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Abstract

This paper investigates the benefits ofnetwork
awarenesswhen processing queries in widely-
distributed environments such as the Internet.
We present algorithms that leverage knowledge
of network characteristics (e.g., topology, band-
width, etc.) when deciding on the network lo-
cations where the query operators are executed.
Using a detailed emulation study based on realis-
tic network models, we analyse and experimen-
tally evaluate the proposed approaches for dis-
tributed stream processing. Our results quantify
the significant benefits of the network-aware ap-
proaches and reveal the fundamental trade-off be-
tween bandwidth efficiency and result latency that
arises in networked query processing.

1 Introduction
The need for widely-distributed query processing is becom-
ing increasingly apparent with the proliferation of appli-
cations that require sophisticated processing of data gen-
erated or stored by large numbers of distributed sources
(such as data streams generated by sensor networks or
Internet-based data collections). Existing query process-
ing approaches commonly address relatively small-scale
systems and fail to exhibit good network scalability, a de-
sign goal that has only recently started to receive attention
within the database community [8, 12] and that we believe
will be central to next-generation data processing systems.

In this paper, we study the benefits ofnetwork aware-
nesswhen processing queries in widely-distributed envi-
ronments such as the Internet. We argue that exploiting
knowledge of the underlying network characteristics (such
as topology and link bandwidths) can significantly improve
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the efficiency of network-bound query processing. We
presentnetwork-awareoperator placement algorithms that
utilize such characteristics to identify the network locations
where the operators of a given query plan should be exe-
cuted. The algorithms differ in which nodes they consider
as candidates for operator placement and how they take net-
work knowledge into account.

Specifically, we present two novel network-aware ap-
proaches for push-based continuous queries and distributed
stream processing. The first approach uses heuristics that
exploit pair-wise server communication latencies. The sec-
ond approach extends the first one by identifying and in-
volving in processing “well-located” servers that would
otherwise not participate in the process, thereby imple-
menting “in-network” query processing.

We describe the basic design of a distributed query pro-
cessing system, built on top of a Distributed Hash Table
(DHT) [22, 26], that implements the proposed placement
algorithms. We have fully implemented the system and
the algorithms, and use the code base to conduct a detailed
emulation study under realistic network models. Our re-
sults show that, compared to representatives of traditional
network-unaware approaches, the proposed approaches can
significantly reduce the overall system bandwidth con-
sumption, a key efficiency metric for large-scale networked
systems. Furthermore, the algorithms can be tuned to sat-
isfy target query-result latency bounds, typically at the ex-
pense of extra bandwidth consumption. Even though our
work assumes push-based continuous queries, the results
are more general and apply to pull-based pipelined queries
as well.

Our work is done in the context of theSAND(Scalable
AdaptiveNetwork Databases) project that strives to de-
velop a highly-scalable and adaptive network-oriented
database system and theBorealisproject that strives to ex-
tend core data-stream processing functionality to heteroge-
neous distributed environments.

The rest of the paper is organized as follows: Section
2 describes the basic system and network model that we
assume throughout the paper. Section 3 presents the cen-
tralized versions of the network-aware operator placement
algorithms. Section 4 describes how these algorithms can
be effectively implemented in a distributed manner, lever-
aging basic DHT primitives. Section 5 analyzes the pro-
cessing and message complexity of both the centralized
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and distributed approaches. Section 6 characterizes the ef-
ficiency and effectiveness of the approaches using an emu-
lation. Section 7 summarizes prior research relevant to our
work and highlights the main differences. Finally, Section
8 provides concluding remarks and directions for future re-
search.

2 Basic System Model

Figure 1: A widely-distributed stream processing
environment.

We consider a widely-distributed query processing en-
vironment with geographically dispersed data sources that
produce high-volume, fast data streams. Our target appli-
cations require sophisticated processing (e.g., fusion, ag-
gregation, correlation) of the source data streams. Our sys-
tem consists of a large number of cooperating servers, ca-
pable of executing stream-oriented query operators (e.g.,
[4, 5, 18]). The servers are organized into an overlay net-
work and collectively provide processing services for mul-
tiple concurrent stream-based applications.

Figure 1 illustrates the basic application and environ-
mental model. In the figure, the small clouds represent data
sources (such as sensor networks and financial feeds) and
the big cloud represents the networked stream processing
system. The system transparently partitions the queries that
describe the processing requirements of applications across
its nodes, multiplexing its distributed resources in order to
improve the overall performance, scalability, and availabil-
ity.

2.1 Data and Processing Model

For our purposes, a data stream is a continuous sequence
of tuples generated by a stream source (or simplysource).
Data streams are processed according to a processing net-
work, which is a collection of (potentially overlapping)
processing trees. Aprocessing treeis a directed dataflow-
style tree of stream-oriented operators that collectively rep-
resent a query plan. Users build such query networks ei-
ther directly using a GUI, through a scripting language
(e.g., [4, 12]) or indirectly through the compilation of high-
level SQL-like language statements (e.g., [18]). In ei-
ther case, queries are built using a standard set of opera-
tors [1, 18], which can also include user-defined functions.
We assume that the specified processing tree is final and do
not consider further semantic opportunities. We plan to ex-
plore this in future work. The output tuples that result from
processing are delivered to anapplication proxy(or simply

proxy) that is responsible for forwarding these tuples to the
relevant application(s).

2.2 Server and Network Model

Our system consists of an application-level overlay net-
work (e.g., [19, 20, 22, 26]) of geographically dispersed
cooperating servers, interconnected physically by IP net-
works, and logically, through a DHT infrastructure. We as-
sume that the overlay servers communicate via IP unicast.

The DHT infrastructure acts as a networking substrate,
providing localized knowledge of the server space and flex-
ibility in our routing and search operations. This flexi-
bility is core to supporting a variety of placement mecha-
nisms when investigating algorithmic tradeoffs in optimiz-
ing bandwidth usage. While the algorithms presented here
are not reliant upon a specific DHT, we describe our sys-
tem generating placement overlays on top of the Tapestry
system [26].

In Tapestry, overlay servers are assigned an identifier
obtained from securely hashing the servers’ IP addresses.
Overlay servers co-ordinate themselves into a connected
network, and maintain local routing tables referring to
servers whose addresses prefix match the local address,
at varying lengths. Using this routing table construction,
Tapestry offers a lookup mechanism designed to reach its
destination inO(log n) overlay hops (wheren denotes the
number of overlay participants), while ensuring a bound
of O(n log n) on the system space requirements. Further-
more, Tapestry servers’ routing tables are created utilizing
network locality information, making it well-suited for our
purposes. Incorporating locality cues reduces the routing
stretch factor, and as such, will transitively affect stretch
factors in our placement overlays, and the response time
for its construction.

2.3 Control Model

For improved scalability and parallelism, we use a dis-
tributed control model. For each processing tree, we create
a correspondingcontrol treeof coordinator nodes as fol-
lows. When a processing tree is up for execution, it is log-
ically partitioned into a number of subtrees, calledzones.
Each zone is assigned acoordinatornode that is responsi-
ble for the placement (and periodic dynamic re-placement)
of the operators in the zone. Coordinators are also respon-
sible for ensuring correct and highly-available execution of
their zones. The application proxy is always assigned as
the root coordinator and decides how many zones to cre-
ate. Each zone is then assigned azone id, which is used
to identify the node (through the DHT) that will serve as
the coordinator for the zone. Coordinators communicate
among themselves and the nodes that execute the operators
in their zones in order to dynamically optimize processing.

Figure 2 provides a high-level view of this basic model,
illustrating a processing tree and the corresponding control
amd processing networks overlayed on top of the physical
IP network. The processing tree is partitioned into three
zones, each assigned to a coordinator node. Each coordina-
tor decides on the placement of the nodes in its zone using
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Figure 2: A processing tree and the corresponding control
and processing overlay networks.

appropriate algorithms. An advantage of this approach is
that zones can be optimized locally, concurrently and asyn-
chronously.

3 Operator Placement
In this section, we first formally define the operator
placement problem for processing widely-distributed data
streams. We then describe three algorithms to construct
processing overlay networks. The first algorithm,Edge,
considers only source locations and the proxy for place-
ment. Edge is an adaptation of the standard pull-based site-
selection approaches to push-based streaming data. The
second algorithm, calledEdge+, is a network-aware ver-
sion of Edge. Edge+ takes into account the pair-wise “net-
work distances” (i.e., transmission latencies) between the
servers. The third approach, calledIn-Network, considers a
carefully selected subset of all network locations, in addi-
tion to the sources and the proxy, when making placement
decisions. Finally, we describe an extension that imposes
bounds on the processing delays.

In order to focus on networking-related costs, we ig-
nore operator processing costs and other related overheads
that arise during query execution. We also assume that the
placement algorithms are applied periodically to dynami-
cally adapt to changes.

3.1 Problem Statement

Consider a processing treeT = {O, A}, defined by a set
of stream-oriented operatorsO, and their connected inputs
and outputsA. Our model also consists of a network topol-
ogy G = {V,E}, of peer nodesV , and their linksE. A
function,β, on processing tree edges yields the data-flow
bandwidth between operators. In our model,β is defined as
a product of the input bandwidths and selectivity (or more
generally productivity) of the input operators. Our goal is
to place each operator at a peer, while minimizing the band-
width utilized in the network.

We assume that the leaves in our processing tree repre-
sent stream sources, and that a functionDHT yields the
sources’ locations on the topology. We attempt to find a
mapping functionλ defined on the operators,O, yielding
network locations inV . Our objective on the network edges
between the resulting placements follows:

min
λ

∑

a∈A

c(a) (1)

s.t. λ(l) = DHT (l) ∀l ∈ leaves(T ) (2)

where

c(a) =
{

0 if for a = (m, n) : λ(m) = λ(n)
β(a) otherwise (3)

In our cost functionc(a) above, we state that processing
tree edges,a ∈ A, incur no cost if both endpoints of an
edge are placed at the same location, and a cost ofβ(a)
otherwise. We use the termstree costandoverlay costto
refer to the functionsβ andc, respectively. We regardλ as
defining a query overlay, whose members are given by the
range ofλ, and edges are the network edges corresponding
to mapped tree edges. Figure 3 provides an overview of the
symbols used in this model, along with their definitions.

Symbol Definition
o processing tree operator.
ci arbitrary child of operatoro.
β(a) cost of processing tree edgea (tree cost)
c(a) cost of mapped tree edgea (overlay cost)
d(u, v) network distance between locationsu andv
γ(o, v) cost of operatoro at locationv
λ(o) mapped location of operatoro
φ(o) candidate location set of operatoro

Figure 3: Model terminology.

3.2 Edge Placement

TheEdgealgorithm strives to find a good placement when
the candidate locations are constrained to the sources and
the proxy. Because the optimal solution of a simpler ver-
sion of the problem is known to be NP-complete [16], we
propose a greedy algorithm that traverses the processing
tree operators in post-order, optimizing progressively larger
subtrees as it proceeds.

As our algorithm encounters operators in its traversal, it
places operators at the minimal cost location identified us-
ing one of three cases: placement at (1) one of its children’s
locations, (2) acommonlocation, or (3) the proxy’s loca-
tion. We now describe how to compute the partial overlay’s
cost at each of these cases in greater detail. Note that the
cost of an operator depends upon the placement of its chil-
dren. We use the termconfigurationthroughout the text to
denote the placement and cost of an operator, and the place-
ment of its children (and subsequently the entire subtree).

Let us consider an operatoro with children{c1, . . . , cn}.
In case (1) above, we place the operator at a location that
maximizes the total tree cost between the operator and all
of its children. This configuration eliminates the maximal
tree cost from our overlay cost. Formally, this is:

λ′(o) = arg max
v∈Sn

i=1 λ(ci)

∑

{ci:λ(ci)=v}
β(o, ci) (4)

This local minimization clearly does not yield a glob-
ally optimal processing overlay. In case (2), we check for
locations where we may potentially place all children of an
operator. Placing an operator and its children at this com-
mon location ensures that all edges between the operator
and its children incur zero overlay cost. We definecl, the
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set of common locations as an intersection of each child’s
dl (the set of descendant leaf locations) of an operatoro:

dl(o) =
⋃

l∈leaves(o)

λ(l) , cl(o) =
n⋂

i=1

dl(ci)

To facilitate this heuristic, we need to compute the cost
of placing an operator at a specific location:

γ(v, o) = ∞ if o ∈ leaves(T ) ∧ v 6= DHT (o)

γ(v, o) =
∑

{ci:v=λ(ci)}
γ(v, ci)+ otherwise

∑

{ci:v 6=λ(ci)}
min {γ(λ(ci), ci) + β(o, ci), γ(v, ci)} (5)

This isγ (Equation 5), yielding the overlay cost of a subtree
rooted by operatoro, with o placed atv. We consider two
configurations to achieve this, the minimized sum (over all
children) of either (i) the existing child configuration cost
and the cost of any additional edge required to place the
operator atv, or (ii) the cost of placing the child atv.

In the case (3), we consider the cost of placing an op-
erator at the proxy’s location. Our motivation here is that,
in placing an operator, we do not account for its outgoing
tree cost. Considering this configuration helps when tree
costs are higher near the root of the processing tree. In this
scenario, all operator-child tree edges add to the overlay
cost (assuming that the proxy is not a stream source).With
a proxy locationr, we now have our final mapping func-
tion, λ, for an operatoro:

λ(o) =

{
DHT (o) if o ∈ leaves(T )
arg min

v∈cl∪{λ′(o),r}
γ(v, o) otherwise

(6)

3.3 Network-Aware Edge Placement: Edge+

The Edge algorithm does not utilize any network knowl-
edge in making placement decisions. To better model costs
on a large-scale network, we extend the original approach
to include a symmetric distance function,d, that represent
the network latencies between locations. In the extended
algorithm,Edge+, this change is reflected in the cost func-
tion. Our modified overlay cost is a product of tree cost and
the distance between overlay edge endpoints. We replace
Equation 3 with:

c(m,n) =
{

0 if λ(m) = λ(n)
β(m,n) · d(λ(m), λ(n)) otherwise

The control flow of Edge+ is similar to that of Edge. In
Edge+, we consider configurations from the three cases in
Edge, and additionally examine a distance-oriented case.
In this fourth case, given a child’s descendant locations,
we selectively enumerate location permutations that meet a
distance criterion. We select permutations whose total sep-
aration is less than than the total separation of the operator
configuration selected by the Edge algorithm. Formally, we

choose configurations,{vi ∈ dl(ci)}n, (of cardinalityn),
such that:

n∑

i=1

d(v1, vi) ≤
n∑

i=1

d(λ(o), λ(ci))

Above, we see a configuration’s total separation is a sum
of distances from one location to all other locations. Note
we leverage our symmetry assumption here. Our intuition
in selecting these configurations is to optimize for cost by
reducing distances between our operator-child mappings.
Providing the magnitude of this reduction is greater than
any increase in the overlay cost of placing the child op-
erators with the desired permutation, we are left with an
overlay of lower total cost.

3.4 In-Network Placement

Using the techniques described above, we now describe the
In-Network algorithm that considers placing operators at
arbitrary network locations. In-Network extends on the
previous algorithms by consideringselectconfigurations
from a set of candidate locations other than just the sources
and the proxy. A greedy, global search strategy would con-
sider configurations from all locations. However this is
computationally intractable for large topologies. We here
describe a heuristic to effectively prune the configurations
considered.

In-Network pursues a similar line to Edge+ in select-
ing configurations of small total distance. Given that con-
figurations may include arbitrary locations, we reduce the
candidate set size with the following heuristic. A location
is removed from an operator’s candidate set, unless its dis-
tance to all current child placements is less than all pairwise
distances between child placements. Formally, operatoro,
with children{c1, . . . , cn} has a candidate set:

φ(o) = {vi ∈ V : ∀ci, cj ∈ C.
d(vi, λ(ci)) < d(λ(ci), λ(cj)) ∧
d(vi, λ(cj)) < d(λ(ci), λ(cj))}

For intuition, the current child placements define acon-
vexset of locations, and our selected configurations lie in
this convex set. Hence, these configurations have a smaller
total separation, in an appropriate part of the topology.
However, this may still result in a large number of potential
configurations, especially in scenarios where distances be-
tween stream sources are relatively large. We further rank
configurations by their separations and select a number,k,
of these configurations in increasing order of our ranking.
Selecting a minimal cost configuration is the same as in
Edge+. Once we have chosen our configuration, we place
each child at a location corresponding to our configuration,
and add the cost of any edges needed to connect the map-
ping of the operator to its children.

3.5 Latency-Constrained Placement

A desirable property of our mapping functionλ would be
the ability to place a path-based constraint on the sequence
of locations a path in the processing tree is mapped to on
the overlay network. A straightforward example is a delay
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constraint indicating a desired response time on the pro-
cessing tree. We now abstract this into our model. Let us
consider a path constraint, of valuel. For a set of leaf-to-
root pathsP , we model the constraint as:

∑

(a,b)∈p

d(λ(a), λ(b)) ≤ l ∀p ∈ P

The above inequality states that the total distance of a
mapped leaf-to-root path must be bounded by the con-
straint value. We add this to our constraint in Equation
2, in this version of the problem. Our updated defini-
tion of λ, to meet this constraint, follows. First we define
our set of valid locations, for an operatoro with children
{c1, . . . , cn}:

L = φ(ci)− {vi ∈ φ(ci) : δ(ci) + d(vi, λ(ci)) > l}

where δ(o) = max
p∈paths(subtree(o))

∑

(a,b)∈p

d(λ(a), λ(b))

We now redefine our mapping function:

λ(o) =

{
DHT (o) if o ∈ leaves(T )
arg min

v∈L
γ(v, o) otherwise

Here, we ensure that each member of the setL meets
the delay constraint. Thus, when we come to mapping
the root location, we only consider configurations meet-
ing the constraint. Clearly, this constraint reduces the size
of our search space. We assume the processing tree will
meet the delay constraint when all operators, except leaves,
are placed at the application proxy. If this is not the case,
then we have an “infeasible” mapping, given the applica-
tion proxy is unable to even access the desired sources
within the given constraint. This leads to a source place-
ment problem, which may be potentially be solved with
replication techniques. This issue lies outside the scope of
this paper.

4 Distributed Query Placement
It is evident that placing tree operators at arbitrary locations
requires substantial network state to be fed into the map-
ping algorithm. This requirement significantly restricts the
scalability and effectiveness of centralized approaches in
the presence of a large number of highly distributed stream
sources. In this section, we describe the distributed ver-
sions of Edge, Edge+, and In-Network. In the rest of the
paper, unless otherwise noted, we will use these names
to refer to the distributed versions of the protocols. All
the distributed protocols use basic DHT primitives for im-
proved scalability, look-up efficiency, and fault tolerance.
As described before, we use the Tapestry as the underlying
lookup substrate.

4.1 Overview

In the distributed version of our algorithms, we construct
the processing overlay in a bottom-up manner, concurrently
determining placements for siblings. We assume that each

operator is assigned a globally unique identifier. As de-
scribed earlier, we subdivide our processing tree into zones,
and assign mapping responsibilities for each zone to a co-
ordinator. Coordinators are chosen as the Tapestry peer
whose address matches a zone’s (or subtree’s) identifier.
For now, we assume that a subtree’s identifier is that of the
subtree’s root. Thus, in our distributed algorithm we sub-
divide the optimization search space, and the collection of
metadata to drive our search. Once a coordinator has placed
its subtree, it communicates with its upstream coordinator
(i.e., the coordinator responsible for the subtree rooted at
an ancestor operator). We ensure that an operator is aware
of its ancestors by appending leaf-to-root (LR) paths to spe-
cific messages. These paths, along with lists of operators’
common locations, are precomputed at the proxy. This dis-
tributed mapping process repeats until the root of the pro-
cessing tree is placed.

Deciding on the number and selection of zones is an
open research issue, which should account for factors in-
cluding the relevant network state, the load on the potential
coordinators, and how much parallelism is feasible. Our
intuition also indicates that the number of sources plays
a significant role in terms of determining divisions of the
workload that optimize control overhead. We here inves-
tigate one extreme of subtree assignment, a finely-grained
scenario where a subtree is a single operator, leaving a more
general investigation of this issue to future work.

4.1.1 Local State

Overlay peers maintain two tables, indexed by operator
identifiers, to participate in the mapping protocol. The first
table, known as theboundary childrentable maintains a
list of children for every subtree the peer is responsible
for mapping. Our definition of a subtree is one where the
subtree does not necessarily extend to the leaves. Bound-
ary children are thus defined as the children connected to
subtrees created during workload assignment. The second
table, theoperators mappedtable, maintains feasible op-
erator configurations and their associated costs. We now
describe how these data structures are used in our proto-
col. For convenience, Figure 4.1.1 summarizes the mes-
sages used in the protocols .

4.2 Edge Placement

Distributed placement is a two-phase process: (1) the appli-
cation proxy distributes the mapping workload to the coor-
dinators, and (2) the coordinators communicate to perform
the mapping, instantiating an overlay.

Coordinator initialization. Workload distribution is
performed in two steps. In the first step, we populate the
boundary children tables of all coordinators. We traverse
the processing tree at the proxy, sending anADDSUBTREE
message to every coordinator. This message consists of
a coordinator’s assigned subtree, and its boundary chil-
dren. In the second step, we initiate our decentralized tree
mapping at the sources. Here the application proxy sends
both anOPERATORMAPPEDand aMAPmessage to each
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Message type Message contents
ADDSUBTREE subtree workload, boundary children list
OPERATORMAPPED operator, min-cost configuration, alternate configurations, constraint metadata
MAP operator, child configuration, common locations, LR path, network view, candidates, constraint metadata
INVALIDATE MAP operator
OPERATORREMAPPED operator, configuration

Figure 4: Protocol messages and their contents.

source. TheOPERATORMAPPEDmessage, used to pop-
ulate the operators mapped table, includes a configuration
of placing the operator at the recipient, as well as a list of
alternative configurations. This list is empty for sources, as
they reside at fixed locations.

Iterative mapping step. The MAPmessage contains
an operator, its present configuration, and the application
proxy’s address. TheMAPmessage also contains the LR
path used by coordinators for algorithm control. TheMAP
message triggers our placement mechanism. Mapping a
subtree requires all boundary children to have already been
placed in the network. Thus, an operator’s last mapped
boundary child completes the placement of the operator it-
self. Once a coordinator receives aMAPmessage, it com-
putes a minimal cost placement for the operators within the
subtree assigned to it, using the placement metadata. The
MAPmessages are sent only for subtree roots based on our
workload assignment. We implicitly assume that sources
are thus coordinators for leaves, and simply forward the
map message based on the LR path they receive.

In the Edge algorithm, computing the least cost map-
ping of an operator occurs as described in Section 3. In the
decentralized scenario, we may potentially have to recon-
figure the mapping of the tree below this point, to ensure
that our overlay is correctly built. We turn to how we per-
form this reconfiguration step shortly. Recall that the com-
mon location metadata was included in LR paths. Follow-
ing placement, we compute the parent’s cost at all common
locations for each ancestor. This is a precomputation step
that we utilize when placing the parent’s ancestors.

Backtracked placement. We take the following steps
should our subtree placement require a reconfiguration of
its boundary children (e.g., if it is placed at a common lo-
cation shared by its children). AnOPERATORREMAPPED
message, containing a configuration, is sent to each re-
configured child’s coordinator. The coordinator verifies
that the placement is valid by checking for its existence
in the possible configurations for the child. The place-
ment is then invalidated at its previous location with
an INVALIDATE MAPmessage, and sent to the newly
mapped location via aOPERATORMAPPEDmessage. We
check if further reconfiguration is necessary, to enable the
desired placement and cost. If so, this remapping process
continues down the tree.

Final placement. The final step in subtree mapping
simply involves sendingOPERATORMAPPEDmessages to
the locations of each operator in the newly mapped subtree.
We batch our reconfigurations and placement notifications
until an entire subtree is mapped by a coordinator, to im-

prove the control efficiency. Following this, the mapping
process repeats itself when we send aMAPrequest from the
subtree root’s location, to the location of the next ancestor
in the LR paths received from the boundary children.

4.3 Edge+

The distributed version of Edge+ follows the same strat-
egy as the distributed Edge, but is augmented to incorpo-
rate topology information into the protocol. The protocol
employs a similar placement decision to its corresponding
centralized version. The protocol is thus responsible for
providing the necessary network state for every operator to
our placement mechanism.

In Edge, a coordinator mapping a subtree collected an
optimal configuration for each of the subtree’s boundary
children, in addition to the configurations for common lo-
cations. In this version of the algorithm, we extend this
to include the configurations at each boundary child’s de-
scendant locations. We also aggregate each child’s lo-
calised network view. The network view contains meta-
data on the network state, such as latencies between partic-
ular nodes. Furthermore, we collect metadata as necessary,
namely pairwise distances between descendant locations.
This network view is initially empty, and transported by our
OPERATORMAPPEDandMAPmessages. This configura-
tion cost and topology metadata for each descendant loca-
tion is used in the Edge+ placement mechanism described
in section 3.3.

Note however that this approach is not entirely equiva-
lent to the centralized version. In the centralized version,
we were able to compute an operator’s cost at any of its sib-
lings’ descendant locations. Since we precompute place-
ment costs in the decentralized algorithm to produce a two-
phase protocol, we cannot precompute the cost of an op-
erator at its siblings’ descendant locations unless we know
these locations a priori. This implies both a larger search
space, and, more importantly, more number of rounds for
our algorithm to operate, given that we would have an extra
round of all pairs of siblings exchanging descendant loca-
tion metadata.

4.4 In-Network Placement

We now describe the distributed version of the In-Network
approach, which enables operators to be mapped and exe-
cuted at arbitrary peers. Earlier, we observed that a coor-
dinator performing a mapping requires optimization meta-
data containing configurations and distances between po-
tential locations. With this information, the existing place-
ment mechanism is sufficiently general to place an operator
at any of the given locations.
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The question we address involves selectinginteresting
peers: a set of locations from the topology, that are po-
tentially good candidates upon which to place the operator,
in addition to the stream sources locations. This requires
performing a “walk” on the network discovering the exis-
tence of peers and tracking their distances. Our selection
of such “interesting” locations is based on a shortest path
tree between the application proxy and the source servers.
Specifically, this is a shortest path tree on the Tapestry over-
lay, and is simply obtained using the routes to each source
server. We collect this location information while initially
distributing the workload to each source. This set of can-
didate locations is included in everyMAPmessage, and is
used during the placement of each operator.

4.5 Delay-Constrained Placement
We now describe protocol modifications to handle the
delay-constrained placement problem. Under our modu-
lar approach to distributed optimization, we simply adapt
the content of messages in our protocol, to feed additional
metadata into our local heuristic to find a solution. To pro-
vide this input to our optimization mechanisms, we first
modify our local state. We now require that each peer main-
tains constraint metadata, for each configuration in its op-
erators mapped table. For delay bounds, this is a list of
running totals of path delays, of operator-source paths in
partially constructed overlays, as well as the constraint it-
self. In our protocol, this list of path delays is added to the
OPERATORMAPPEDandMAPmessages.

In theOPERATORMAPPEDandMAPmessages sent to
the sources, we start with a path delay list containing the
delay between the source and the proxy. During placement,
path delays are aggregated at each operator, and undergo
a triangulation transformation. Specifically, we consider
each delay list element in turn, and remove the path de-
lay between the corresponding child’s placement and the
proxy. We then add the delay between the operator’s place-
ment and the proxy to every list element. This triangulation
is performed whenever an operator is mapped to a different
location than any of its children. This approach ensures that
we provide correct path delays for partially built overlays
of subtrees, whenever we search for valid configurations.

5 Algorithm Analysis
In this section, we briefly analyse our algorithms in order
to provide approximate bounds on their (1) bandwidth effi-
ciency (i.e., the ability to reduce the bandwidth necessary to
execute a processing tree), (2) computational complexity,
and (3) message complexity (in the distributed scenario).

Bandwidth efficiency. Let us consider a processing
tree with maximum fanoutd, and heighth + 1. This
tree hasdh leaves, and let us consider that these leaves
are placed atk distinct locations in our network topology,
where0 < k ≤ dh. We index operators in the process-
ing tree asoj

i , representing an operator at heightj, and tree
layer indexi. Operators within a tree layerj are numbered
left to right from {1, . . . , dj}. In the experimental evalu-
ation that follows, we compare the cost of our overlays to

a baseline cost. This baseline cost is viewed as the cost
of evaluating the processing tree in a centralized manner,
namely at the proxy itself. Our first analytical result is to
quantify the probability,PS , that our mapping algorithms
are able to achieve any reduction in bandwidth over this
baseline cost.

We now introduce more terminology for this analysis.
We define the baseline cost as the bandwidth incurred dur-
ing transfer of each source to the proxy. These costs are
denoted{ch

1 , ch
2 , ch

3 , . . . ch
dh}, and correspond to costs for

operators{oh
1 , oh

2 , oh
3 , . . . , oh

dh}. Furthermore, in the algo-
rithms incorporating topology information, we need to dis-
tinguish between costs of operators at different locations.
This is represented by a prefix subscript,lo

j
i , giving the

cost of operatoroj
i at locationl. The baseline cost is thus,

CB =
∑dh

i=0 ch
i . We assume that the costs of sources cor-

respond to the rates of the data streams they represent, and
as such are chosen uniformly at random between two size
bounds. Our mapping algorithm allows us to state that op-
erators are mapped to a child location only if the cost at that
location is less than the cost at the proxy location. There-
fore we are interested in the probability that each operator
at heighth + 1 has a smaller cost at the proxy location,
than at the locations of operators at heighth, for the base-
line cost to apply. For an arbitrary operator at heighth this
holds if its cost is larger at the location we are considering
mapping to, than the minimum cost of any its children at
this specific location, i.elc

h
i > min{lc

h+1
di , . . . ,l c

h+1
di+1−1}.

Furthermore, this must hold over all locations, implying

ch
i > max

l
min{lc

h+1
di , . . . ,l c

h+1
di+1−1}

> max{ch+1
di , . . . , ch+1

di+1−1} (fixed leaf locations)

Above, we note that for leaves, this minimum is sim-
ply the cost of the leaf actually at the location (since we
assume leaves are at fixed locations) and we drop the lo-
cation prefix. For the baseline overlay to be output by our
algorithm, this must additionally hold across all operators
at levelh − 1. Choosing all of these costs from a uniform
random distribution, we may state the probability of the
above condition as:

Pr(ch
i > max{ch+1

di , . . . , ch+1
di+1−1}) =

1
d + 1

This yields a probability that our algorithm improves over
the baseline cost of:

PS = 1−
(

1
d + 1

)dh

Note that the probability that we choose the baseline
cost decreases exponentially as our processing tree size in-
creases (in terms of width and depth). For our algorithm
that is capable of mapping operators to arbitrary locations,
this probability acts as a lower bound, since we may still
optimize the cost of our placement even if the costs of op-
erators at levelh−1 are greater than at levelh, but we omit
the analysis of this scenario for brevity.
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Computational complexity. In the centralized algo-
rithm, a simple greedy algorithm considering placing each
operator at each leaf location has complexityO(k× dh−1

d−1 ).
Recall thatk represents the number of unique sources our
leaves are assumed to be placed at. The termdh−1

d−1 rep-
resents the number of internal operators in our process-
ing tree whom we must place. Our algorithm performing
placements on the sources alone (without topology infor-
mation) reduces this complexity as follows. When we at-
tempt to map an operatoroj

i , we consider only the mini-
mum cost placement for the children{oj+1

di , . . . , oj+1
di+1−1},

and the cost at any common locations of these children
if they exist. Considering minimum cost placements has
complexityO(d) per operator. We may also bound the
number of common locations an operator’s children may
share based on the operator’s depth. Additionally, we state
that the children of an operator at depthj share at most
min(bdh−jc, dh−k

d−1 ) common locations. The first term in
this value for the number of common locations captures the
number of descendant leaves, while the second captures the
greatest number of common locations that may arise given
k unique leaf locations. Combining these two, the com-
putational complexity of our algorithm placing elements at
sources only without topology information is:

O((d + min(bdh−jc, dh − k

d− 1
))× dh − 1

d− 1
)

Intuitively, from the analysis above, we notice that as the
number of unique locations increases, we perform fewer
computations of placements for common locations. In the
algorithms utilising topology information, placing each in-
ternal operator also requires computing placement costs for
permutations of descendant locations. For placement at ar-
bitrary locations this is exponential in terms of the topology
size, motivating the need for a heuristic in selecting our set
of candidate locations. However, we omit the analysis of
our heuristic for the sake of brevity.

Message complexity. We finally briefly discuss the
message complexity of our distributed tree mapping algo-
rithms. We start with the first phase, namely the work-
load distribution to the coordinators. We assume a co-
ordinators are responsible for mapping subtrees of size
dt+1, implying mapping requiresdh−t coordinators. Pop-
ulating the boundary children tables requiresO(dh−t)
ADDSUBTREEmessages. Subsequently we sendMAP
and OPERATORMAPPEDmessages to the sources, of
whom, in the worst case, there areO(dh). The two
stages yield our initialization overhead ofO(dh) mes-
sages. We now consider a map request sent to a coor-
dinator whose subtree depth isj ∈ {1, . . . , h+1

t+1 }. First
we collect the necessary topology information, requiring
O((d − 1) × d2(h+1−j(t+1))) messages. The first com-
ponent represents the partitions between whom we col-
lect pairwise distances, and the second represents the num-
ber of locations in each partition. We also incur mes-
sages to notify operators of their placements, specifically
O(dt+1) OPERATORMAPPEDmessages. Finally we for-

ward the map message, yielding a total of approximately
O(dt + (d − 1)d2(h−jt))) messages per map request (re-
labelling our height and subtree sizes). This sums over
dh−t coordinators, of varying subtree depth, yielding a to-
tal complexity of mapping all internal operators of:

O(dh + (d− 1)
h/t∑

j=1

d2(h−jt)) = O(dh + dh(h−1)/t)

Intuitively, this reflects a smaller control overhead as we
increase the subtree size. Note that in many cases we may
utilise batching to deliver multiple messages to a single
source, reducing control overhead. Analytically this is re-
flected above with boundsO(min(k, di)) replacingO(di)
whenever we consider the number of operators at depthi.
However a tighter bound analysis lies outside the scope of
this paper.

6 Experimental Evaluation
6.1 Experimental Setup
We built an initial prototype system running the algorithms
of Section 4 on top of Tapestry, using the OCaml lan-
guage. In the experiments, we simulated the underlying
network: the network topologies used were obtained from
the GT-ITM [25] topology generator. We generated ten in-
dependent transit-stub topologies (14 transit domains, with
500ms of longest pair-wise path delay between stub nodes).

We generated our workload of processing trees with spe-
cific characteristics: unless stated otherwise, we considered
binary trees with depths ranging from three to five. Oper-
ator selectivities were also selected uniformly at random
from [0,1]. Unless otherwise specified, all results shown
are averaged over ten independent runs, each mapping 100
processing trees.

In the experiments, we compare the distributed versions
of Edge, Edge+, and In-Network, to a naive approach,
calledbaseline. Baseline simulates an on-line warehous-
ing model where all the streams are forwarded to the proxy
(using shortest paths) for processing.

We control the placement of the data sources, to bet-
ter understand the consequences of varying placements, us-
ing two metrics:average proxy distance (APD)andaver-
age server distance (ASD). Average proxy distance repre-
sents the average distance between the application proxy
and each source. Average server distance represents the
average distance between a source and every other source,
for all sources. Using these two metrics, we define three
interesting configurations:uniform, star, andcluster. In
uniform, as the name implies, all servers and proxies are
uniformly spread (APD and ASD values to be equal to 0.4
of the length of the network diameter). In the star place-
ment, the proxy lies near the “centroid” of the sources. In
the experiments, we fix the APD to be approximately half
of the ASD. In the cluster topology, the sources each has
a considerably larger distance to the proxy, than between
themselves. We achieve this configuration with an APD
approximately twice that of the ASD. Figure 5 illustrates
these source-proxy location configurations.
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Figure 5: Source-proxy location scenarios:star, uniform,
cluster.

As the key efficiency metric, we usebandwidth con-
sumption ratio, which quantifies the ratio of the overall
bandwidth consumed by a given approach to that of the
baseline. To quantify the effectiveness of the system, we
present results for overlaystretch, which is the ratio of
the longest path length on the constructed overlay to the
longest path length from the sources to the proxy (path
lengths are specified in terms of delay). For simplicity, we
ignore operator processing costs as well as operator queue-
ing delays. As a result, stretch is an estimate of the ex-
tra latency that the system incurs (when producing result
tuples) when yielding the bandwidth savings estimated by
the bandwidth consumption ratio. We also investigate our
algorithms’ behaviours by tracking the percentages of op-
erators placed at the proxy, at sources and inside the net-
work. These two metrics are commonly used when evalu-
ating large-scale networked systems.

6.2 Basic Algorithm Comparison
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Figure 6: Bandwidth consumption ratio for various source
and proxy locations.

Our first set of experiments compare the three place-
ment algorithms described in Section 3. Figure 6 shows
the bandwidth consumption ratio achieved by each map-
ping algorithm, for the three network configurations de-
scribed above, for tight and loose delay constraints (120
and 300 ms, defined as a ratio of the average network diam-
eter,nd). We see that the algorithms perform similarly on
both the star and uniform placement schemes. In turn, the
cluster scenario seems to offer greater scope for optimiza-
tion. Furthermore, relaxing the delay constraint has little
effect on the bandwidth consumption ratio. Both Edge+
and In-network consistently offer advantages in the band-
width consumption ratio, over Edge, across all placement
schemes. Utilizing topology information is clearly benefi-

cial, especially in the loosely constrained cluster scenario.
It is difficult to differentiate Edge+ and In-network for the
star and uniform scenarios. This result arises because the
proxy acts as the ideal intermediate location where the
streams can be pushed and executed.
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Figure 7: Latency stretch for various source and proxy
locations.

In Figure 7 we investigate the effects of the three al-
gorithms on the stretch factor. The Edge algorithm ex-
hibits a worse stretch factor under all loosely constrained
scenarios. However, Edge is comparable to Edge+ and
In-network under the tightly constrained scenarios. This
is a direct effect of the tightness of the constraint requir-
ing placements similar to the baseline mapping. In the
loosely constrained placement, In-network consistenly out-
performs Edge+. Here, In-network yields a lower stretch
factor, due to the placement of operators between the clus-
ter of sources and the proxy. Operator placement gener-
ally occurs in the “direction” of the proxy, creating a map-
ping of tree paths tending towards shortest network paths.
Meanwhile, in Edge+, there is no such consideration of di-
rection, implying streams may be temporarily pushed away
from the direction of the proxy, lengthening the end-to-
end delay. In the tightly constrained scenario, In-network
tends to perform worse than Edge+, because it achieves
a better optimization for bandwidth consumption. Here
Edge+ is less capable of performing optimization, and has
a greater tendency to simply push streams directly to the
proxy, yielding a lower end-to-end delay.
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Figure 8: Source distribution effects on bandwidth.

Figure 8 shows the effects of varying the ASD (as a ratio
of the network diameter) upon the bandwidth consumption
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Figure 9: Impact of processing tree structure on
bandwidth.

ratio, for the cluster configuration. We see that, in general,
as sources are placed further and further apart, the band-
width consumption ratio increases. Since our cost function
representing bandwidth is proportional to distance, this re-
sult is to be expected. We also observe that for tight con-
straints, the rate of this increase is far greater. Under tight
constraints, we have little possibility of improving the cost,
and so as sources are separated, we tend to the baseline
approach. Under loose constraints, we may actually still
perform optimizations at larger source separations, result-
ing in a shallower gradient for the increase in the bandwidth
consumption ratio.

6.3 Varying the Processing Tree Structure

We now study the effects of the processing tree structure
upon the bandwidth consumption ratio and stretch factor,
when mapped by the In-network algorithm (we omit the
results for Edge and Edge+ to simplifiy the presentation, as
In-network dominates these algorithms in terms of band-
width efficiency).

Figure 9 shows the bandwidth consumption ratio as a
function of the delay constraint, for three forms of process-
ing trees. First, as the delay constraint gets looser, the band-
width consumption initially decreases, prior to tailing off.
This occurs because the constraint becomes less and less
restrictive on our feasible configurations, and stops interfer-
ing with the optimization. We witness that deeper trees re-
sult in lower bandwidth consumption, while wider trees re-
sult in a larger bandwidth consumption ratio. Deeper trees
offer scope for optimization since there are a larger number
of internal operators whom we may place into more elab-
orate configurations. Operators with higher degrees (i.e.,
fanout) prove more problematic to place, we directly affect
data flows to a larger number of operators. Hence there is
less scope for optimization, when the sources reside at a
large number of unique locations.

Figure 10 plots the stretch factor as a function of de-
lay constraint, for varying processing tree characteristics.
Stretch factor behaves as a dual to the bandwidth consump-
tion ratio. As the delay constraint is loosened, the stretch
factor rises, but tails off as the constraint has less and less
effect. Both deeper and wider trees result in a larger stretch
factor, and a later tail-off point. In both cases the larger
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Figure 10: Impact of processing tree structure on latency.

stretch factor is a direct effect of the increased number of
operators that must be mapped.

6.4 Selectivity Impact
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Figure 11: Impact of operator selectivities on bandwidth
and latency.

We now study the impact of operator selectivities on the
bandwidth consumption ratio and stretch factors. Figure
11 shows these effects for four selectivity values. Note that
these selectivities are an upper bound on the actual operator
selectivities, which are chosen uniformly at random from 0
to the bound. We see that as the selectivity approaches a
value of 1, the bandwidth consumption ratio for both the
cluster and star placement schemes increase. This is be-
cause selectivity is a direct indicator for the scope of poten-
tially optimizing a tree; operators with selectivities close to
1 incur similar bandwidth consumption regardless of where
they are placed. We also see that star placements generally
have higher bandwidth consumption ratios, consistent with
the results shown earlier. In terms of stretch factors, we
observe that increasing selectivity results in a decreasing
stretch factor. Operators with unit selectivities cannot be
placed using as elaborate a configuration as operators high
low selectivities. Hence the paths in our tree mappings tend
to more strongly resemble the baseline mapping, since such
operators are generally tightly grouped.

To provide a deeper intuition for these results, we show
in Figure 12 percentages of operators that are placed at
the proxy, or inside the network, for varying selectivities.
Operators that are placed at neither the proxy nor inside
the network are obviously placed at the sources (not ex-
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Figure 12: Operator location distributions.

plicitly shown). The algorithm generally tends to utilize
in-network placements when sources are clustered moreso
than when sources lie in the star formation. Furthermore,
in a star placement scheme, operators are generally more
likely to be placed at the proxy than at sources, when com-
pared to a cluster placement. Examining these values per
selectivity value, we see that less selective operators result
in larger numbers of operators placed inside the network.
This trend is also true for the operators that are placed at
the proxy. As expected, highly selective operators are be-
ing pushed all the way to the sources.

7 Related Work
The work presented in this paper is related to several top-
ics in distributed and parallel databases and systems, and
networking.

Distributed query processing. Distributed query op-
timization and in particular the site selection problem
are closely related to our work and have been explored
extensively in the context of distributed and federated
databases [9, 10, 15, 16, 23]. To the best of our knowl-
edge, none of these approaches address widely-distributed
processing and network awareness, and are thus well rep-
resented by the Edge approach.

More recent work addressed Internet-scale query pro-
cessing and distribution scalability. IrisNet [8] focuses on
querying wide-area sensor databases using XPath queries.
IrisNet relies on the DNS to identify the remote databases
relevant to a given query, which is then processed using
XML and XPath specific optimizations. Similar to our
work, PIER [12] addresses DHT-based highly-distributed
query processing, although in a pull-based setting. PIER
discusses how CAN [19] can be used as a hashing func-
tion on the indexes of relations, distributing tuples across a
very large number of sites. While PIER and our work share
many common goals, there are also some significant dif-
ferences. Our algorithms attempt a finer-grained control of
the placement decisions, whereas in PIER, the operations
themselves are randomly distributed across peers by CAN.
The semantic details of our operators are abstracted away
from the placement mechanism. Instead we focus on opti-
mizing the network positioning of operators, and as such,

operator specific optimizations such as those presented by
PIER may still apply.

In-network query processing has been studied in the
context of sensor databases. Recent work by Maddenet al.
[17] demonstrated the advantages of in-network data ag-
gregation in a wireless multi-hop sensor network. In such a
resource-constrained environment, potential optimizations
are severely restricted and network scalability is typically
not a key design goal.

Stream processing and continuous queries.Recently,
there has been much work on data-stream processing (e.g.,
[1, 4, 5, 6, 18, 21]). Most of these efforts have commonly
assumed an on-line warehousing model where all source
streams are routed to a central site where they are pro-
cessed. There have also been some preliminary proposals
that extend the single-site model to multi-site, distributed
models and environments [2, 7, 21]. Our work is also a
step in this general direction.

NiagaraCQ [6] is a continuous query processing system
designed for Internet-scale query processing. Babcock and
Olston [2] investigated the use of adaptive filters that are
executed at the stream sources based on per-query preci-
sion requirements registered at stream sources. Neither of
these work investigated network-aware operator placement
issues that we discuss here.

Overlay networks. Overlay networks [14, 22, 26] strive
to address scalability and fault tolerance issues that arise in
large-scale content distribution, using the same principles
of in-network processing during message routing. Interme-
diate routers are envisaged as having the capability to per-
form certain functionality on the messages they forward.
Our work can be regarded as addressing how to distribute
“active networking” functionality across the overlay net-
work servers, an issue that has not yet been addressed.

Distributed task partitioning. The parallel comput-
ing community has long studied the distribution and allo-
cation of tasks in homogeneous distributed environments.
Grid computing researchers have also developed architec-
tures tailored to large-scale scientific applications, that per-
form resource allocation to servers much in the same way
we map operators to locations. One common approach
to allocating tasks is a multilevel graph partitioning algo-
rithm [3, 11]. This approach partitions the computational
structure of an application in an attempt to minimize the re-
sulting data flow across partitions. The models proposed do
not leverage application specific characteristics, such as se-
lectivity, rather they are purely concerned with application
structure. Furthermore, these approaches have not yet ad-
dressed wide distribution and network scalability, our main
concerns in this study.

8 Conclusions and Future Work
With the proliferation of applications that involve sophis-
ticated processing of large numbers of distributed data
sources, there is a growing need for generic widely-
distributed query processing services. Such systems will
be fundamentally network-oriented. We believe that net-
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work scalability, which has been largely ignored by previ-
ous efforts, will be a key design goal for next-generation
data processing systems. This paper addresses one of the
key challenges towars achieving this goal.

We argued that widely-distributed query processing can
greatly benefit fromnetwork awarenessin terms of im-
proved bandwidth efficiency and result latency. Previous
approaches largely ignored the impact of the characteristics
of the interconnecting network and the relative locations
of the servers on processing. We presented network-aware
operator placement algorithms and described in detail their
distributed implementation, on top of a DHT infrastructure,
for distributed stream processing. We analyzed the algo-
rithms and experimentally evaluated them using a proto-
type implementation and realistic network models. Com-
parison with representative network-unaware approaches
verified the benefits that can be attained through the use
of network information and in-network processing.

There are several important directions for future re-
search. One immediate direction involves exploiting op-
portunities for sharing among multiple queries during the
mapping process. Another direction involves exploiting
semantic, operator-specific optimization opportunities. Fi-
nally, we would like to integrate our prototype with Bore-
alis (follow-on to Aurora [1]) and verify the validity of the
results presented here with a real application and deploy-
ment.

This work has been done in the context of the SAND
project. SAND strives to extend core data management and
processing functionality to highly-distributed environments
and applications. This work is an initial step in this general
direction.
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