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Abstract

Web services are loosely coupled software compo-
nents, published, located, and invoked across the web.
The growing number of web services available within an
organization and on the Web raises a new and challeng-
ing search problem: locating desired web services. Tradi-
tional keyword search is insufficient in this context: the
specific types of queries users require are not captured,
the very small text fragments in web services are unsuit-
able for keyword search, and the underlying structure
and semantics of the web services are not exploited.

We describe the algorithms underlying the Woogle
search engine for web services. Woogle supports similar-
ity search for web services, such as finding similar web-
service operations and finding operations that compose
with a given one. We describe novel techniques to sup-
port these types of searches, and an experimental study
on a collection of over 1500 web-service operations that
shows the high recall and precision of our algorithms.

1 Introduction

Web services are loosely coupled software compo-
nents, published, located, and invoked across the
web. A web service comprises several operations
(see examples in Figure 1). Each operation takes
a SOAP package containing a list of input param-
eters, fulfills a certain task, and returns the result
in an output SOAP package. Large enterprises are
increasingly relying on web services as methodology
for large-scale software development and sharing of
services within an organization. If current trends
continue, then in the future many applications will
be built by piecing together web services published
by third-party producers.
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The growing number of web services available
within an organization and on the Web raises a
new and challenging search problem: locating de-
sired web services. In fact, to address this problem,
several simple search engines have recently sprung
up [1, 2, 3, 4]. Currently, these engines provide only
simple keyword search on web service descriptions.
As one considers search for web services in more

detail, it becomes apparent that the keyword search
paradigm is insufficient for two reasons. First, key-
words do not capture the underlying semantics of
web services. Current web service search engines re-
turn a particular service if its functionality descrip-
tion contains the keywords in the query; such search
may miss results. For example, when searching zip-
code, the web services whose descriptions contain
term zip or postal code but not zipcode will not be
returned.
Second, keywords do not suffice for accurately

specifying users’ information needs. Since a web-
service operation is going to be used as part of an
application, users would like to specify their search
criteria more precisely than by keywords. Current
web-service search engines often enable a user to ex-
plore the details of a particular web-service opera-
tion, and in some cases to try it out by entering
an input value. Nevertheless, investigating a single
web-service operation often requires several brows-
ing steps. Once users drill down all the way and find
the operation inappropriate for some reason, they
want to be able to find similar operations to the
ones just considered, as opposed to laboriously fol-
lowing parallel browsing patterns. Similarly, users
may want to find operations that take similar inputs
(respectively, outputs), or that can compose with the
current operation being browsed.
To address the challenges involved in searching for

web services, we built Woogle1, a web-service search
engine. In addition to simple keyword searches,
Woogle supports similarity search for web services.
A user can ask for web-service operations similar
to a given one, those that take similar inputs (or

1See http://www.cs.washington.edu/woogle
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W1: Web Service: GlobalWeather

Operation: GetTemperature

Input: Zip

Output: Return

W2: Web Service: WeatherFetcher

Operation: GetWeather

Input: PostCode

Output: TemperatureF, WindChill, Humidity

W3: Web Service: GetLocalTime

Operation: LocalTimeByZipCode

Input: Zipcode

Output: LocalTimeByZipCodeResult

W4: Web Service: PlaceLookup

Operation1: CityStateToZipCode

Input: City, State

Output: ZipCode

Operation2: ZipCodeToCityState

Input: ZipCode

Output: City, State

Figure 1: Several example web services (not including
their textual descriptions). Note that each web service
includes a set of operations, each with input and out-
put parameters. For example, web services W1 and W2

provide weather information.

outputs), and those that compose with a given one.
This paper describes the novel techniques we have
developed to support these types of searches, and
experimental evidence that shows the high accuracy
of our algorithms. In particular, our contributions
are the following:

1. We propose a basic set of search functionali-
ties that an effective web-service search engine
should support.

2. We describe algorithms for supporting similar-
ity search. Our algorithms combine multiple
sources of evidence in order to determine simi-
larity between a pair of web-service operations.
The key ingredient of our algorithm is a novel
clustering algorithm that groups names of pa-
rameters of web-service operations into seman-
tically meaningful concepts. These concepts are
then leveraged to determine similarity of inputs
(or outputs) of web-service operations.

3. We describe a detailed experimental evaluation
on a set of over 1500 web-service operations.
The evaluation shows that we can provide both
high precision and recall for similarity search,
and that our techniques substantially improve
on naive keyword search.

The paper is organized as follows. Section 2 be-
gins by placing our search problem in the context
of the related work. Section 3 formally defines the
similarity search problem for web services. Sec-
tion 4 describes the algorithm for clustering param-
eter names, and Section 5 describes the similarity
search algorithm. Section 6 describes our experi-

mental evaluation. Section 7 discusses other types
of search that Woogle supports, and Section 8 con-
cludes.

2 Related Work

Finding similar web-service operations is closely re-
lated to three other matching problems: text doc-
ument matching, schema matching, and software
component matching.

Text document matching: Document matching
and classification is a long-standing problem in infor-
mation retrieval (IR). Most solutions to this problem
(e.g. [10, 20, 27, 19]) are based on term frequency
analysis. However, these approaches are insufficient
in the web service context because text documenta-
tions for web-service operations are highly compact,
and they ignore structure information that aids cap-
turing the underlying semantics of the operations.

Schema matching: The database community has
considered the problem of automatically matching
schemas [24, 12, 13, 22]. The work in this area
has developed several methods that try to capture
clues about the semantics of the schemas, and sug-
gest matches based on them. Such methods include
linguistic analysis, structural analysis, the use of do-
main knowledge and previous matching experience.
However, the search for similar web-service opera-
tions differs from schema matching in two significant
ways. First, the granularity of the search is differ-
ent: operation matching can be compared to finding
a similar schema, while schema matching looks for
similar components in two given schemas that are
assumed to be related. Second, the operations in a
web service are typically much more loosely related
to each other than are tables in a schema, and each
web service in isolation has much less information
than a schema. Hence, we are unable to adapt tech-
niques for schema matching to this context.

Software component matching: Software com-
ponent matching is considered important for soft-
ware reuse. [28] formally defines the problem by ex-
amining signature (data type) matching and spec-
ification (program behavior) matching. The tech-
niques employed there require analysis of data types
and post-conditions, which are not available for web
services.
Some recent work (e.g., [9, 23]) has proposed an-

notating web services manually with additional se-
mantic information, and then using these annota-
tions to compose services [8, 26]. In our context,
annotating the collection of web services is infeasi-
ble, and we rely on only the information provided in
the WSDL file and the UDDI entry.
In [15] the authors studied the supervised classi-

fication and unsupervised clustering of web services.
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Our work differs in that we are doing unsupervised
matching at the operation level, rather than super-
vised classification at the entire web service level.
Hence, we face the challenge of understanding oper-
ations in a web service from very limited amount of
information.

3 Web Service Similarity Search

We begin by briefly describing the structure of web
services, and then we motivate and define the search
problem we address.

3.1 The Structure of Web Services

Each web service has an associated WSDL file de-
scribing its functionality and interface. A web ser-
vice is typically (though not necessarily) published
by registering its WSDL file and a brief description
in UDDI business registries. Each web service con-
sists of a set of operations. For each web service, we
have access to the following information:

• Name and text description: A web service
is described by a name, a text description in the
WSDL file, and a description that is put in the
UDDI registry.

• Operation descriptions: Each operation is
described by a name and a text description in
the WSDL file.

• Input/Output descriptions: Each input and
output of an operation contains a set of param-
eters. For each parameter, the WSDL file de-
scribes the name, data type and arity (if the
parameter is of array type). Parameters may
be organized in a hierarchy by using complex
types.

3.2 Searching for Web Services

To motivate similarity search for web services, con-
sider the following typical scenario. Users begin a
search for web services by entering keywords rele-
vant to the search goal. They then start inspecting
some of the returned web services. Since the result
of the search is rather complex, the users need to
drill down in several steps. They first decide which
web service to explore in detail, and then consider
which specific operations in that service to look at.
Given a particular operation, they will look at each
of its inputs and outputs, and if the engine provides
a try it feature, they will try entering some value for
the inputs.
At this point, the users may find that the web ser-

vice is inappropriate for some reason, but not want
to have to repeat the same process for each of other
potentially relevant services. Hence, our goal is to
provide a more direct method for searching, given

that the users have already explored a web service
in detail. Suppose they explored the operation Get-
Temperature in W1. We identify the following im-
portant similarity search queries they may want to
pose:

Similar operations: Find operations with similar
functionalities. For example, the web-service oper-
ation GetWeather in W2 is similar to the operation
GetTemperature in W1. Note that we are searching
for specific operations that are similar, rather than
similar web services. The latter type of search is
typically too coarse for our needs. There is no for-
mal definition for operation similarity, because, just
like in other types of search, similarity depends on
the specific goal in the user’s mind. Intuitively, we
consider operations to be similar if they take similar
inputs, produce similar outputs, and the relation-
ships between the inputs and outputs are similar.

Similar inputs/outputs: Find operations with
similar inputs. As a motivating example for such
a search, suppose our goal is to collect a variety
of information about locations. While W1 provides
weather, operations LocalTimeByZipCode in W3 and
ZipCodeToCityState inW4 provide other information
about locations, and thereby may be of interest to
the user.
Alternatively, we may want to search for opera-

tions with similar outputs, but different inputs. For
example, we may be looking for temperature, but
the operation we are considering takes zipcode as
input, while we need one that takes city and state
as input.

Composible operations: Find operations that
can be composed with the current one. One of the
key promises of building applications with web ser-
vices is that one should be able to compose a set of
given services to create ones that are specific to the
application’s needs. In our example, there are two
opportunities for composition. In the first case, the
output of the operation is similar to the input of the
given operation, such as CityStateToZipCode in W4.
Composing CityStateToZipCode with GetWeather in
W1 offers another option for getting the weather
when the zipcode is not known. In the second case,
the output of the given operation may be similar to
the input of another operation; e.g., one that trans-
forms Centigrade and Fahrenheit and thereby pro-
duces results in the desired scale.

In this paper we focus on the following two problems,
from which we can easily build up the above search
capabilities.

Operation matching: Given a web-service opera-
tion, return a list of similar operations. ¤

Input/output matching: Given the input (respec-
tively, output) of a web-service operation, return a
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list of web-service operations with similar inputs (re-
spectively, outputs). ¤

We note that these two problems are also at the
core of two other types of search that Woogle sup-
ports (See Section 7): template search and composi-
tion search. Template search goes beyond keyword
search by specifying the functionality, input and out-
put of a desired operation. Composition search re-
turns not only single operations, but also composi-
tions of operations that fulfill the user’s need.

3.3 Overview of Our Approach

Similarity search for web services is challenging be-
cause neither the textual descriptions of web services
and their operations nor the names of the input and
output parameters completely convey the underly-
ing semantics of the operation. Nevertheless, knowl-
edge of the semantics is important to determining
similarity between operation.
Broadly speaking, our algorithm combines mul-

tiple sources of evidences to determine similarity.
In particular, it will consider similarity between the
textual descriptions of the operations and of the en-
tire web services, and similarity between the param-
eter names of the operations. The key ingredient of
the algorithm is a technique that clusters parameter
names in the collection of web services into seman-
tically meaningful concepts. By comparing the con-
cepts that input or output parameters belong to, we
are able to achieve good similarity measures. Sec-
tion 4 describes the clustering algorithm, and Sec-
tion 5 describes how we combine the multiple sources
of evidence.

4 Clustering Parameter Names

To effectively match inputs/outputs of web-service
operations, it is crucial to get at their underlying
semantics. However, this is hard for two reasons.
First, parameter naming is dependent on the devel-
opers’ whim. Parameter names tend to be highly
varied given the use of synonyms, hypernyms, and
different naming rules. They might even not be com-
posed of proper English words—there may be mis-
spellings, abbreviations, etc. Therefore, lexical ref-
erences, such asWordnet [5], are hard to apply. Sec-
ond, inputs/outputs typically have few parameters,
and the associated WSDL files rarely provide rich
descriptions for parameters. Traditional IR tech-
niques, such as TF/IDF [25] and LSI [11], rely on
word frequencies to capture the underlying seman-
tics and thus do not apply well.
A parameter name is typically a sequence of

concatenated words (not necessarily proper English
words), with the first letter of every word capitalized
(e.g., LocalTimeByZipCodeResult). Such words are

referred to as terms. We exploit the co-occurrence
of terms in web service inputs and outputs to clus-
ter terms into meaningful concepts. As we shall see
later, using these concepts, in addition to the orig-
inal terms, greatly improves our ability to identify
similar inputs/outputs and hence find similar web
service operations.
Applying an off-the-shelf text clustering algo-

rithm directly to our context does not perform well
because the web service inputs/outputs are sparse.
For example, whereas synonyms tend to occur in the
same document in an IR application, they seldom oc-
cur in the same operation input/output; therefore,
they will not get clustered. Our clustering algorithm
is a refinement of agglomerative clustering. We begin
by describing a particular kind of association rules
that capture our notion of term co-occurrence and
then describe the clustering algorithm.

4.1 Clustering Parameters by Association

We base our clustering on the following heuristic:
parameters tend to express the same concept if they
occur together often. This heuristic is validated by
our experimental results. We use it to cluster pa-
rameters by exploiting their conditional probabilities
of occurrence in inputs and outputs of web-service
operations. Specifically, we are interested in associ-
ation rules of the form:

t1 → t2 (s, c)

In this rule, t1 and t2 are two terms. The support, s,
is the probability that t1 occurs in an input/output;

i.e., s = P (t1) =
‖IOt1

‖

‖IO‖ , where ||IO|| is the to-

tal number of inputs and outputs of operations, and
||IOt1 || is the number of inputs and outputs that
contain t1. The confidence, c, is the probability that
t2 occurs in an input or output, given that t1 is

known to occur in it; i.e., c = P (t2|t1) =
‖IOt1,t2

‖

‖IOt1
‖ ,

where ||IOt1,t2 || is the number of inputs and out-
puts that contain both t1 and t2. Note that the rule
t1 → t2(s12, c12) and the rule t2 → t1(s21, c21) may
have different support and confidence values. These
rules can be efficiently computed using the A-Priori
algorithm [7].

4.2 Criteria for Ideal Clustering

Ideally, parameter clustering results should have the
following two features:

1. Frequent and rare parameters should be left
unclustered; strongly connected parameters in-
between are clustered into concepts. First,
not clustering frequent parameters is consistent
with the IR community’s observation that such
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technique leads to the best performance in au-
tomatic query expansion [16]. Second, leaving
rare parameters unclustered avoids over-fitting.

2. The cohesion of a concept—the connections be-
tween parameters inside the concept—should
be strong; the correlation between concepts—
the connections between parameters in different
concepts—should be weak.

Traditionally, cohesion is defined as the sum of
squares of Euclidean distances from each point to
the center of the cluster it belongs to; correlation is
defined as the sum of squares of distances between
cluster centers [14]. This definition does not apply
well in our context because of “the curse of dimen-
sionality”: our feature sets are so large that a Eu-
clidean distance measure is no longer meaningful.
We hence quantify the cohesion and correlation of
clusters based on our association rules.
We say that t1 is closely associated to t2 if the rule

t1 → t2 has a confidence greater than threshold tc.
The threshold tc is chosen manually to be the value
that best separates correlated and uncorrelated pairs
of terms.
Given a cluster I, we define the cohesion of I as

the percentage of closely associated term pairs over
all term pairs. Formally,

cohI =
‖ {i, j | i, j ∈ I, i 6= j, i → j(c > tc)} ‖

||I||(||I|| − 1)

where i → j(c > tc) is the association rule for term
i and j. As a special case, the cohesion of a single-
term cluster is 1.
Given clusters I and J , we define the correlation

between I and J as the percentage of closely associ-
ated cross-cluster term pairs. Formally,

corIJ =
C(I, J) + C(J, I)

2 ‖ I ‖‖ J ‖

where C(I, J) =‖ {i, j | i ∈ I, j ∈ J, i → j(c > tc)} ‖.

To measure the overall quality of a clustering C,
we define the cohesion/correlation score as

scoreC =

∑
I∈C cohI

‖C‖
∑

I,J∈C,I 6=J corIJ

‖C‖(‖C‖−1)/2

=
(||C|| − 1)

∑
I∈C cohI

2
∑

I,J∈C,I 6=J corIJ

The cohesion/correlation score captures the
trade-off between having a high cohesion score and
a low correlation score. Our goal is to obtain a
high scoreC that will indicate tight connections in-
side clusters and loose connections between clusters.

4.3 Clustering Algorithm

We can now describe our clustering algorithm as a
series of refinements to the classical agglomerative
clustering [18].

4.3.1 The basic agglomeration algorithm

Agglomerative clustering is a bottom-up version of
hierarchical clustering. Each object is initialized to
be a cluster of its own. In general, at each iteration
the two most similar clusters are merged until no
more clusters can be merged.
In our context, each term is initialized to be a

cluster of its own; i.e., there are as many clusters
as terms. The algorithm proceeds in a greedy fash-
ion. It sorts the association rules in descending order
first by the confidence and then by the support. In-
frequent rules with less than a minimum support ts

are discarded. At every step, the algorithm chooses
the highest ranked rule that has not been consid-
ered previously. If the two terms in the rule belong
to different clusters, the algorithm merges the clus-
ters. Formally, the condition that triggers merging
cluster I and J is

∃i ∈ I, j ∈ J . i → j(s > ts, c > tc)

where i and j are terms. The threshold ts is cho-
sen to control the clustering of terms that do not
occur frequently. We note that in our experiments
the results of operation and input/output matching
are not sensitive on the values of ts and tc.

4.3.2 Increasing cluster cohesion

The basic agglomerative algorithm merges two clus-
ters together when any two terms in the two clusters
are closely associated. The merge condition is very
loose and can easily result in low cohesion of clus-
ters. To illustrate, suppose there is a concept for
weather, containing temperature as a term, and a
concept for address, containing zip as a term. If,
when operations report temperature, they often re-
port the area zipcode as well, then the confidence of
rule temperature→ zip is high. As a result, the basic
algorithm will inappropriately combine the weather
concept and the address concept.
The cohesion of a cluster is decided by the associ-

ation of each pair of terms in the cluster. To ensure
that we obtain clusters with high cohesion, we merge
two clusters only if they satisfy a stricter condition,
called cohesion condition.
Given a cluster C, a term is called a kernel term

if it is closely associated with at least half2 of the
remaining terms in C. Our cohesion condition re-
quires that all the terms in the merged cluster be
kernel terms. Formally, we merge two clusters I
and J only if they satisfy the cohesion condition:

∀i ∈ I ∪ J . ‖ {j | j ∈ I ∪ J, i 6= j, i → j(c > tc)} ‖

≥
1

2
(||I||+ ||J || − 1)

2We tried different values for this fraction and found 1
2

yielded the best results.
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Figure 2: Splitting and merging clusters

4.3.3 Splitting and Merging

A greedy algorithm pursues local optimal solutions
at each step, but usually cannot obtain the global
optimal solution. In parameter clustering, an inap-
propriate clustering decision at an early stage may
prevent subsequent appropriate clustering. Consider
the case where there is a cluster for zipcode {zip,
code}, formed because of the frequent occurrences of
parameter ZipCode. Later we need to decide whether
to merge this cluster with another cluster for address
{state, city, street}. The term zip is closely associ-
ated with state, city and street, but code is not be-
cause it also occurs often in other parameters such
as TeamCode and ProxyCode, which typically do not
co-occur with state, city or street. Consequently, the
two clusters cannot merge; the clustering result con-
trasts with the ideal one: {state, city, street, zip} and
{code}.
The solution to this problem is to split already-

formed clusters so as to obtain a better set of clusters
with a higher cohesion/correlation score. Formally,
given clusters I and J , we denote

I
′ = {i | i ∈ I, ||{j | j ∈ I ∪ J, i → j(c > tc)}||

≥
1

2
(||I||+ ||J || − 1)

J
′ = {j | j ∈ J, ||{i | i ∈ I ∪ J, j → i(c > tc)}||

≥
1

2
(||I||+ ||J || − 1) (1)

Intuitively, I ′ (respectively, J ′) denotes the set of
terms in I that are closely associated with terms in
the union of I and J . Our algorithm makes splitting
decision depending on which of the four following
cases occurs:

• If I ′ = I, J ′ = J , then I and J can be merged
directly (see Figure 2(a)).

• If I ′ 6= I, J ′ = J , then merging I and J di-
rectly disobeys the cohesion condition. There
are two options: one is to split I into I ′ and
I − I ′, and then merge I ′ with J (see Figure
2(b)); the other is not to split or merge. We de-
cide in two steps: the first step checks whether
the merged result in the first option satisfies the
cohesion condition; if so, the second step com-
putes the cohesion/correlation score for each
option, and chooses the option with a higher
score. The decision is similar for the case where
J ′ 6= J, I ′ = I.

• If I ′ 6= I, J ′ 6= J , then again, merging I and J
directly disobeys the cohesion condition. There
are two options: one is to split I into I ′ and
I−I ′, split J into J ′ and J−J ′, and then merge
I ′ with J ′ (see Figure 2(c)); the other is not
to split or merge. We choose an option in two
steps: the first step checks whether in the first
option, the merged result satisfies the cohesion
condition; if so, the second step computes the
cohesion/correlation score for each option, and
chooses the option with a higher score.

After the above processing, the merged cluster
necessarily satisfies the cohesion condition. How-
ever, the clusters that are split from the original
clusters may not. To ensure cohesion, we further
split such clusters: each time, we split the cluster
into two, one containing all kernel terms, and the
other containing the rest. We repeat splitting un-
til eventually all result clusters satisfy the cohesion
condition. Note that applying such splitting strat-
egy on an arbitrary cluster may generate clusters of
small size. Therefore, we do not merge two clusters
directly (without applying the above judgment) and
then split the merged cluster.

Remark 4.1. Our splitting-and-clustering tech-
nique is different from the dynamic modeling in the
Chameleon algorithm [17], which also first splits and
then merges. We do splitting and clustering at each
step of the greedy algorithm. The Chameleon al-
gorithm first considers the whole set of parameters
as a big cluster and splits it into relatively small
sub-clusters, and then repeatedly merges these sub-
clusters. ¤

4.3.4 Removing noise

Even with splitting, the results may still have terms
that do not express the same concept as other terms
in its cluster. We call such terms noise terms. To il-
lustrate how noise terms can be formed, we continue
with the zipcode example. Suppose there is a clus-
ter for address {city, state, street, zip, code}, where
code is a noise term. The cluster is formed because
the rules zip → city, zip → state, and zip → street all
have very high confidence, e.g., 90%; even if the rule
code → zip has a lower confidence, e.g., 50%, the
rules code → city, code → state, and code → street
can still have high confidence.
We use the following heuristic to detect noise

terms. A term is considered to be noise if in half
of its occurrences there are no other terms from the
same concept. After one pass of the greedy algo-
rithm (considering all association rules above a given
threshold), we scan the resulting concepts to remove
noise terms. Formally, for a term t, denote ||IOt||
as the number of inputs/outputs that contain t, and
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procedure MergeParameters(T ,R) return (C)
// T is the term set, R is the association rule set
// C is the result concept set

for (i = 1, n) Ci = {ti}; //initiate clusters
sort R first by the descending order of confidence,
then by the descending order of support value;

for each (r : t1 → t2(s > ts, c > tc) in R)
if t1 and t2 are in different clusters I and J

Compute I ′ and J ′ according to formula (1);
if (I ′ = I ∧ J ′ = J) merge I and J ;
else if (splitting and merging satisfies the
cohesion condition and has a higher scoreC)
split and merge;
if (I ′′ = I − I ′ and/or J ′′ = J − J ′

does not observe the cohesion condition)
split I ′′ and/or J ′′ iteratively;

scan inputs/outputs and remove noise terms;
return result clusters;

Figure 3: Algorithm for parameter clustering

||SIOt|| as the number of inputs/outputs that con-
tain t but no other terms in the same concept of t.
We remove t from the concept if ||SIOt|| ≥

1
2 ||IOt||.

4.3.5 Putting it all together

Figure 3 puts all the pieces together, and shows the
details of a single pass of the clustering algorithm.

The above algorithm still has two problems.
First, the cohesion condition is too strict for large
clusters, so it may prevent closely associated large
clusters to merge. Second, early inappropriate merg-
ing may prevent later appropriate merging. Al-
though we do splitting, the terms taken off from the
original clusters may have already missed the chance
to merge with other closely associated terms. We
solve the problems by running the clustering algo-
rithm iteratively. After each pass, we replace each
term with its corresponding concept, re-collect as-
sociation rules, and then re-run the clustering algo-
rithm. This process continues when no more clusters
can be merged.

We illustrate with an example that the iteration
of clustering does not sharply loosen the cluster-
ing condition. Consider the case where {zip} is not
clustered with {temperature, windchill, humidity}, be-
cause zip is closely associated with only temperature,
but not the other two. Another iteration of cluster-
ing will replace each occurrence of temperature, wind-
chill and humidity with a single concept, say weather.
The term zip will be closely associated with weather;
however, the term weather is not necessarily closely
associated with zip, because that requires zip to oc-
cur often when any of temperature, windchill, or hu-
midity occurs. Thus, the iteration will (correctly)
keep the two clusters.

4.4 Clustering Results

We now briefly outline the results of our clustering
algorithm. Our dataset, which we will describe in
detail in Section 6, contains 431 web services and
3148 inputs/outputs. There are a total of 1599
terms. The clustering algorithm converges after the
seventh run. It clusters 943 terms into 182 concepts.
The rest 656 terms, including 387 infrequent terms
(each occurs in at most 3 inputs/outputs) and 54
frequent terms (each occurs in at least 30 of the
inputs/outputs) are left unclustered. There are 59
dense clusters, each with at least 5 terms. Some of
them correspond roughly to the concepts of address,
contact, geology, maps, weather, finance, commerce,
statistics, and baseball, etc. The overall cohesion is
0.96, correlation is 0.003, and average cohesion for
the dense clusters is 0.76. This result observes the
two features of an ideal clustering.

5 Finding Similar Operations

In this section we describe how to predict similarity
of inputs/outputs sets and of web-service operations.
We will determine similarity by combining multiple
sources of evidence. The intuition behind our match-
ing algorithm is that the similarity of a pair of in-
puts (or outputs) is related to the similarity of the
parameter names, that of the concepts represented
by the parameter names, and that of the operations
they belong to. Note that parameter name similar-
ity compares inputs/outputs on a fine-grained level,
and concept similarity compares inputs/outputs on
a coarse-grained level. The similarity between two
web-service operations is related to the similarity of
their descriptions, that of their inputs and outputs,
and that of their host web services.

Input/output similarity: We identify the in-
put i of a web-service operation op with a vector
i = (pi, ci, op), where pi is the set of input param-
eter names, and ci is the set of concepts associated
with the parameter names (as determined by the
clustering algorithm described in Section 4). While
comparing a pair of inputs, we determine the sim-
ilarity on each of the three components separately,
and then combine them. We treat op’s output o as
a vector o = (po, co, op), and process it analogously.

Web-service operation similarity: We identify
a web-service operation op with a vector op =
(w, f, i, o), where w is the text description of the
web service to which op belongs, f is the textual de-
scription of op, and i and o denote the input and
output parameters. Here too, we determine similar-
ity by combining the similarities of the individual
components of the vector.
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Observe that there is a recursive relationship be-
tween the similarity of inputs/outputs and the simi-
larity of web-service operations. Intuitively, this re-
lationship holds because each one depends on the
other, and any decision on how to break this recur-
sive relationship would be arbitrary. In Section 5.2
we show that with sufficient care for the choice of
the combination weights, we can guarantee that the
recursive computation converges.

5.1 Computing Individual Similarities

We now describe how we compute similarities for
each one of the components of the vectors.

Input/output parameter name similarity:
We consider the terms in an input/output as a
bag of words and use the TF/IDF (Term Fre-
quency/Inverse Document Frequency) measure [25]
to compute the similarity of two such bags.
To improve our accuracy, we pre-process the

terms as follows.

1. Perform word stemming and remove stopwords.
Stemming improves recall by removing term
suffixes and reducing all forms of a term to a sin-
gle stemmed form. Stopword removal improves
precision by eliminating words with little sub-
stantive meaning.

2. Group terms with close edit distance [21] and
replace terms in a group with a normalized
form. This step helps normalize misspelled and
abbreviated terms.

3. Remove from the output bag the terms that
refer to the inputs. For example, in the out-
put parameter LocalTimeByZipCodeResult, the
term By indicates that the following terms de-
scribe inputs; thus, terms Zip and Code can be
removed.

4. Extract additional information from names of
web-service operations. Most operations are
named after the output (e.g., GetWeather),
and some include input information (e.g., Zip-
CodeToCityState). We put such terms into the
corresponding input/output bag.

Input/output concept similarity: To compute
the similarity of the concepts represented by the in-
puts/outputs, we replace each term in the bag of
words described above with its corresponding con-
cept, and then use the TF/IDF measure. Note
that the clustering algorithm is applied on the in-
put/output terms after preprocessing.

Operation description similarity: To compute
the similarity of operation descriptions, we consider
the tokenized operation name and WSDL documen-
tation as a bag of words, and use the TF/IDF mea-
sure. Furthermore, we supplement information by

adding the terms in their inputs and outputs to the
bag of words.

Web service description similarity: To compute
the similarity of web service descriptions, we create
a bag of words from the following: the tokenized
web service name, WSDL documentation and UDDI
description, the tokenized names of the operations in
the web service, and their input and output terms.
We again apply TF/IDF on the bag of words.

5.2 Combining Individual Similarities

We use a linear combination to combine the similar-
ity of each component of the operation. Each type
of similarity is assigned a weight that is dependent
on its relevance to the overall similarity. Currently
we set the weights manually based on our analysis
of the results from different trials. Learning these
weights based on direct or indirect user feedback is
a subject of future work.
As noted earlier, there is a recursive dependency

between the similarity of operations and that of in-
puts/outputs. We prove that computing the recur-
sive similarities ultimately converges.

Proposition 1. Computing operation similarity
and input/output similarity converges. ¤

Proof (Sketch): Let Sop, Si and So be the simi-
larity of operations, of inputs, and of outputs. Let
wi and wo be the weights for input similarity and
output similarity in computing operation similarity,
and wop be the weight for operation similarity in
computing input/output similarity.
We start by assigning zero to the operation simi-

larity, and based upon it compute input/output sim-
ilarity and operation similarity iteratively. We can
prove that if z = wop(win + wout) < 1, the compu-
tation converges and the results are:

S
(∞)
op = S

(0)
op ·

1

1− z

S
(∞)
i = S

(0)
i + S

(0)
op ·

wop

1− z

S
(∞)
o = S

(0)
o + S

(0)
op ·

wop

1− z

where s
(0)
op , s

(0)
i and s

(0)
o are the results of the first

round, and s
(∞)
op , s

(∞)
i and s

(∞)
o are the converged

results. ¤

6 Experimental Evaluation

We now describe a set of experiments that vali-
date the performance of our matching algorithms.
Our goal is to show that we produce high precision
and recall on similarity queries and to investigate
the contribution of the different components of our
method.
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6.1 Experimental Setup

We implemented a web-service search engine, called
Woogle, that has access to 790 web services from
the main authoritative UDDI repositories. The cov-
erage of Woogle is comparable to that of the other
web-service search engines [1, 2, 3, 4]. We ran our
experiments on the subset of web services whose as-
sociated WSDL files are accessible from the web, so
we can extract information about their functionality
descriptions, inputs and outputs. This set contains
431 web services, and 1574 operations in total.
Woogle performs parameter clustering, operation

matching and input/output matching offline, and
stores the results in a database. TF/IDF was im-
plemented using the publicly available Rainbow [6]
classification tool.
Our experiments compared our method, which

we refer to as Woogle, with a couple of naive
algorithms Func and Comb. The Func method
matches operations by comparing only the words in
the operation names and text documentation. The
Comb method considers the words mentioned in
the web service names, descriptions and parameter
names as well; in contrast to Woogle, these words
are all put into a single bag of words.

Performance Measure: We measured over-
all performance using recall(r), precision(p), R-
precision(pr) and Top-k precision (pk). Consider
these measures for operation matching. Let Rel be
the set of relevant operations, Ret be the set of re-
turned operations, Retrel be the set of returned rel-
evant operations, and Retrelk be the set of relevant
operations in the top k returned operations. We de-
fine

p =
|Retrel|

|Ret|
, r =

|Retrel|

|Rel|

pk =
|Retrelk|

k
, pr = p|Rel| =

|Retrel|Rel||

|Rel|

Among the above measures, pr is considered
to most precisely capture the precision and rank-
ing quality of a system. We also plotted the re-
call/precision curve (R-P curve). In an R-P curve
figure, the X-axis represents recall, and the Y-axis
represents precision. An ideal search engine has a
horizontal curve with a high precision value; a bad
search engine has a horizontal curve with a low pre-
cision value. The R-P curve is considered by the IR
community as the most informative graph showing
the effectiveness of a search engine.

6.2 Measuring Precision

Given a web service, Woogle generates five lists: sim-
ilar operations, operations with similar inputs, op-
erations with similar outputs, operations that com-
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Figure 4: Top-k precision for Woogle similarity search.

pose with the output of the given operation, and
operations that compose with the input of the given
operation. We evaluated the precision of these re-
turned lists, and report the average top-2, top-5 and
top-10 precision.
We selected a benchmark of 25 web-service opera-

tions for which we tried to obtain similar operations
from our entire collection. When selecting these,
we ensured that they are from a variety of domains
and that they have different input/output sizes and
description sizes. To ensure the top-10 precision is
meaningful, we selected only operations for which
Woogle and Comb both returned more than 10
relevant operations. (Func may return less than 10
relevant operations because typically it obtains re-
sult sets of very small size.)
Figure 4(a) shows the results for top-k precision

on operation matching. The top-2, top-5, and top-
10 precisions of Woogle are 98%, 83%, 68% respec-
tively, higher than those of the two naive methods by
10 to 30 percentage points. This demonstrates that
considering different sources of evidence, and con-
sidering them separately, will increase the precision.
We also observe that Comb has a higher top-2 and
top-5 precision than Func, but its top-10 precision
is lower. This demonstrates that considering more
evidence by simple combination does not greatly en-
hance performance.
Figure 4(b) shows the precision for the four other
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Figure 5: Performance for different operation matchers.

returned lists. Note that we only reported the top-2
and top-5 precision, as these lists are much smaller
in size. From the 25-operation test set, we selected
20 where both input and output parameters are not
empty, and the sizes of the returned lists are not too
short. Figure 4(b) shows that for the majority of the
four lists, the top-2 and top-5 precisions are between
80% and 90%.

6.3 Measuring Recall

In order to measure recall of similarity search, we
need to know the set of all operations that are rele-
vant to a given operation in the collection. For this
purpose, we created a benchmark of 8 operations
from six different domains: weather(2), address(2),
stock(1), sports(1), finance(1), and time(1) (weather
and address are two major domains in the web ser-
vice corpus). We chose operations with different
popularity: four of them have more than 30 similar
operations each, and the other four each have about
10 similar operations. Among the 8 operations, one
has empty input, so we have 15 inputs/outputs in
total. When choosing the operations, we ensured
that their inputs/outputs convey different numbers
of concepts, and the concepts involved vary in pop-
ularity.
For each of the 8 operations, we hand-labeled

other operations in our collection as relevant or ir-
relevant. We began by inspecting a set of operations
that had similar web service descriptions, or similar
operation descriptions, or similar inputs or outputs.

(a)


(b)


0


0.2


0.4


0.6


0.8


1


1.2


0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1


Recall


P
re

ci
si

o
n


 ParIO


ConIO


ParConIO


Woogle


0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


Precision
 Recall
 R-precision


P
er

ce
n

ta
g

e
 ParIO


ConIO


ParConIO


Woogle


Figure 6: Performance of different input/output match-
ers

From that list we chose the set of similar operations
and labeled them as relevant. The rest are labeled
as irrelevant. In a similar fashion, we label relevant
inputs and outputs.
In this experiment we also wanted to test the con-

tributions of the different components of Woogle.
To do that, we also considered the following
stripped-down variations of Woogle:

• FuncWS: consider only operation descriptions
and web service descriptions;

• FuncIO: consider only operation descriptions,
inputs and outputs;

• ParOnly: consider all of the four components,
but compare inputs/outputs based on only pa-
rameter names;

• ConOnly: consider all of the four components,
but compare inputs/outputs based on only the
concepts they express.

Figure 5(a) plots the average precision, recall and
R-precision on the eight operations in the bench-
mark for each of the above matchers and also for
Func, Comb, and Woogle. Figure 5(b) plots the
average R-P curves. We observe the following.
First, Woogle generally beats all other match-

ers. Its recall and R-precision are 88% and 78% re-
spectively, much higher than those of the two naive
methods. Second, considering evidences from dif-
ferent sources by simply putting them into a big

381



bag of words (Comb) does not help much. This
strategy only beats Func, which considers evidence
from a single source. Even FuncWS, which dis-
cards all input and output information, has a bet-
ter performance than Comb. Third, FuncIO per-
forms better than FuncWS. It shows that in oper-
ation matching, the semantics of input and output
provides stronger evidence than the web service de-
scription. This observation agrees with the intuition
that operation similarity depends more on input and
output similarity. Fourth, Woogle performs bet-
ter than ParOnly, and also slightly better than
ConOnly. ParOnly has a higher precision, but
a lower recall; ConOnly has a higher recall, but a
lower precision. By considering parameter match-
ing (fine-grained matching) and concept matching
(coarse-grained matching) together, Woogle ob-
tains a recall as high as ConOnly, and a precision
as high as ParOnly.
An interesting observation is thatWoogle beats

FuncIO in precision up till the point when the re-
call reaches 80%. Also, the recall of Woogle is 8
percentage points lower than that of FuncIO. This
is not surprising because verbose textual descrip-
tions of web services have two-fold effects: on the
one hand, they provide additional evidence, which
helps significantly in the top returned operations,
where the input and output already provide strong
evidence; on the other hand, they contain noise that
dilutes the high-quality evidence, especially at the
end of the returned list where real evidence is not
very strong.
In our experiments, we also observe that com-

pared with the benefits of our clustering technique
and that of the structure-aware matching, tuning the
parameters in a reasonable range and pre-processing
the input/output terms improve the performance
only slightly.

6.3.1 Input/output matching

We performed an additional experiment focusing on
the performance of input/output matching. This ex-
periment considered the following matchers:

• Woogle: matches inputs/outputs by consider-
ing parameter names, their corresponding con-
cepts, and the operations they belong to.

• ParConIO: considers both parameter names
and concepts, but not the operations.

• ConIO: considers only concepts.

• ParIO: considers only parameter names.

Figure 6(a) shows the average recall, precision
and R-precision on the fifteen inputs/outputs in the
benchmark for each of the above matchers. We also
plotted the average R-P curves in Figure 6(b). We

observe the following. Matching inputs/outputs by
comparing the expressed concepts significantly im-
proves the performance: the three concept-aware
matchers obtain a recall 25 percentage points higher
than that of ParIO. Based on concept compari-
son, the performance of input/output matching can
be further improved by considering parameter name
similarity and host operation similarity.

7 Searching with Woogle

Similarity search supplements keyword search for
web services. Besides, its core techniques power
other search methods in the Woogle search engine,
namely, template search and composition search.
These two methods go beyond keyword-search by
directly exploring the semantics of web-service op-
erations. Because of lack of space, we describe them
only briefly.

Template search: The user can specify the func-
tionality, input and output of the desired web-service
operation, and Woogle returns a list of operations
that fulfill the requirements. It is distinguished from
the keyword search in that (1) it explores the under-
lying structure of operations; and (2) the parameters
of the returned operations are relevant to the user’s
requirement, but do not necessarily contain the spe-
cific words that the user uses. For example, the user
can ask for operations that take zipcode of an area
and return its nine-day forecast by specifying input
as zipcode, output as forecast, and description as the
weather in the next nine days. The inputs of the re-
turned operation can be named zip, zipcode, or post-
code. The outputs can be forecast, weather, or even
temperature, humidity at the end of the list of the
returned operations.
Template search is implemented by considering a

user-specified template as an operation and applying
the similarity search algorithm. A key challenge is
to perform the operation matching efficiently on-the-
fly.

Composition search: Much of the promise of web
services is the ability to build complex services by
composition. Composition search in Woogle returns
not only single operations, but also operation com-
positions that achieve the desired functionality. The
composition can be of any length. For example,
when an operation satisfying the above search re-
quirement is not available, it will be valuable to re-
turn a composition of an operation with zipcode as
input and city and state as output, and an operation
with city and state as input and nine-day forecast as
output.
Based on the machinery that we have already

built for matching operation inputs and outputs, we
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can discover compositions automatically. The chal-
lenge lies in avoiding redundancy and loop in the
composition. Another challenge is to discover the
compositions efficiently on-the-fly.

8 Conclusions and Future Work

As the use of web services grows, the problem of
searching for relevant services and operations will
get more acute. We proposed a set of similarity
search primitives for web service operations, and de-
scribed algorithms for effectively implementing these
searches. Our algorithm exploits the structure of the
web services and employ a novel clustering mecha-
nism that groups parameter names into meaning-
ful concepts. We implemented our algorithms in
Woogle, a web service search engine, and experi-
mented on a set of over 1500 operations. The experi-
mental results show that our techniques significantly
improve the precision and recall compared with two
naive methods, and perform well overall.
In future work, we plan to expand Woogle to in-

clude automatic web-service invocation; i.e., after
finding the potential operations, Woogle should be
able to fill in the input parameters and invoke the
operations automatically for the user. This search
is particularly promising because it will, in the end,
be able to answer questions such as “what is the
weather of an area with zipcode 98195.”
While this paper focuses exclusively on searches

for web services, the search strategy we have de-
veloped applies to other important domains. As a
prime example, if we model web forms as web ser-
vice operations, a deep-web search can be performed
by first searching appropriate web forms with a de-
sired functionality, and then automatically filling in
the inputs and displaying the results. As another
example, applying template search and composition
search to class libraries (considering each class as
a web service, and each of its methods as a web-
service operation) would be a valuable tool for soft-
ware component reusing.
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