASC) component of 
DB2 UDB, which has been developed as part of a general 
effort to incorporate autonomic technology into DB2 
UDB products [LLZ02, LSZ03]. The ASC subsystem 
frees the DBA from the burden of statistics management. 
ASC monitors update-delete-insert (UDI) activity on the 
data tables in order to detect outdated statistics. ASC also 
monitors query feedback (QF), i.e., the results of the 
queries that are executed on the data, in order to detect 
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and adjust for outdated or improperly configured 
statistics. Based on this information, ASC decides which 
statistics to gather, at what level of detail to gather them, 
and when to gather them, without requiring any DBA 
intervention. 

The novel features of ASC include (1) the 
simultaneous use of both a “UDI-driven” autonomic 
process that monitors UDI activity (including load 
operations) on tables and a “QF-driven”  feedback loop 
that monitors estimated and actual results of query 
executions, (2) methods for deciding if the data in a table 
has changed sufficiently to require a  refresh of the 
statistics, (3) methods for deciding which statistics to 
gather and at what level of detail to gather them based on 
monitored query results, and (4) methods for scheduling 
statistics collection that combine and prioritize the 
recommendations from the UDI-driven and QF-driven 
analyses.  

Neither a UDI-driven nor a QF-driven approach is 
sufficient by itself. UDI-driven approaches are proactive 
and therefore can handle unforeseen queries, but may not 
concentrate enough effort on maintaining statistics that 
are critical to the users’ workload. QF-driven approaches 
are reactive and require some learning time, but focus on 
the most critical statistics, and hence use system resources 
very efficiently. ASC combines the strengths of both 
approaches, proactively collecting basic statistics on every 
table periodically so as to be prepared for queries that 
have not been anticipated, and reactively refining 
statistics as required by the workload so as to be well 
prepared for the most important queries. 

The remainder of the paper is organized as follows: in 
Section 2 we describe the overall ASC architecture. Sec-
tions 3 and 4 focus respectively on the UDI-driven and 
QF-driven approaches to detection of outdated and in-
accurate statistics. In Section 5 we describe how the ASC 
scheduler combines and prioritizes the recommendations 
from both the UDI-driven and the QF-driven autonomic 
components in order to schedule the actual statistics col-
lection. Section 6 presents a case study using a realistic 
workload of queries on a database of car-accident records. 
Section 7 surveys related work. Section 8 presents conclu-
sions and gives an outlook on future work. 

2.   Automated Statistics Collection 
We first review some basic facts about the collection and 
use of statistics in DB2 UDB. We then describe the 
modifications to DB2 UDB that comprise the ASC 
component.  

2.1 Statistics in DB2 

DB2 UDB stores in the system catalog [IBM04] the 
statistics pertinent to each table, including overall 
properties of the table, detailed information about the 
columns in the table, and information about any indexes 
on columns of the table. The DB2 UDB optimizer uses 

the information in the catalog when selecting a query 
plan. Table 1 summarizes the statistical information used 
by the optimizer and the names of the tables in the DB2 
UDB SYSTAT schema that store the information. 

The DB2 RUNSTATS utility collects the statistics and 
populates the system catalog tables. RUNSTATS is 
executed on a per table basis, and for any given table the 
user can specify the specific columns and indexes on 
which statistics are to be created. For each table in a 
database schema, the system catalog records the most 
recent time that RUNSTATS has been executed on the 
table. The exact configuration parameters for 
RUNSTATS on each table (i.e., the set of columns on 
which to gather statistics, the number of quantiles and 
frequent values to collect for a column, the set of column-
group statistics to maintain, etc.) are recorded in a 
RUNSTATS profile. RUNSTATS profiles are stored in the 
system catalog (in the SYSSTAT.PROFILE table) and 
can be modified through the RUNSTATS command and 
queried through SQL. 

2.2 ASC Architecture 

The ASC component introduces both a UDI-driven and a 
QF-driven autonomic process into the DB2 UDB system. 
The first process monitors table activity and recommends 
execution of RUNSTATS on a table whenever UDI or 
LOAD statements against this table have changed the data 
distribution so that the present statistics for that table are 
substantially outdated. The second process monitors query 
results on a table. The process modifies the RUNSTATS 
profile for the table and recommends execution of 
RUNSTATS whenever it detects either that configuration 
parameters have been set improperly or that the statistics 
are outdated. The scheduler component combines the 
output of these two processes and triggers the execution 
of RUNSTATS on appropriate sets of tables and at 
appropriate times. In general, the scheduler causes 
RUNSTATS to be executed on one or more tables during 
a maintenance iteration that is concentrated within a 
specified time period called a maintenance window. The 

Table Name Content 
tables number of rows in a table 
columns number of distinct values for that 

column 
indexes number of distinct index keys, 

clustering of the table with respect 
to. the index, physical properties of 
the index 

coldist quantiles and frequent values of a 
column 

colgroups distinct number of values for a group 
of columns 

 
Table 1: DB2 Statistics 
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frequency and length of maintenance windows can be 
controlled by the DBA.  

Figure 1 depicts the overall architecture of the ASC 
component. The left side of the figure depicts 
functionality that is implemented in the DB2 UDB engine, 
i.e., the query processor with optimizer and plan 
execution, the data manipulation language (DML) 
processor, and the monitors that facilitate several of the 
autonomic capabilities of DB2 UDB. The right side of the 
figure depicts a pair of analyzers and a scheduler that 
have been added to the DB2 Health Monitor to realize 
automated statistics collection. The analyzers periodically 
investigate the output of the monitors and recommend to 
the scheduler a set of tables on which to collect statistics. 

The upper portion of the figure pertains to the UDI-
driven autonomic process. When changing the data in a 
table according to a UDI or LOAD statement, the DML 
processor not only modifies the database, but also sends 
information to an activity monitor (AM) that records the 
number of changes against each table using a UDI-
counter. The activity analyzer (AA) uses this information 
to determine whether statistics on an active table have 
changed enough to justify statistics collection for this 
table. The AA also estimates the degree to which activity 
on a table has altered the data distribution; the scheduler 
uses such estimates to prioritize tables for statistics 
collection. To avoid starvation, “critical” tables that have 
experienced UDI activity but have been ignored over 
many past maintenance iterations eventually receive top 
priority for statistics collection. 

The lower portion of the figure pertains to the QF-
driven autonomic process. This process observes query 
activity by using a plan monitor (PM), which stores the 
best plan together with the optimizer’s cardinality 

estimate for each intermediate result. During plan 
execution, a run-time monitor (RM) observes the actual 
cardinalities. All of this compile-time and run-time 
information is stored in a query feedback warehouse 
(QFW) in the form of relational tables. A query feedback 
analyzer (QFA) periodically reviews these tables in order 
to generate modifications to the RUNSTATS profiles. 
The QFA bases these modifications on the discrepancy 
between actual and estimated cardinalities. Besides 
modifying RUNSTATS profiles, QFA communicates to 
the scheduler its findings about tables with modified 
RUNSTATS profiles and tables with outdated statistics, 
so that the scheduler can properly prioritize the automatic 
execution of RUNSTATS. 

The statistics-collection process, like any other back-
ground maintenance task, must not significantly impede 
more important business-critical tasks. Therefore, the 
scheduler executes each RUNSTATS task as a “throttled” 
background process in order to guarantee that the user 
workload is not slowed down by more than a specified 
amount. During a maintenance window, RUNSTATS 
tasks are allocated a large portion of the available system 
resources. If there are tables that still need to be processed 
when the maintenance window ends, then processing 
continues, but RUNSTATS is throttled back so that the 
maximum allowable impact on query performance is lim-
ited to a small value (typically around 7%). When it is 
time to start the next maintenance window, any 
RUNSTATS tasks that are under way are first allowed to 
complete. To throttle the maintenance process, the sched-
uler exploits the general mechanism in DB2 UDB for 
adaptively tuning resource consumption during process 
execution [PRH+03a, PRH+03b]. This mechanism, which 
rests on control-theoretic techniques, is used to manage 
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other expensive maintenance processes such as database 
backup and table reorganization.  

3.   Detecting Stale Statistics via Data Activity 
The UDI-driven autonomic process analyzes both the 
number of UDI and load operations and the changes in 
data values to determine whether the statistics on a table T 
have changed sufficiently so that statistics collection is 
justified. The process takes as input a list G of tables to be 
checked, as provided by the scheduler, and its output is a 
prioritized list of tables D, where D is a subset of G.  

Figure 2 illustrates the overall detection process. As 
can be seen, the activity analyzer comprises two 
components. The data activity checker (DAC) is first 
executed to ensure that only tables with a reasonably large 
amount of data activity are considered for statistics 
collection. Each table in G that is not eliminated by the 
DAC is inserted into D. The list D is then passed to a 
change analyzer (CA). For each table T in D, the CA 
estimates for each “analyzable” column in T the degree of 
change in the data distribution since RUNSTATS was last 
executed on T; a column is analyzable if quantile statistics 
for the column are maintained in the system catalog.  If no  
analyzable column in T evidences a significant degree of 
change, then T is removed from D.  

After execution of the CA, the list D contains 
essentially only those tables having both significant data 
activity and significant changes in data values in at least 
one column. This list is then passed to the scheduler. We 
now describe the various components of the detection 
process in more detail. 

3.1 Activity Monitor 

The task of the activity monitor (AM) is to quantify the 
update activity for each table. It monitors both the loading 
of data into tables and UDI operations on tables. The AM 
maintains a UDI-counter for each table. The counter is 
increased by 1 whenever an existing row is updated or 
deleted, or a new row is inserted. The counter is set to 0 
when the table is created, and is reset to 0 whenever 
RUNSTATS is executed on the table.  

The UDI-counter is stored in the table descriptor 
together with other internal data structures. It is usually 
cached in memory and flushed to disk using the same 

discipline as for the rest of the data structures. Therefore, 
maintenance of the UDI-counter rarely causes extra I/O 
operations. 

3.2 Data-Activity Checker 

The DAC is the first process invoked when searching 
for outdated statistics because the presence of data 
activity is necessary in order for statistics to change. Lack 
of data activity means statistics need not be updated 
unless the QF-driven process gives a different indication, 
i.e., unless the QFA modifies the configuration 
parameters for some statistics or detects outdated 
statistics. This multi-tier approach significantly reduces 
the number of maintenance tasks performed over time. 
Tables with either low data activity or marginal changes 
to the statistics are ignored, so that system resources can 
be devoted to maintaining the most important tables. 

The DAC first verifies that the table-related data 
structures are cached in memory. Their absence from the 
cache means that the table has not been used recently; it 
follows that the table has low data activity and can be 
ignored. Otherwise, the table is considered to be a 
candidate for statistics collection, and the DAC inspects 
the UDI-counter maintained for that table. If the UDI-
counter suggests that at least τ% of the rows have been 
modified, this table is passed on to the change analyzer to 
further investigate whether statistics on this table need to 
be collected. The current implementation of DAC uses a 
value of τ = 10.  

It is possible that in some unusual cases a small 
number of records in a given table are changed, but the 
data values in these records are altered so drastically that 
query performance is affected. In this case, the table may 
not be detected by the DAC, and hence the AA. If this 
table is referenced in the query workload, however, then it 
will be detected by the QFA.  

3.3 Change Analyzer 

For each table T in its input list D, the CA takes a small 
sample from T and computes a synopsis data structure S = 
S(T), where S comprises histograms of the marginal data 
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distribution for each analyzable column. We have found 
that a sample consisting of about 2000 pages of table data, 
selected using page-level Bernoulli sampling, provides 
sufficient statistical precision for our purposes; see 
[PIHS96, IMHB04]. The CA also obtains an analogous 
synopsis R = R(T) based on the (possibly outdated) 
marginal data distributions that are stored in the system 
catalog. For each analyzable column, the CA then 
measures the “distance” between the histograms. The CA 
deletes table T from D, i.e., declares the change in data 
values to be insignificant, if and only if the distance for 
each analyzable column lies below a specified threshold. 
If the change is significant for at least one analyzable 
column, then the CA leaves table T in D and, as described 
below, assigns to T a priority that the scheduler can use to 
determine when to update T relative to other tables. 

For a fixed analyzable column T.C (assumed to 
contain numeric data) the CA uses a normalized L1 
distance to measure the change in the data distribution. 
Specifically, denote by eY(T.C ≤ v) the cardinality 
estimate for the predicate T.C ≤ v (i.e., the estimated 
number of rows in T that satisfy the predicate) based on 
synopsis Y, and by l and u the smallest and largest bucket 
boundary points that appear in R and S. Then 

1change( . , , ) ( . ) ( . )
| |

u

R Sl
T C R S e T C v e T C v dv

u l
= ≤ − ≤

− ∫ . 

Observe that change(T.C,R,S) can be interpreted as the 
average absolute discrepancy  in cardinality estimates 
over a family of one-sided  inequality predicates. 

Suppose that the histogram of T.C values is repre-
sented by a set of bucket boundaries (typically quantiles) 
in both synopses R and S. Then change(T.C,R,S) can be 
computed in a simple manner using essentially a “line 
sweep” algorithm. Specifically, determine the union of the 
two sets of bucket boundaries, and observe that 

( . )Re T C v≤  and ( . )Se T C v≤ are linear and nondecreasing 
functions of v over each subinterval defined by a pair of 
successive bucket boundary points. Thus, the integral 

| ( . ) ( . ) |R SI
e T C v e T C v dv≤ − ≤∫ can be represented as the 

area of the region that lies between two piecewise-linear 
curves; see, for example, the shaded region in Figure 3, 
where the dashed lines correspond to the combined bucket 
boundaries. This area can in turn be expressed as a sum of 
areas of simple trapezoids and triangles, each of which is 
quick and easy to compute. Summing these areas and 
dividing by l u−  yields the value of change(T.C, R, S) .  

If change(T.C,R,S) > θ for at least one column, where 
θ is an empirically determined threshold value, then the 
CA concludes that data distribution has changed, 
identifies table T as a candidate for statistics collection, 
and assigns to T a priority equal to maxC change(T.C,R,S). 

The CA can also use the foregoing measurement 
technique to quantify the change in data values as 
measured by successive sets of catalog statistics. Dividing 
this change value by the amount of time between the 
corresponding executions of RUNSTATS yields an 
estimate of the data change rate. As described in Section 
5, the scheduler uses such rate-of-change estimates to 
project the next time at which a table will be due for 
statistics maintenance. 

4.   Detecting Poor Statistics from Queries 
The QF-driven autonomic process monitors query 
execution and records estimation errors in the QFW. The 
QFA analyzes the data in the QFW to determine which 
tables have outdated statistics, whether and how the 
frequent values for columns on a particular table should 
be reconfigured, and which (intra-table) correlation 
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statistics should be created in order to reduce estimation 
errors in the future.  As shown in Figure 4, the QFA 
comprises three components. The table cardinality 
analyzer (TCA) detects whether statistics are outdated by 
comparing the estimated and actual size of a table. The 
simple-predicate analyzer (SPA) uses estimated and 
actual cardinalities of simple equality predicates to 
determine the number of frequent values that should be 
used when creating the statistics for a particular column. 
The correlation analyzer (COA) uses cardinality 
information about tables, simple equality predicates, and 
conjunctive predicates to determine the set of column- 
group statistics to recommend to the scheduler. The 
output of the QFA is a prioritized list of tables Q that 
require statistics collection, along with the configuration 
parameter changes for the statistics of each table. The list 
Q is sent to the scheduler, and the configuration changes 
are stored in the RUNSTATS profiles. 

4.1 The QFW and Its Maintenance 

The QFW (see Figure 5) is populated periodically using 
the information generated by the PM and the RM. For 
each query, the PM records, at compile time, the 
predicates in the query (i.e., the column names, relational 
operators, and values) along with the optimizer’s 
cardinality estimate for each predicate. The RM records 
run-time information about each query that includes the 
actual cardinalities for each table and predicate, as well as 
the actual values of parameter markers or host variables 
used in a query.  

The data in the QFW is organized into relational 
tables. The feedback query table stores each query in its 
entirety, along with a skeleton query plan. 

The feedback predicate table stores detailed predicate 
information. In our current implementation, the QFW 
stores information for simple predicates of the form 
COLUMN ⊕  ‘literal’ (where ⊕  is a relational 
operator such as “=” or “<”), as well as compound 
predicates that reference a single table and are 
conjunctions of simple predicates. During the planning 
and processing of a query containing a compound 
predicate that comprises 1N ≥  “Boolean factors” (i.e., 
conjuncts), the PM and RM have the opportunity to 
observe actual and estimated cardinalities for one or more 
“sub-predicates,” each consisting of the conjunction of a 

subset of the N Boolean factors. Each such sub-predicate 
generates an entry in the feedback predicate table that 
includes the table referenced by the sub-predicate, the 
number of Boolean factors, and the estimated and 
observed cardinality.  

The feedback column table contains an entry for each 
Boolean factor that appears in the feedback predicate 
table. Each entry includes the column name, relational 
operator, and literal of the predicate. The literal may come 
from either PM (in case of hard-coded predicates) or RM 
(in case of parameter markers or host variables). 

The recommendations of the QFA concerning out-
dated statistics, frequent values, and correlations are also 
stored in the QFW. The recommendation column table 
contains column information for these recommendations, 
i.e., the column name and number of frequent values. The 
recommendation column-group table stores similar infor-
mation but for column groups rather than individual col-
umns. 

The QFW is an autonomic component of DB2 UDB in 
its own right. It automatically purges old data, when 
necessary, and it never grows beyond a DBA-specified 
size. 

4.2 Operation of the QFA 

The QFA processes the query feedback stored in the QFW 
and generates recommendations for correcting cardinality 
estimation errors in the future. The QFA proceeds by 
measuring, classifying, aggregating, and prioritizing the 
differences between optimizer-based cardinality estimates 
and actual cardinalities. Cardinalities considered include 
those for table size, for simple equality predicates of the 
form COLUMN = ‘literal’, and for pairwise 
conjuncts of simple equality predicates. The QFA 
determines the cause of each estimation error by 
sequentially executing the table cardinality analyzer, the 
simple-predicate analyzer, and then the correlation 
analyzer. The QFA then aggregates the errors for each 
column and table, prioritizes the tables, and 
communicates its results to the scheduler and to the 
RUNSTATS profiles. We describe each of these 
operational phases in more detail below. 

 
4.2.1 Table Cardinality Analyzer 
The TCA simply compares the actual cardinality of each 
table in the feedback warehouse with the estimated 
cardinality based on the system catalog statistics. A 
discrepancy indicates that the statistics for this table are 
out of date. (This analysis is similar in spirit to the use of 
the UDI-counter by the DAC.)  

 
4.2.2     Simple-Predicate Analyzer 
For each column represented in the QFW, the SPA 
examines the errors in the simple equality predicates that 
reference the column to check whether the number of 
frequent values maintained for the column in the system 
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catalog is sufficient. If not, then the SPA automatically 
recommends an appropriate number of frequent values to 
maintain. Note that following such a recommendation 
also results in bringing the frequent-value statistics up to 
date. Because some of the statistics in the catalog are 
collected using random-sampling techniques, the QFA 
considers only those QFW entries where the observed 
error exceeds the expected error from normal sampling 
fluctuations. 

Use of frequent-value statistics minimizes estimation 
errors arising from skew in the column-value frequencies. 
It is difficult, however, for a DBA to manually determine 
the "right" number of frequent values to track. The 
automated approach used by the SPA is as follows. First 
the SPA scans the QFW and the system catalog to 
compile a list of all “known” value frequencies for the 
column.  These include:  

 The frequencies fv1 .. fvn of the currently 
maintained frequent values, as recorded in the 
system catalog. 

 The frequencies cfv1 … cfvm of all values for 
which there is a relevant error record in the QFW. 
These values can be considered as candidate 
frequent values to maintain. 

 An average frequency assigned to each of the 
remaining “rare” (i.e., infrequent) values, 
computed using a uniformity assumption from the 
estimated number of rows in the table and the 
number of distinct values in the column. 

When multiple frequency estimates are available for a 
given column value, the SPA uses the most recent one. 

Figure 6 illustrates the frequency list as a bar graph, in 
descending order of frequency.  Suppose that the table has 
d distinct values in total, and a total cardinality of C. Then 
the successive bar heights are  f1, f2 ,... fm+n, countrare, 
countrare, … , countrare (d – m – n  times), where 

1 2, , , m nf f f +…  is {fv1, … fvn, cfv1, ... cfvm} arranged in 
descending order, and 

1 2( ) ( )/rare m ncount C f f f d m n+= − − − − − −" . 
SPA now determines the number K of frequent values to 
maintain, where n K m n≤ ≤ + . If DB2 UDB maintains K 

frequent values, then, when estimating cardinalities, the 
optimizer uses the exact count for these values and an 
average count of 

( ) ( )1 /K
rare ii

newcount C f d K
=

= − −∑  

for each of the remaining values. The total absolute 
estimation error over all possible simple equality 
predicates is 

1
( ) | |

( ) | | .

m n
i rarei K

rare rare

AbsError K f newcount

d m n count newcount

+

= +
= −

+ − − −
∑  

The first term represents the contribution due to the 
m n K+ − known frequencies that DB2 UDB chooses not 
to retain, and the second term is the contribution from the 
remaining values. Observe that AbsError(K) is decreasing 
in K. To determine the number of frequent values to 
maintain, we initially set K = n and then increase the 
value of  K until either AbsError(K) falls below a 
specified threshold or min( , )K m n β= + , where β  is a 
pre-specified upper bound on the number of frequent 
values to maintain. 
 
4.2.3    Correlation Analyzer 
The COA focuses on pairwise correlations between 
columns in a table, because experiments indicate that the 
marginal benefit of correcting for higher-order 
correlations is relatively small; see [IMHB04]. For each 
pair of columns that appear jointly in a QFW record, the 
COA compares the actual selectivity of each conjunctive 
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Figure 6: Frequencies Used by SPA

// G, P, D, Q, C are lists of tables 
// T is a table 
G := tables to be checked by AA during the initial  
               maintenance iteration 
P, D, Q, C := {} 
while(true) 
{ 
    // Call the AA on the Tables in G 
    D := AA(G); 
    // Call the Query Feedback Analyzer 
    Q := QFA(); 
   // prioritize D and Q based on the ranking criteria
   //  and merge with list of critical tables C 
    P := prioritizeMerge(D, Q, C);   
     while (still time in maintenance window) 
    { 
          T := Pop(P); // T is table in P with highest priority 
          execute RUNSTATS on T  
                       and estimate the data change rate; 
    } 
    // Construct list for next maintenance interval 
    (G, C) := constructDueTables() 
    sleep until the next maintenance window; 
} 
 

Figure 7: Scheduling Algorithm
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predicate to the product of the actual selectivity of the 
Boolean factors of the conjunct, assuming that this 
information is available. For example, suppose that simple 
equality predicates 1p  and 2p  are evaluated while 
processing a query, along with the conjunctive predicate  
 1 2p p∧ . Denote by α1, α2, and α12 cardinalities for these 
queries that are observed during execution of the query, 
and denote by m the cardinality of the entire table. Then 
the COA deems the independence assumption to be valid 
if and only if  

12

1 2
1 1

mα
α α

− Θ ≤ ≤ + Θ, 

where (0,1)Θ ∈ is a small pre-specified parameter. 
Otherwise, the COA declares that a correlation error of 
absolute magnitude 12 1 2( / )mα α α− has occurred. 

 The analysis becomes more complicated when one or 
more of the actual cardinalities are not available, as is 
often the case in practice. The COA deals with the 
problem by estimating the missing information and 
adjusting the error-detection threshold and estimate of the 

error magnitude accordingly. Details of the complete 
algorithm will appear in a forthcoming paper. 

  
4.2.4 Synthesizing the Final Outputs 
The QFA processes feedback records as described above, 
grouped either by column name or, for records involving 
column pairs, by column-group identifier, where a 
column-group identifier comprises the pair of column 
names enumerated in lexicographic order. The QFA then 
sums up the absolute errors for each column and column 
group, and records the column-wise or group-wise error in 
the appropriate recommendation table. Next, the QFA 
identifies those columns and column groups that are 
responsible for the most severe errors. QFA modifies the 
RUNSTATS profiles so that RUNSTATS will increase 
the number of frequent-value statistics for each identified 
column and create joint statistics for each identified 
column group when it is next executed on the table that 
contains the column or column group. Finally, the QFA 
computes the total error for each table by combining the 
errors for table cardinality, cardinality of simple 
predicates, and cardinality of pairwise conjunctive 
predicates, weighing each error by its frequency (number 
of queries experiencing this error as stored in the QFW). 
Based on these table-wise errors, the QFA sends to the 
scheduler a list Q of tables on which to execute 
RUNSTATS.  

5.   Scheduling  the Collection of Statistics 
The scheduler drives the statistics-collection process. 

During periodic maintenance iterations (with  correspond-
ing maintenance windows), the scheduler invokes the AA 
and QFA, and combines the output D of the AA and the 
output Q of the QFA to create a combined prioritized list 
P of tables to be processed. The scheduler also invokes 
RUNSTATS as a throttled background process to collect 
statistics on those tables having the highest priority. 
Figure 7 displays the overall scheduling algorithm. As can 
be seen from Figure 7, the prioritizeMerge and 
constructDueTables procedures form the heart of the 
scheduling algorithm. We discuss these procedures in the 
following subsections. 

The DBA can control the behavior of autonomic 
background activities by configuring the scheduler. For 
example, the DBA can limit the scope of automated 
statistics collection to certain tables, or can exclude 
certain tables from automatic maintenance. The DBA can 
also specify the maintenance window.  Finally, the DBA 
can also control whether the scheduler should invoke 
QFA, AA, or both, and specify the maximum allowable 
disk space for the QFW. Figure 8 shows the GUI for 
specification of the maintenance window.  
 
5.1 Prioritizing Tables for Processing 
Prioritizing tables for processing is an important and 
challenging task. For large databases with potentially 

Figure 8: Specifying the Maintenance Window
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thousands of tables and terabytes of data, selecting the 
wrong tables for statistics collection might mean that very 
needy tables will have to wait an unreasonable length of 
time, with detrimental effects on query performance.   

The scheduler classifies tables into five distinct 
“urgency” classes. A table is useful with respect to 
statistics refresh if more than 0% but less than 50% of the 
rows have experienced some data change since the last 
statistics refresh on the table. A table is needed if it has 
been recommended for processing by the QFA. A 
pressing table has had 50% or more rows experiencing 
change since the last statistics refresh.  An urgent table is 
both needed and either pressing or useful. A critical table 
is a table that has been starved: either the UDI-counter is 
positive but an excessive number of maintenance 
iterations have passed since the last statistics refresh, or 
RUNSTATS has never been executed on the table. 
Critical tables are always inserted into the list P of tables 
to be processed in the current maintenance window and 
are given top priority in this list. If a table falls into 
multiple classes, then the most urgent of the classes 
defines the table’s final categorization.  

The scheduler prioritizes critical tables above urgent 
tables, urgent tables above pressing tables, and so forth. 
The tables are then prioritized within each class, resulting 
in a priority queue that specifies the order in which tables 
are selected for statistics refresh; see Figure 9. 

Useful tables are prioritized within their class by the 
percentage of rows changed, and similarly for pressing 
tables.  Tables within both the needed and urgent classes 
are prioritized by a combination of their frequency count 
and aggregated estimation error. The frequency count of 
a table is the number of error records in the QFW that 
reference the table, and measures a table’s relative 
importance within the workload. Aggregated estimation 
error is the table-wise error that is computed by the QFA, 
as described in Section 4.2.4. Finally, critical tables are 
ranked by their data change rate, as defined in Section 5.2 
below; tables with no rate-of-change information (because 
RUNSTATS has been executed on the table less than two 
times) receive top priority. This ranking scheme ensures 
that a single table never appears more than once in the 
queue.  

The rationale for the ranking scheme is as follows. It 
is useful to refresh statistics on tables that experience low 
to moderate data change, but which have not been 

detected by QFA as impacting the workload, in case these 
tables are accessed by the workload in the future.  Such 
refresh activity should be subject to preemption by more 
important tasks. Tables that are known to be accessed by 
the workload and have obsolete statistics clearly need a 
statistics update. Tables that have experienced massive 
data change will almost surely cause massive query 
optimization problems if their statistics are not refreshed, 
and are also likely to show up in the workload, so that 
there is a pressing need for a statistics update. If such 
tables have actually shown up in the workload and 
generated significant estimation errors, then processing 
these tables becomes even more urgent. Finally, we allow 
the scheduler to identify tables as critical in order to avoid 
starvation problems in which tables experience UDI 
operations or lack statistics altogether, but are deferred 
indefinitely.   

5.2 Constructing the List of Due Tables 

After RUNSTATS has been executed on a table T, the 
newly collected statistics N for T are stored in the system 
catalog. The scheduler now invokes the CA to estimate 
the rate of change of the statistics, using N and the 
previous set of statistics R for T. (See the discussion at the 
end of Section 3.3.) Based on this rate of change, the 
scheduler determines the next maintenance iteration at 
which T will be due for consideration by AA. 

Prior to the first maintenance iteration, the list G of  
input tables to the AA is initialized to contain  all of the 
tables in the database that are subject to automatic 
statistics collection. (Recall that the DBA can limit the 
scope of ASC to a subset of the tables.)  At the end of 
each maintenance window, the constructDueTables 
procedure (see Figure 7) is invoked to create the list G of 
tables that are due to be checked by AA in the next 
iteration. This function also constructs the list C of tables 
that are now critical (as previously defined). 

6.   A Case Study using a DMV Database 
We illustrate the effect of ASC on query processing using 
a case study on a database that stores information about 
car accidents in various countries. The statistics 
maintenance is completely controlled by ASC: no 
statistics are configured or collected by the DBA at any 

T4 T5 T6 T7T3T2T1 T8 T 9

UsefulPressingUrgentCritical Needed

Next table 
iterator. 

 

Figure 9: Priority Queue for Scheduler

1166



time. The study consists of running and timing a typical 
workload of 11 reporting queries on the database both 
before and after the execution of the various components 
of ASC. Specifically, the case study consists of running 
the workload after each of the following steps: 

A. Initial loading of the database  
B. Execution of ASC (AA only)  
C. Insertion of additional accidents that occurred in 

Canada 
D. Execution of ASC (AA only)  
E. Execution of ASC (QFA only)  

We refer to the set of queries executed after step A as 
“query-group A,” the queries executed after step B as 
“query-group B,” and so forth. We modified the operation 
of ASC in steps D and E above in order to investigate the 
benefits of QFA over and above those of AA. 

We carried out the case study using a one-CPU 333 
Mhz PowerPC 604® system with 512 MB memory, two 
8.5 GB disks, running AIX® 4.3.3. ML11. The DMV 
database has a size of 1.5 GB and consists of four major 
tables: ACCIDENTS, CAR, OWNERS, and owner 
DEMO-GRAPHICS. These tables use the following 
schema: 

•  Car (ID, Make, Model, Color, Year, OwnerID) 
•  Owner (ID, Name, City, State, Country1, Country2, 

Country3) 
•  Demographics (ID, Age, Salary, Assets,  OwnerID) 
•  Accident (ID, Year, SeatBeltOn, With, Driver, 

Damage, CarID) 
 
Of particular interest are the column pairs 

(COUNTRY3, CITY) in the owner table and (MAKE, 
MODEL) in the car table. The columns in each pair are 
related by a functional dependency, and each pair is 
referenced in queries 10 and 11 via predicates of the form 
(MAKE = ‘Honda’) AND (MODEL = ‘Accord’) 
AND (CITY = ‘Toronto’) AND (COUNTRY3 = 
‘Canada’). Figure 10 shows the improvement in 
workload performance after statistics have been generated 
by ASC. Query-group A was executed using default 
statistics, whereas query-group B was able to take 
advantage of detailed distribution statistics on the 
individual columns. Note that whereas most queries 
experience a performance benefit, query 10 experiences a 
major regression. The reason behind this regression is that 
query 10 contains several predicates that reference 
correlated columns. 

Figure 11 shows query performance after inserting 
further accidents for Canada into the database. Note that 
the results in Figure 10 and Figure 11 are not comparable 
because the queries used to obtain Figure 11 are executed 
against a larger data set.  

Query-group C in Figure 11 uses the outdated 
statistics collected prior to the insertions. Query-group D 
uses updated statistics, but with no changes to the 
previous statistics configuration. Query-group E uses 

statistics that are both updated and reconfigured. The 
correlations that caused the regression for query 10 in 
Figure 10 are detected when the QFA is executed at Step 
E, appropriate column-group statistics are collected, and 
the performance of query 10 improves dramatically. The 
performance improvements displayed in Figure 11 for 
queries 10 and 11 illustrate the strength of combining the 
UDI-driven and the QF-driven approaches: the orders-of-
magnitude speedup of query 10 results primarily from the 
collection of column-group statistics by the QFA, whereas 
query 11 benefits mostly from the updating of single-
column distribution statistics triggered by the execution of 
the AA at Step D. 

Overall, the case study demonstrates the effectiveness 
of the autonomic technology in DB2 UDB. The use of 
ASC resulted in orders-of-magnitude speedups without 
requiring any intervention by a DBA. Even though 
autonomic features do not come for free, the overhead of 
ASC is negligible. In our case study, the use of ASC 
increased query execution times by 1-2%, primarily 
because of monitoring overhead. As the analyzers are 
executed during off-peak times in throttled background 
processes, their overhead did not really impact the 
operational DBMS. For example, at a time when the 
DBMS had previously processed 20,000 queries, the QFA 
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required less than a minute to analyze the QFW and 
recommend statistics. Both the performance benefit and 
the ease of use of this autonomic feature thus easily 
justify this overhead. 

7.   Related Work 
There have been five major approaches toward 
automating statistics maintenance in database systems: 
UDI-driven change detection, static query-workload 
analysis, QF-driven maintenance, mining-type approach-
es, and piggybacking. 

Several industrial products have delivered statistics-
refresh automation features based on detection of UDI 
operations. These include DB2 UDB for the iSeries™ 
server [IBM02], Microsoft® SQL Server [MICR04], and 
Oracle 10g [ATLB03]. These products essentially 
automate statistics refresh on all tables where the 
percentage of UDI operations exceeds a threshold.  Our 
approach provides three major extensions to this 
technology. First, we combine UDI measurement with a 
histogram analysis to reduce maintenance overhead. 
Secondly, we combine the UDI-driven process with a QF-
driven process to provide a solution that is at once both 
proactive, preparing the system for unforeseen queries, 
and reactive to problems with the current system 
workload. Finally, we provide a prioritization scheme to 
rank tables so that, within a reasonable time interval, 
multiple tables can have their statistics refreshed, and the 
maintenance effort is concentrated on the most important 
tables. 

Static query-workload analysis is based solely on the 
form of the queries and does not exploit run-time 
feedback. Primary examples of this approach are given by 
the SQL Server technique described in Chaudhuri and 
Narasayya [CN01] and the work of Bruno and Chaudhuri 
on SITS [BC02]. Both of these techniques analyze the 
query workload in order to select a set of statistics to 
maintain, such as multidimensional histograms on base 
data or query expressions. In contrast, our approach 
exploits run-time feedback and focuses on very simple 
statistics that are quick and easy to collect, maintain, and 
exploit. Although our statistics are relatively simple, we 
can effectively detect and model correlations between 
columns.  

Use of QF-driven techniques in DB2 UDB was 
originally described in [SLMK01]. The proposed 
approach compares estimated and actual cardinalities to 
create adjustment factors that can be applied in the future 
to improve selectivity estimates. Our current work builds 
on these ideas by (1) adding the QFW mechanism for 
aggregating and prioritizing the feedback information, (2) 
adding the QF-driven methods for modifying the 
RUNSTATS profiles and recommending tables for 
processing, thereby improving selectivity estimates in a 
manner that does not require major modifications to 
existing query optimizers, and (3) integrating the QF-

driven methods with a UDI-driven approach. Other QF-
driven methods include the work in [AC99] and [BCG01], 
where query feedback is used to incrementally build a 
multidimensional histogram that can be used to estimate 
the selectivity of conjunctive predicates. Unlike the 
current work, these algorithms do not discover correlation 
between columns; the set of columns over which to build 
the histogram must be specified a priori. 

Mining-type approaches attempt to discover correlated 
columns by systematically enumerating sets of potentially 
correlated columns and statistically analyzing the data. 
These techniques do not take into account the amount of 
change activity on the tables, and so are even more 
proactive than UDI-driven techniques. The CORDS 
system described in [IMHB04] exemplifies this approach. 
To make the detection efficient and scalable, CORDS 
applies candidate-pruning techniques together with 
random sampling. CORD can detect correlations between 
columns in the same or in different tables. Other proposed 
mining algorithms build sophisticated data synopses such 
as “probabilistic relational models,” Markov-network-
based histogram models, and Bayesian network models, 
which are then used to improve selectivity estimates. 
These latter techniques, as they currently stand, do not 
appear to scale well to very large databases, however, 
which limits their potential use in commercial systems; 
see [IMHB04] for a more detailed discussion. Lim et al. 
[LWV03] propose a QF-driven variant of the synopsis 
approach, called SASH, but this technique also suffers 
from scalability problems. We note that mining-type 
techniques such as CORDS (as well as static query-
workload analysis) can potentially be used in conjunction 
with the methods described in the current paper. 

Piggybacking was proposed as a technique for 
automated statistics collection by Zhu et al. [ZDS+98]. 
The idea is to collect statistics based on observing the data 
that is scanned during normal DML processing. 
Piggybacking avoids the asynchronous background 
refresh of table data statistics used by DB2 UDB for 
iSeries, DB2 UDB, Oracle 10g, and SQL Server. 
However, this technique suffers from a serious drawback. 
Although the overhead for any one SQL statement may be 
small, the cumulative overhead can be significant, and 
this adverse impact on query processing is present at all 
times. Our asynchronous approach to statistics refresh 
avoids these problems. 

8. Conclusions  
Our novel methodology for automating the collection of 
database statistics removes from the DBA the burden of 
manual statistics maintenance. The ASC learns which 
statistics are needed for good query performance and 
collects these statistics in background mode and at 
appropriate times, without requiring any DBA 
intervention. The two autonomic processes that comprise 
the ASC subsystem monitor UDI and query activity to 
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determine which statistics to collect and when to collect 
them, automatically determining the number of frequent 
values to maintain for each column and the appropriate set 
of column-group statistics to store in the system catalog. 
Statistics collection takes place as a throttled background 
process, ensuring minimal impact on mission-critical 
queries.  

ASC is implemented in DB2 UDB v8.2. Our case 
study using the ACCIDENTS database has shown ASC to 
be effective in improving query performance over time, in 
some cases by orders of magnitude.  

In future work, we plan to enhance QFA to also 
recommend the number of quantiles to maintain for a 
column, and perhaps to recommend more sophisticated 
column-group statistics such as limited bivariate 
histogram information. We are also exploring extensions 
of our techniques to column groups of order 3 and higher. 
We are also investigating approaches to directly use the 
query feedback to alter statistics as opposed to triggering 
RUNSTATS. Moreover, we are looking at ways of 
enhancing the UDI-driven and QF-driven techniques with 
mining-type methods such as CORDS [IMHB04]. A 
further interesting enhancement of autonomic function 
would be to automatically determine the maintenance 
intervals, perhaps by monitoring the number of critical 
tables in the system. Autonomic techniques for allocating 
and de-allocating CPU and disk resources would further 
enhance the technology described in this paper. 
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