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Abstract 
The clinical and basic science research domains 
present exciting and difficult data integration 
issues.  Solving these problems is crucial as 
current research efforts in the field of 
biomedicine heavily depend upon integrated 
storage, querying, analysis, and visualization of 
clinicopathology information, genomic 
annotation, and large scale functional genomic 
research data sets.  Such large scale experimental 
analyses are essential to decipher the 
pathophysiological processes occurring in most 
human diseases so that they may be effectively 
treated.  In this paper, we discuss the challenges 
of integration of multiple biomedical data sets 
not only at the university level but also at the 
national level and present the data warehousing 
based solution we have employed at Washington 
University School of Medicine. We also describe 
the tools we have developed to store, query, 
analyze, and visualize these data sets together.  

1. Introduction 
It is becoming increasingly apparent that the majority of 
human diseases including tumorigenesis are the product 
of multi-step pathophysiological processes, and that each 
of these processes involve the complex interplay of a 
multitude of genes acting at different levels of the genetic 
program.  Indeed, it is clear that genome-wide detection 
of genetic alterations, transcriptional profiles, and protein 
compositions is required to comprehensively describe the 
complex pathophysiology of polygenic diseases.   

Fortunately, in the post-human genome sequencing 
era, many analyses on the genomic scale are possible. The 

biggest challenge in interpreting the results of these 
analyses lies in the data integration problem. The 
experimental methods employed in genomics and 
proteomics generate high throughput data, which is stored 
in different formats at multiple sources. In a university, 
this data is generated at various core labs and has to be 
shared across investigators. The data management, 
integration and analysis needs for this kind of 
heterogeneous data are enormous. 

Typically, groups have utilized three major 
mechanisms to integrate biological databases.  These 
include:  

• Indexed data sources: This approach indexes and 
links a large number of data sources. Here a user 
begins a query with one data source, and then 
follows links (e.g. hypertext) to related 
information in other data sources. For example, 
the Sequence Retrieval System (SRS) is a 
popular keyword indexing and search system for 
biological databases [18]. 

• Federated databases: In this approach, the 
information resides in the respective source 
databases. Federated systems maintain a 
common data model and rely on schema 
mapping to translate heterogeneous source 
database schemas into the target schema for 
integration. For example, the Kleisli Query 
System provides a high-level query language, 
simplified SQL (sSQL), which can be used to 
express cross-database queries [3]. K2, a 
successor to Kleisli, is a view integration 
environment developed by the database group at 
the University of Pennsylvania [4], and IBM’s 
Discovery Link is another popular integration 
system based on the federated approach [7]. 

• Data warehousing: This approach assembles data 
sources into a centralized system with a global 
data schema and indexing system for integration 
and navigation. This approach is dominated by 
relational database management systems 
(RDBMS). 

For our university setup, the major design 
considerations included fast querying of data from 
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GLOSSARY 

Allele: One of the variant forms of a gene 
Clinicopathology: Of or relating to clinical and/or 
pathology parameters 
Exon: Protein coding portion of a gene 
Expression/Transcription: Synthesis of mRNA from a 
DNA template 
Functional genomics: Application of genome-wide 
experimental approaches to assess gene function 
Homolog:  Any member of a set of genes whose 
nucleotide sequences show a high degree of one-to-one 
correspondence 
Intron: Intervening portion of a gene between exons, 
removed during the transcriptional process and not 
translated into protein 
Metastatic disease: Cancer stage where the tumor has 
spread to remote tissues 

Ortholog:  Homologous sequences in different species 
that arose from a common ancestral gene during speciation 
PCR: Polymerase Chain Reaction used to amplify and 
detect DNA 
Polygenic diseases: An inherited disease controlled by 
several genes at once 
Proteomics: The identification, characterization and 
quantification of all proteins involved in a particular 
pathway, organelle, cell, tissue, organ, or organism that 
can be studied in concert to provide accurate and 
comprehensive data about that system. 
Primer: A short synthetic piece of DNA used to initiate a 
PCR reaction 
Transcriptional profiles: mRNA content of tissues 
Tumorigenesis: Process of tumor formation 

 

multiple sources, efficient handling of large amounts of 
data, allowing users to upload and analyze their data, and 
access to data via a campus-wide intranet for 
approximately 100 concurrent users. In addition, while the 
experimental data generated within the university needed 
to be accessed in almost real time, the annotation data 
coming from publicly available databases needed to be up 
to date only within the past few weeks.  Therefore, we 
chose to use the data warehousing model to store these 
experimental and annotation data sets.  In this paper, we 
discuss the challenges of integration of these diverse data 
sets not only at the university level but also at the national 
level and present the data warehousing based solution we 
have employed at Washington University School of 
Medicine. 

The rest of the paper is organized as follows. Section 2 
provides necessary background. It describes the need for 
data integration in detail and provides details of various 
bioinformatics data sets and the technologies that generate 
this data. In Section 3 we present our data warehouse 
solution and various tools we have developed to store, 
query, analyze, and visualize the data. In Section 4, we 
discuss several ongoing standardization efforts required to 
store and annotate such data sets in a uniform manner, and 
we discuss our future work and overall conclusions in 
Sections 5 and 6 respectively. 

 

2. Background 
Foremost among the high throughput technologies in 
post-genomics era is the ability to monitor the messenger 
RNA (mRNA) expression of all genes in a particular 
tissue, cell type, or pathological process [6, 14].  There is 
great potential in this experimental modality, termed 
microarray analysis, as evidenced by the recent explosion 
of publications using this technique to monitor genome-

wide expression and to correlate expression changes to 
biological processes or to disease states.  

Some of these modalities of molecular analysis have 
also been combined with clinically relevant parameters 
such as patient survival or the existence of metastatic 
disease in the study of tumorigenesis.  However, it is 
becoming increasingly apparent that it is necessary to 
simultaneously analyze the results derived from different 
functional genomic experiments such as expression 
profiling and mutation analysis with clinical and 
pathological data and gene annotation.  This will increase 
the power of the analysis and will provide complementary 
confirmation such that meaningful insights into the 
disease process may be made.   

However, most end-users (biologists and clinicians) 
find the task of performing such integrated in-silico 
analyses daunting in the functional genomic era; the main 
reason for this being the variety of disparate data sources, 
different software applications, and varied output formats 
that exist today. Thus, a flexible data integration 
framework, which will take care of such complexities and 
will allow the researcher to focus on the results of 
analyses, is needed. In the remainder of this section, we 
describe the different data sets that are used in such 
integrated analyses.  

2.1 Gene Annotation 

In 2001, a draft of the entire human genome sequence or 
the human DNA genetic sequence was deciphered as part 
of the Human Genome Project [8, 10].  This enormous 
fund of knowledge along with the requisite annotation 
describing each gene is represented by a rich and diverse 
set of data elements.  These include a total of 24 
chromosomes representing approximately 3 x 109 base 
pairs of DNA sequence and the position of each of 
approximately 35,000 genes, 36,000 corresponding 
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messenger RNAs and proteins, and coding region or 
exonic and intervening region or intronic coordinates.  In 
addition, the following types of genomic annotation data 
need to be stored: 

• Over 2,000,000 Single Nucleotide 
Polymorphisms or SNPs:  These are sequence 
variations, which together create a unique DNA 
pattern in each person. 

• Over 20,000 protein domains:  These are 
independent sub-regions of proteins known to 
have specified functionality 

• Annotation describing a gene product’s 
molecular function, cellular 
compartmentalization, and/or biological process 

• Protein-protein interaction and pathway 
information 

Gene annotations reside in multiple publicly available 
biomedical databases, and acquiring gene annotations 
from various data sources involves identifying important 
and reliable data sources, regularly querying these 
sources, parsing and interpreting the results, and 
establishing associations between related entities. There 
are major difficulties at every step of this process.   Each 
data source has custom text formats, and these formats 
change occasionally.  Furthermore, an entire data source 
may be retired or completely restructured using a new 
schema.  In addition, genomic data sources are usually 
updated on different schedules, and the size of such data 
sources may prohibit all versions of a data source from 
being loaded into a data warehouse.  Finally, some data 
sources are inconsistent at the semantic level, and 
frequently, there is inadequate use of controlled 
vocabularies and common data elements to specify the 
metadata. 

The National Center for Biotechnology Information 
(NCBI) is one major resource that maintains public 
biomedical annotation databases [17]. It includes 
nucleotide and protein sequence (GenBank), structure 
(MMDB), genome (RefSeq), and expression (GEO) 
databases. The OMIM (Online Mendelian Inheritance in 
Man) database is a catalog of human genes and genetic 
disorders [16].  GO (Gene Ontology) is a popular 
database that contains information about the cellular 
localization, molecular function, and the biological 
process in which a gene product is involved [1]. PubMed 
is a literature database from the National Library of 
Medicine, which includes over 14 million citations for 
biomedical articles [16]. 

Our warehouse fetches and stores annotations for all 
genes represented in humans and several other model 
organisms from OMIM, GO, PubMed and the following 
databases of NCBI: UniGene, dbSNP, RefSeq, 
HomoloGene, and LocusLink. 

2.2 Microarray Profiling 

A microarray is designed to detect the mRNA content 
(Expression Profiling) or the genomic DNA content 
(Comparative Genomic Hybridization) of thousands of 
genes in a particular tissue, cell type or pathological 
process [5, 12, 13]. It is based on the principle of 
hybridization between targets and probes. In this 
experimental modality, fluorescent-labeled nucleic acid 
from a sample of interest is called the target while short 
DNA fragments attached to a microarray are called 
probes. Probes on a single microarray represent most 
genes in the entire genome.  Array experiments are 
typically conducted using one of two experimental 
formats.  In the single channel system, a single sample of 
biological material is labeled with a fluorescent dye, 
hybridized to an oligonucleotide array, and the intensity 
value at each oligonucleotide is determined.  In the two-
channel system, a pair of samples is labeled with different 
fluorophores, hybridized to an oligonucleotide or cDNA 
array, and the intensity value of each fluorophore at each 
spot is determined. 

The measured fluorescent values are meaningful only 
in the context of sample metadata (e.g. prostate versus 
breast tumor or benign versus malignant) and the 
associated genomic annotation of “interesting” probe 
sequences. Therefore, a gene expression data management 
system must integrate data from three different data sets: 
gene expression measurements, sample metadata, and 
gene annotations. 

The data generated by a microarray system contains 
several data types. Typically, it includes  

• Raw data consisting of binary image files 
generated by scanners 

• Probe intensity data consisting of numerical 
values associated with each probe 

• Summarized gene expression data estimates 
generated by combining probes representing the 
same gene 

In a single microarray experiment, a raw image file is 
approximately 50 MB in size, the probe intensity data file 
is approximately 12MB, and the summarized gene 
expression data consists of between 12,000-50,000 values. 
Typically, a biologist would conduct between 5-100 such 
chip experiments and would thus have to store, query, 
analyze, and visualize ~100K-2500K data points.   

2.3 Mutation Profiling 

Microarray gene expression profiling has identified 
numerous genes in important pathways whose expression 
is altered in complex diseases. A complementary 
experimental modality involves the precise and 
comprehensive definition of the genetic changes, which 
are responsible for disease development or susceptibility, 
at the DNA level [2, 15]. This experimental methodology 
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called mutation profiling is now possible due to the 
progress made in large scale DNA sequencing.  
Biomedical researchers may now sequence hundreds of 
genes in hundreds of tissue samples to identify mutations 
responsible for the disease phenotype. 

This experimental modality also generates a rich set of 
data types.  These include: 

• Binary data: Sequencing a gene in one sample 
generates approximately 12-20 trace files, each 
of which is ~35 KB.  For each gene sequenced in 
each sample, a binary analysis file (~6 MB) is 
generated.  These are stored as BLOBs. 

• DNA base information: The DNA sequence, 
quality information, and mutation probability are 
stored for ~500 bases in each of the trace files. 
This data is a combination of character, string, 
integer, and float data types. 

• Consensus data: A consensus sequence is the 
overall DNA sequence derived by integrating the 
sequence information from all the traces of a 
gene.  For each gene sequenced in a sample, the 
consensus sequence and its alignment to the 
reference DNA sequence are stored.  This data is 
stored as a large string in a CLOB. 

2.4 Proteomics Analysis 

This analysis is aimed at high throughput separation and 
identification of proteins that are differentially expressed 
in a disease state as compared to the healthy state [9]. 2D 
PAGE (2 Dimensional PolyAcrylamide Gel 
Electrophoresis) is by far the most commonly used 
method for protein separation. In this method, a complex 
mixture of proteins is first separated into bands based on 
the isoelectric point using Immobilized pH Gradient (IPG) 
gels. These bands of proteins are further separated into 
spots after being subjected to mass based separation using 
Sodium Dodecyl Sulfate (SDS) gels. Every spot on the 
gel roughly corresponds to one protein. Spot volume ratio 
comparison in disease state vs. normal state helps in 
selecting only those protein spots that are significantly 
different. Mass spectrometry analysis, single (MS) or 
tandem (MS/MS), after digestion (i.e. fragmentation) of 
selected spots generates corresponding spectra.  These 
experimental spectra are compared with theoretical 
spectra of protein sequence digests using various software 
tools in order to identify the protein at each spot.  

The data generated by these experiments consists of 
the following: 

• Images (~50 MB per gel): Depending on the 
number of samples loaded on a gel, a gel may 
be scanned at multiple wavelengths to 
generate several image files.  

• Workspaces (~50 MB per gel): Containing 
image analysis and comparison details  

• Metadata: Describing experiments, samples 
gels, and spots excised from gels.  

• Mass spectrometry data (~100 MB per spot)  
• Spectral similarity reports 

2.5 Clinical Data 

Clinical data refers to any information that is contained in 
a patient’s medical record.  This information may be 
acquired from notes derived from a hospital admission or 
a doctor’s visit.  This data comes in various forms such as  
text or numbers (patient identification, demographics, 
history, laboratory data, etc), analog or digital signals 
(ECG, EEG, EMG, ENG etc), images (histological, 
radiological, ultrasound, etc), and videos. Furthermore, 
clinical studies involve specimen collection from multiple 
patients. The complete specimen may not be consumed at 
once and may be preserved in a specimen bank.  
Therefore, all of this patient-derived clinical and 
specimen-derived pathology data must be interlinked to 
research results derived from analyzing DNA, RNA, or 
protein samples.  Further complicating the storage of this 
data is the fact that because patient identification 
information cannot be publicly accessible by law 
(HIPAA) [11], such identifiers must be removed and 
decoupled from other clinical parameters. Apart from 
humans, specimen collection and genome-wide profiling 
experiments may be conducted in other species such as 
mouse and rat. The major difficulty in storing this type of 
data is that each disease and species can only be 
adequately described using greatly different vocabularies 
and data elements. 

3. Our Solution 
In this section, we present our data warehouse solution for 
integrating various biomedical data sets deployed at 
Washington University School of Medicine.  The major 
goals of this data integration project and the resulting 
Data Warehouse from the perspective of the university 
are: 

• To develop an informatics center that will allow 
investigators to collect and manage large 
amounts of gene expression, gene sequence, 
proteomics, and coded clinicopathology data 
generated from various research studies. 

• To develop data mining and analysis tools that 
will allow investigators to generate and validate 
new hypotheses based on the integration of 
collected functional genomic and 
clinicopathology data sets. 

• To provide a publicly accessible venue for 
"publishing" experimental findings and 
corresponding data sets generated from 
investigator-based studies. 

• To provide authentication, authorization and 
security such that investigators can give access 
privileges to other investigators on the data sets 
owned by them. 
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Figure 1.  Clinical data (from SCIP), specimen, sample, 
and pathology data and their inter-relationships (from 
TPF), experimental data (from FGCs), and gene annotation 
data (from publicly available annotation databases) are 
loaded into our data warehouse. 

The data warehouse integrates data from the following 
important core facilities: 

• Microarray Facility (MAF): Performs microarray 
experiments for investigators 

• Washington University Genome Sequencing 
Center (GSC): Performs high throughput 
sequencing for mutation profiling 

• Proteomics Facility (PRF): Provides access to 
proteomics technologies for molecular profiling 

• Siteman Clinical Information Portal (SCIP):  
Collects and stores patient-derived clinical 
parameters 

• Tissue Procurement Facility (TPF): Collects, 
stores and tracks anonymized patient identifiers, 
associated tissue specimens, and pathology data; 
generates DNA, RNA, and protein samples  to be 
analyzed by the GSC, MAF, and PRF 
(Collectively called the Functional Genomic 
Cores or FGCs) respectively 

Apart from these facilities, data is also integrated from 
reliable publicly available annotation data sources.  The 
data from the above sources is integrated using the 
following workflow.  Typically, patients are enrolled in a 
clinical trial, and appropriate clinical parameters 
depending upon the disease under question are curated 
from the medical record and stored in SCIP.  Anonymized 
patient identifiers are also entered into the TPF database.  
As part of the clinical trial, one or more specimens are 
collected, tracked and stored at the TPF.  The TPF 
processes these specimens to produce DNA, RNA, and/or 
protein and assigns each of these specimens and samples 
tracking identifiers.  These biomolecular samples are then 
sent to the appropriate FGC to conduct microarray, 
mutation, and/or proteomic profiling experiments.  After 
completion of the experiments, these FGCs load 
experimental data into our data warehouse.  Similarly, 
clinical and pathology data as well as requisite inter-
relationships between patient, specimen, and sample 
identifiers are loaded into our database from SCIP and the 
TPF.  Genes represented in each of the experimental 
paradigms are annotated by importing data into our 
warehouse from multiple, publicly available biomedical 
data sources described in Section 2.  Thus, clinical data 
(from SCIP), specimen, sample, and pathology data and 
their inter-relationships (from TPF), experimental data 
(from FGCs), and gene annotation data (from publicly 
available annotation databases) are loaded into our data 
warehouse (Figure 1). 

  Our data warehouse runs on Oracle 9i (version 
9.2.0.4- 64 bit) database which is hosted on a Sun 
Enterprise 420R consisting of 4 X 450 Mhz Ultra Sparc-II 
processors, 4 GB of internal RAM memory, 36 GB of 

mirrored internal drive space, and two Sun StorEdge 
A1000 RAID boxes, containing 654 GB of total disk 
space set up to operate in RAID 5 mode. The warehouse 
currently has about 150 GB of data. 

We have also built analysis tools that let investigators 
perform integrated analysis and visualization of the 
various data sets stored in our data warehouse.  The 
following subsections describe our software components 
that address issues of importing, querying, analyzing, and 
visualizing the biomedical data sets described in Section 
2. 

3.1 Function Express Server  

Function Express Server, which is written in Java, 
extracts annotation data from publicly available gene 
annotation databases, loads it into the warehouse, and 
links it to genes represented in microarray, sequence, and 
proteomic data. Integrating these annotations into a data 
warehouse facilitates better representation of semantics, 
enhanced query performance, and superior data quality. 

Function Express Server includes an Extract-
Transform-Load (ETL) tool that downloads various 
reliable publicly available gene annotation databases, 
parses the data to extract relevant annotation such as the 
gene name and chromosomal localization, and loads them 
into the warehouse.  Because annotation sources have 
custom text formats, parsers are written for each 
biomedical data source.  These parsers are used to load 
data into our warehouse, and automatic updates to the 
warehouse are conducted at a user-specified frequency, a 
necessary feature as the data in the annotation databases is 
being updated frequently.  As most annotation sources do 
not provide deltas, updates are detected in the ETL 
process.  
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Figure 2.  Gene annotation scheme portraying the links 
required to annotate genes represented as probes on 
microarrays.  Genes are either directly linked via the 
UniGene cluster and LocusLink ID or indirectly via 
HomoloGene. 

Function Express Server currently fetches annotations 
for all genes represented in humans as well as other major 
model organisms from UniGene, LocusLink, 
HomoloGene, dbSNP, OMIM, Gene Ontology, and 
PubMed. The linking of these annotations with individual 
spots or probes on a microarray is conducted as follows 
(Figure 2).  Each probe or probeset on a microarray is 
linked to an accession number, a unique identifier issued 
by GenBank to represent a nucleotide sequence.  These 
accession numbers are grouped together into Unique 
Gene (UniGene) clusters by sequence homology.  Each 
cluster is assigned a unique UniGene ID which in turn can 
be linked to a gene identified during the genome 
sequencing process.  Each of these genes is assigned to or 
linked to a chromosomal Locus (LocusLink) and is 
assigned a unique LocusLink ID.  Individual annotations 
such as functional categorization (Gene Ontology), 
chromosomal localization (LocusLink), tissue expression 
(UniGene), DNA sequence variation (dbSNP), links to 
disease (OMIM), and gene homologs and orthologs 
(HomoloGene- see below) may be acquired using the 
accession number, UniGene ID, or LocusLink ID. 

To enrich the annotation for each gene, an additional 
resource, HomoloGene, provided by the National Center 
for Biotechnology Information (NCBI) is utilized.  Two 
gene sequences are said to be homologs of each other if 
they share significant sequence similarity.  The 
HomoloGene database calculates homologs by nucleotide 
sequence comparisons between genes across organisms 
(human, mouse, rat, cow, zebrafish, frog, and fly).  Using 
HomoloGene, we can relate functional annotation 
information for the same gene across species (called 
orthologs). Thus, while a rat or mouse gene may not be 
annotated with any functional information in UniGene or 
LocusLink, its human ortholog may be extensively 
annotated.  The functionality of orthologous genes across 
species is known to be similar, and this fact is used to 
infer the functionality of genes that are not annotated.  
Because we have linked probesets on different microarray 

platforms (e.g. single versus two channel) to standard 
identifiers (Accession Number, UniGene ID, and/or 
LocusLink ID and HomoloGene), our database can 
automatically link orthologous genes from different array 
designs of the same or different species.  Currently, we 
provide automated annotation for probe sets from 52 chip 
types representing human, mouse, and rat genes, which 
facilitate studies across different species. 

Once the base annotation data is loaded, a set of 
materialized views are created in a format supportive of 
the queries that would run against the warehouse. In these 
views, not only is the annotation about each gene saved, 
but hierarchical trees are also generated for annotation 
imported from Gene Ontology (functional categorization), 
UniGene (tissue expression), and LocusLink 
(chromosomal localization).   

Our data integration approach facilitates powerful 
queries on the annotations from multiple sources. For 
example, it is feasible to view all genes that are 
transcription factors (Gene Ontology), all genes expressed 
in pancreas (UniGene), or all genes located on 
chromosome 1p31 (LocusLink). 

 

3.2 Chip Import Utility  

The Chip Import Utility (CIU), a microarray data loader 
application which is written in Java, is used at the MAF.  
Using the CIU, the data generated from this core facility 
and possibly other future microarray facilities are sent to 
the data warehouse. The GUI allows the database curator 
to create and enter metadata about new experiments, 
investigators, samples and chips. Once this metadata is 
entered, the data, which includes a raw image file and one 
or more primary numerical fluorescence intensity files, is 
uploaded into the data warehouse. 

However, prior to importing chip data, information 
about the array design or array metadata on which the 
experiment was performed must be provided.  Since there 
can be multiple sources and, thus, multiple vendors for 
these microarrays, we have formulated a general 
mechanism by which the information about the arrays 
may be imported into the database.  Namely, the species 
from which the probes on the array were synthesized 
needs to be specified (i.e. human for the Affymetrix HG-
U95A, mouse for the MG-U74A, etc.).  Next, the array 
must be given a unique name (i.e. HG-U95A, MG-U74A, 
etc.), and each probe must be given a unique ID (i.e. 
1000_at, 1001_at, etc.).  Finally, to provide automatic 
annotation, an accession number, UniGene ID, or 
LocusLink ID must be provided for each probe.  Once the 
array metadata has been imported, the array is 
“registered” in the database, and data derived from 
experiments using this array can be imported. 

The importing of chip data is complicated by the fact 
that the data files may be in various formats.  For 
example, there may be a header prior to the actual data, 
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Figure 3.  The Literature Gene Network window in the Function Express client displays a gene-gene literature co-citation 
network, centering around a selected gene (AQP4).  The depth of the network (e.g. depth=2 includes all genes linked by two or 
fewer edges to the selected gene) and the strength of gene interaction (termed Minimum Correlation) are user configurable.  
The genes in this network are further grouped by Gene Ontology categories and the p value for the overrepresentation of each 
category in this gene set is given. 

only some columns may be important to import, and 
different characters may delimit columns. While 
importing the chip data, the user will be required to 
provide information about these formats. To avoid 
entering such details again and again, an “Import 
Template” wizard is provided for each file format where 
in the user enters information about the format of data 
files. One can then save this template and use it for 
subsequent imports. 

 

3.3 Function Express Client 

The powerful features of our annotation and microarray 
data warehouse are leveraged by the data mining and 
visualization capabilities of the Function Express Client 
(FE).  In FE, which is written in C++ using Borland 
Builder Enterprise 6.0, gene annotation data is accessed 
on demand from the database and can be coupled to gene 
expression data sets that are independently loaded from 
the MAF.  Using FE it is possible to perform complex 
data queries using both expression and gene annotation 
data.  For example, expression data may be filtered, 
normalized, and clustered; this facilitates identification of 
genes which are co-regulated and thus, are inferred to be 

involved in a particular disease process. Results of such 
analyses may be visualized in the context of gene 
annotation data.  Examples of this include: 

• Visualize expression of all genes that are 
transcription factors located on chromosome 1p 
and that are down-regulated in tumor samples 
relative to non-malignant tissue 

• View expression of selected genes across 
different experiments conducted in same or 
different species on same or differing array 
platforms 

• Display literature-based gene to gene co-citation 
networks 

To facilitate displaying a literature-based gene network, 
we link over 12 million abstracts for over 500,000 gene 
names representing almost 200,000 distinct LocusLink 
IDs (or genes).  The weight of a gene-gene link is 
calculated based on the number of abstracts where both 
genes are mentioned (Figure 3). 

With the combined data warehouse/FE platform, the 
ability to access data from multiple sources for 
simultaneous meta-analysis becomes straightforward, thus 
increasing the analytical power of many of these studies. 
Through this platform, it is also possible to seamlessly 
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Reference Nucleotide Sequence

Reference Amino Acid Sequence 

Consensus
Sequence 

Deletion 

 
Figure 4.  An example of the output from MV is shown.  Selected genes, samples, and environmental features (left panel- upper 
two list boxes and checkbox panel) are drawn in the right two panes.  The upper pane contains the reference nucleotide and amino 
acid sequence for ROS1.  In the lower pane, each individual nucleotide sequence represents a consensus sequence from an 
individual patient sample, and the position of identified mutations (insertions and deletions) is indicated.  Identified mutations are 
automatically named and are present in the lower left listbox. 

integrate information from different organisms, thus clues 
gleaned from mouse models can be easily examined in 
studies involving human specimens. For instance, genes 
differentially regulated in a mouse model of cancer can be 
selected and immediately examined in human data sets to 
determine whether they are expressed aberrantly in 
corresponding human tumors. This database and software 
suite is constructed as an integrated set of modules so that 
additional genomic information, such as that derived from 
mutational profiling and proteomics, can also be 
incorporated and analyzed along with expression profiling 
data. 

 

3.4 Mutation Viewer Pipeline 

We have set up a process and software infrastructure 
where we have integrated data from the TPF and the GSC 
with gene annotation so that high throughput mutation 
profiling of large numbers of genes in hundreds of 
samples may be conducted.  The workflow of this 
mutation profiling pipeline, which includes three key 
pieces of software we have developed, is described as 
follows.   

DNA samples from selected specimens are bar coded, 
and sent to the GSC by the TPF.  The design of primers 
for PCR amplification of selected genes is facilitated by 
an application, which we wrote using Borland Builder 
Enterprise 6.0. This software, which is a wrapper around 
the popular Primer3 software package, automatically 
designs primers for large numbers of genes in high 
throughput. These primers are designed using a known 
normal sequence called the reference sequence, which has 
been imported into our database by the Function Express 
Server from RefSeq.  This primer information is then 
transmitted to the GSC where every primer is assigned a 
unique bar code, thus ensuring accurate tracking of each 
experiment.  At the GSC, selected genes are sequenced in 
patient DNA samples in high throughput.  The sequencing 
results, which may be visualized as plots for each of the 
bases present in DNA, need to be analyzed in an 
automated fashion as a single mutation profiling project 
may generate thousands of sequence trace files.  For 
example, a project where 100 genes are sequenced in 100 
patient samples would generate approximately 160,000 
trace files. 

To analyze the large number of sequence traces, we 
have designed and written software in Perl in 
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Figure 5.  Example of sequence traces demonstrating a 
mixed peak found in a lung tumor. 
 

collaboration with Informax, Inc. This software calculates 
the probability of a mutation at each base in a trace using 
a neural net algorithm.  Traces of a single gene from an 
individual patient sample are analyzed together for 
sequence quality and are grouped together based on 
sequence homology to generate contigs, regions of 
overlapping DNA sequences. These contigs are then 
aligned to the reference sequence, and automated 
mutation/polymorphism detection is performed. The 
results of the initial tests with this software appear to be 
extremely accurate as it was necessary to manually 
inspect less than 1 per 1000 base calls in pilot projects. 
This allows us to dramatically reduce the number of traces 
that need to be inspected manually for potential sequence 
alterations. This is crucial as most mutations will occur in 
only a single allele and will therefore show up as ‘mixed 
peaks’ on the traces (See Figure 5).  Individual trace files, 
consensus sequences, alignment information with respect 
to the reference sequence, and mutation confidence scores 
are imported into our warehouse for each gene-sample 
combination where it is then interrelated to protein 
domain and SNP data for each gene. 

To visualize this data and to extract the salient 
information, we have developed a graphical user interface 
in C++ using Borland Builder Enterprise 6.0.  In this 
application, called Mutation Viewer (MV, Figure 4), 
protein motifs (e.g. kinase domain) are shown on the 
DNA schematic, and mutations/polymorphisms are then 
“painted” onto this scaffold of protein domains, so that 
alterations in critical domains are easily appreciated.  The 
presence of known SNPs (derived by scanning dbSNP) 
within each individual DNA are also noted on this viewer, 
thus commonly occurring polymorphisms can be quickly 
eliminated from further analysis. Furthermore, the 
program prioritizes mutations based on their potential 
functional significance (synonymous vs. non-synonymous 
substitutions) as well as frequency.  It is also possible to 
zoom-in such that the amino acid and nucleotide sequence 
for reference and consensus sequences may be seen.  

Finally, the actual trace files derived from sequencing 
may be viewed for any consensus sequence, thus allowing 
the user to verify the computer-based identification of a 
mutation (Figure 5). 

 

3.5 Proteomics LIMS 

Experiments conducted at the PRF are aimed at 
identifying differentially expressed proteins in two or 
more patient samples (e.g. tumor versus normal) in high 
throughput.  Protein samples, which are acquired from the 
TPF, are first separated into “spots” using 2D gel 
electrophoresis. Mass spectrometry and subsequent 
database searching then identify the protein at each spot. 
The complete workflow involves a number of laboratory 
steps that are sequential in nature. Users are assigned 
different roles based on what portion of the workflow they 
perform. Proteomics LIMS, which is written in Java using 
the Eclipse framework, is designed to automate the 
information flow among these roles. It also helps users in 
doing gel related calculations, reporting and visualization.  
The LIMS allows users to examine the current job queue, 
metadata information about each lab element, and the 
status of a particular lab element (tracking). The stages of 
the laboratory workflow where the LIMS contributes are 
as follows: 

• Sample Procurement and Experiment Design: An 
investigator logs into the TPF system to request 
samples from already existing specimens at the 
TPF or to enter new specimens or samples. 
Metadata such as specimen source, associated 
pathology data, and isolation protocol are entered 
for each new sample. Using these samples, the 
investigator may design a proteomics experiment 
in terms of number of gels to be used and sample 
allocation for each gel. The completed 
experiment design is then sent electronically to 
the PRF for execution, and samples are delivered 
to the PRF by the TPF or the investigator. 

• Sample Curation: This role uses LIMS for 
validating sample metadata and experiment 
designs. 

• Sample Processing: Samples are depleted of 
unwanted proteins and then are subjected to a 
protein concentration assay. Protein 
concentrations are used by the LIMS to calculate 
the volume of each sample to be loaded on a gel.  

• Gel Processing: Fluorescently labeled samples 
are run on IPG and SDS gels as a part of the 2D-
electrophoresis. These gels are then scanned at 
multiple wavelengths resulting in images files 
that are generated for each fluorescently labeled 
sample. Comparative analysis of all the images 
from one gel or an entire experiment (consisting 
of multiple gels) is done using third party 
software to mark differentially expressed protein 
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spots. The LIMS stores primary image files, 
comparison results, and the list of differentially 
expressed spots. The LIMS has also 
implemented an image manipulation algorithm 
which maps coordinates of each spot from the 
original image file to coordinates of a second 
image file that the robotic picker requires for 
excising spots from the gel. 

• Mass Spectrometry: Excised spots are trypsin (an 
enzyme) digested and subjected to two types of 
MS analysis using MALDI and ESI as ion 
sources. At this step, the LIMS is designed to 
upload spectral and peak related information for 
every spot into our data warehouse. 

3.6 Proteomics Searching and Reporting Tools 

The spectrum of a spot is searched against theoretically 
digested proteins from a protein sequence database to find 
matches. Identified proteins are automatically linked to 
their annotations from LocusLink, GO, UniGene and 
other available data sources in our data warehouse. To 
visualize this information, we have developed a reporting 
tool in Borland Builder Enterprise 6.0 that visually 
annotates a protein sequence with the MS and the MS/MS 
hits identified by multiple similarity search algorithms. 

3.7 Specimen registration and banking system 

Investigators use specimens and samples to carry out 
multi-modal (genomics, proteomics, and clinical) 
experiments. These specimens may be shared across 
experiments, modalities, or even investigators. Thus, it 
should be possible to analyze the results of shared 
specimens simultaneously.  Also, it should be possible for 
investigators to identify specimens of interest obtained by 
others that have not yet been analyzed completely. This is 
the objective of caTIS (cancer TISsue repository), the 
specimen registration and banking system, we are 
developing for the TPF.  For this system to serve its 
purpose, every investigator must use it as a single point of 
entry to register their specimens. This system will be the 
gateway for submitting, obtaining, and querying 
specimens and biomolecular samples.  This tissue banking 
effort will allow for the correlation of research results 
from a single specimen across multiple experimental 
modalities. 

3.8 Authorization and Security 

Biomedical research is frequently collaborative with 
researchers at a university sharing experimental data and 
results of analyses.  Thus, we have developed extensive 
user authorization and security modules for our data 
warehouse where investigators use a single sign on 
system.  Because different core facilities have varying 
data objects and differing access control requirements, our 
system provides role-based as well as object-based 
security. 

In object-based security, privileges can be defined for 
both the data and metadata. For example, the metadata 
generated by the MAF is accessible to all users by default, 
and this allows investigators to query and search for 
microarray experiments of interest. An investigator can 
share the data of his experiment in the warehouse with a 
select set of investigators. Apart from the experimental 
data, the analysis results (e.g. a collection of 'interesting' 
genes) can also be shared and published. 

In role-based security, roles are assigned to each user, 
and, each role has certain privileges (e.g. accessing or 
modifying a type of object).  Therefore, a user having a 
specific role will be able to perform only the set of actions 
permitted for that role. For example, in the Proteomics 
LIMS, a user assigned to a particular role, may perform 
only certain workflows. 

4. Emerging Trends  
The data warehousing based solution we have 
implemented has the advantage of having all the data in 
one place, with the data transformed to match the desired 
queries. The queries are fast, and there is no dependence 
on individual data sources.  There are, however, several 
further challenges we face. 

First, with the tremendous diversity of data elements 
present in the biomedical domain, especially in the 
storage and representation of clinicopathology data such 
as that found in caTIS and SCIP, flexible and extensible 
data storage models must be utilized.  One such medium 
for data storage and exchange, XML, is becoming 
increasingly important within the bioinformatics 
community. Since XML allows uniform description of 
data and metadata, it can be efficiently used to specify 
ontological descriptions of biomedical data. However, 
XML formats, like flat file formats, can be large, and 
complex, making data access difficult and inefficient. 
Better techniques on compression and lazy loading of 
XML data are required to make XML the universal 
medium for the storage of biological data. 

Second, semantic integration is an important challenge 
that needs to be addressed. For example, the same protein 
sequence is known by different names or accession 
numbers in different biomedical data sources.  These 
nomenclature differences must be resolved in order to 
integrate these data sources.  One of the emerging trends 
is an effort to define semantics precisely through 
ontologies that attempt to capture concepts, objects, and 
their relationships within a biological domain. For 
example, Gene Ontology is a popular database that 
contains information about a gene product’s cellular 
localization, molecular function, and biological process 
[1]. These ontologies encapsulating controlled 
vocabularies may be utilized in object models with 
defined data elements to describe and define entities.  
Additionally, there is a need for data models that 
efficiently store the objects and data persistently. 
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Such new standards, vocabularies and common data 
elements are evolving for different biological data sets.  
For example, the Microarray Gene Expression Database 
Group (MGED) has consolidated standardization efforts 
for microarray data. MGED is a consortium of academic 
and commercial organizations with the shared goal of 
defining standard formats that will allow gene expression 
data repositories to share and exchange data. MGED has 
recently published the Minimum Information About a 
Microarray Experiment (MIAME) standard, to enable 
interpretation of the results of an experiment 
unambiguously, and, potentially to reproduce the 
experiment. They have also developed a data exchange 
format, MicroArray Gene Expression Markup Language 
(MAGE-ML) and an object model, MicroArray Gene 
Expression Object Model (MAGE-OM). Similar to 
microarray data sets, HUPO (Human Proteome 
Organization) is developing a standard called Minimum 
Information About a Proteomics Experiment (MIAPE).  
Again as with MIAME, this minimum information will be 
described using an ontology that not only contains 
vocabulary terms for describing proteomics related 
concepts but also defines the interrelationship between 
these terms. 

While MIAME and MIAPE provide useful guidelines 
for organizing gene expression and proteomic data into a 
database, such adequate standards do not yet exist for the 
description of clinicopathology data acquired from 
patients afflicted with most polygenic diseases.  One 
exception is in the field of cancer, where the National 
Cancer Institute Center of Bioinformatics (NCICB) has 
made considerable progress in developing such standards.  
Their Enterprise Vocabulary Service provides a controlled 
vocabulary for the cancer domain, and their Cancer Data 
Standards Repository contains a set of standardized data 
elements used in cancer research.  While many other 
biomedical disease domains may be able to “borrow” 
essential elements and design principles from these 
standards, each disease research initiative will ultimately 
have to develop such controlled vocabularies and data 
elements in order to facilitate data integration and reliable 
representation. Third, as we move from a university to a 
national level, our data warehousing solution may not 
scale when different annotation, experimental and clinical 
data is gathered at multiple institutions. Again, in the field 
of cancer, NCICB has recently started an initiative, the 
cancer Biomedical Informatics Grid (caBIG) that will 
tackle such issues.  This initiative aims to deploy an 
integrating biomedical informatics infrastructure that will 
connect all the cancer centers across the United States and 
worldwide.  

5. Future Work 
We have developed and deployed a data warehousing 
based solution for data management, integration and 
analysis of the biomedical data at Washington University 

School of Medicine. We have also developed tools to 
store, query, analyze, and visualize the data sets available 
from core facilities and publicly available annotation data 
sources.   

Continuing this work, we will add more extensive 
annotation databases and will implement common data 
elements and underlying controlled vocabularies.  We are 
also currently in the process of defining XML 
descriptions for clinical and pathology parameters and for 
mutation and sequence information. To facilitate this 
process, Oracle9i has a dedicated XML datatype called 
XMLTYPE where Oracle internally shreds the XML data 
and puts it in separate tables.  In addition, we are 
reconfiguring the Function Express data import and 
export capabilities to be MIAME/MAGEML compliant 
by using the MAGE-OM, so that data from different types 
of microarray platforms may be analyzed simultaneously.  
Additional future work includes making Function Express 
and Mutation Viewer caBIG interoperable by 
communicating with caBIG databases, using caBIG 
common data elements, ontologies and vocabularies, and 
supporting caBIG-compatible APIs.  Finally, we will 
expose a web services API to deliver the linked 
annotation from our warehouse to the outside world. 

6. Conclusions 
Although difficult to achieve, database interoperability is 
critical to the future of biomedical research. The longer 
this capability is delayed, the more difficult and costly 
establishing interconnectivity will become. The 
community at large should come together and build 
systems that conform to standards which will support 
common data interchange formats, dynamic, 
programmatic access to local and remote data sources, 
and common application programming interfaces.  The 
major issue in the integration of biomedical data is the 
large number of distributed, semantically disparate data 
sources that need to be combined into a useful and usable 
system for biologists. The challenges are big, but so are 
the rewards. For the first time many incurable illnesses 
may be effectively treated and even cured as integrated 
research becomes feasible. 
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