1

Merging the Results of Approximate Match Operations

Sudipto Guha
U of Pennsylvania
sudipto@central.cis.upenn.edu

Abstract

Data Cleaning is an important process that has been at
the center of research interest in recent years. An im-
portant end goal of effective data cleaning is to identify
the relational tuple or tuples that are “most related” to
a given query tuple. Various techniques have been pro-
posed in the literature for efficiently identifying approx-
imate matches to a query string against a single attribute
of a relation. In addition to constructing a ranking (i.e.,
ordering) of these matches, the techniques often asso-
ciate, with each match, scores that quantify the extent
of the match. Since multiple attributes could existin the
query tuple, issuing approximate match operations for
each of them separately will effectively create a number
of ranked lists of the relation tuples. Merging these lists
to identify a final ranking and scoring, and returning the
top-K tuples, is a challenging task.

In this paper, we adapt the well-known footrule dis-
tance (for merging ranked lists) to effectively deal with
scores. We study efficient algorithms to merge rank-
ings, and produce the top-K tuples, in a declarative way.
Since techniques for approximately matching a query
string against a single attribute in a relation are typi-
cally best deployed in a database, we introduce and de-
scribe two novel algorithms for this problem and we
provide SQL specifications for them. Our experimen-
tal case study, using real application data along with a
realization of our proposed techniques on a commercial
data base system, highlights the benefits of the proposed
algorithms and attests to the overall effectiveness and
practicality of our approach.

Introduction

Nick Koudas

Amit Marathe Divesh Srivastava
AT&T Labs—Research

fkoudas,marathe,divegi@research.att.com

for example inefficient customer relationship management
(inability to retrieve customer information during a service
call), billing errors (sending a bill to a wrong address) and
distribution delays (erroneous delivery of goods) impact-
ing the overall effectiveness of a business. Recognizing the
importance of this problem, a variety of commercial prod-
ucts (see, e.g., [1]) and research prototypes (see, e.g., [21])
target the space of data cleaning, offering an array of tech-
nigues to identify and correct data quality problems. At
a high level, data cleaning solutions can be classified into
two broad categories: (a) those that operate on top of an
RDBMS using an SQL interface to express and realize data
cleaning tasks [16, 17, 18, 7] and (b) those that extract the
relevant data out of a database and operate on them using
proprietary techniques and interfaces [1].

The majority of cleaning techniques focus on the identi-
fication of problems on attribute values of string type (e.g.,
customer names, addresses, product names, etc.) which
abound in customer related databases. These include tech-
nigues for indexed retrieval of strings based on notions of
approximate string match [7], correlating string attributes
using string similarity predicates (e.g., cosine similarity,
edit distance and variants thereof) [17, 18, 6, 5] and deploy-
ing algorithms and/or rule engines for automatically cor-
recting/transforming strings into canonical forms [1, 3, 22].
These techniques will successfully match a query string (or
a collection of strings) approximately (for suitably defined
notions of approximate match) against the values of an at-
tribute in a relation R. For a given query string, such tech-
nigues can tag each matching attribute value with a score
qguantifying the degree of similarity (closeness) of the query
string to the attribute value string. As a result, they can ef-

The efficiency of every information processing infrastruc- fectively return a scored ranking of the attribute values (and
ture is greatly affected by the quality of the data residinghence the tuples) in R with respect to the query string. Itis
in its databases (see, e.g., [9]). Poor data quality is a réhen up to the user, to observe the highest scoring attribute
sult of a variety of reasons, including data entry errorsvalués and identify the one(s) that should be declared as
poor integrity constraints or lack of standards for record-good approximate matches.

ing values in database fields (e.g., addresses). Data of poor Although such techniques are effective in identify-
quality could instigate a multitude of business problems,ing approximate matches between a string and the val-
ues of a relational attribute, it is often the case that
Permission to copy without fee all or part of this material is granted pro- multiple attributes should be involved in the approxi-
eeroge. o VL copya e and e e o st smale maich operation. Consider for example 2 relation
ﬁs date gpbear, and noti% igs given that copying is by peprmission of theR(CUStname; address; Iocatlon), recordlng the ”am? ofa
Very Large Data Base Endowment. To copy otherwise, or to republishcustomer, the customer address, and the geographical coor-
requires a fee and/or special permission from the Endowment. dinates (latitude, longitude) of the customer address. Given
Proceedings of the 30th VLDB Conference, a tuple of query stringQ (possibly obtained from a dif-
Toronto, Canada, 2004 ferent database), we wish to obtain approximate matches

636

RelationR principled techniques can be realized as merging functions

tuple id custname address location . . S
) John Smith 800 Mountain Av Springfield 55— Operating on the tuples of rankings. Th_e _der!vatlon of a
to Josh Smith 100 Mount Av Springfield 8.8 final ranking can then be cast as an optimization problem
t3 Nicolas Smith 800 Spring Av Union 11,11 over the values of such merging functions.
. Jg;glfhsm‘#h 155053'\"tr§°ﬁﬁ| Egﬂggg';'lf é’g’ Given that a variety of approximate match techniques
3 pring ' are fully expressible in a declarative way, and best deployed
Quer in a database, rankings can be easily generated by directly
y X . p
Qcustname Qaddress Qlocation operating orR using SQL. Thus, they can be readily ma-
John Smith 100 Mount Rd Springfield 5.1,5.1 terialized as relations as an input to the merging. The re-

sult of the merging itself may be used as an input to other

Scored Rankings queries/operations in the database. As a result, it is desir-

custname address location . . ;
& (L.0) t, (0.95) t; (0.95) able to express methodologies that merge the information
t2 (0.8) t; (0.8) t5 (0.9) conveyed by the rankings in a declarative way as well.
5 (0.7) t4 (0.75) 2 (0.7) In this paper, we study efficient techniques to merge
t4 (0.6) t3 (0.3) t4 (0.6) : ; :
ts (0.4) ts (0.1) ts (0.3) rankings produced as a result of approximate match oper

ations, and their declarative expression. In particular, we
consider the topk selectionproblem, and propose efficient
algorithms for this problem. This is defined as the task of
deriving an optimal final ranking (for suitably defined no-
with tuples ofR. Let Qcustname; Qaddress; Qlocation D€ tions of optimality) of user-specified lengthwhen indi-

the values specified iQ. For each of these values assumevidual rankings to be merged are generated with respect to

there is an agreed upon methodology to generate approx single query tuple. We make the following contributions:
imate matches with tuples &. The specific methodol-

ogy used for each attribute is orthogonal to our discus-

Figure 1: Example

t We study the togk selection problem in the context

sion; any of the known techniques could be applied. For
example, forQcustname ON€ could utilize the technique
of [17] deploying string edit distance to generate approx-
imate matches with attribute values from attribatest-
nameof R. This effectively creates an ordering (ranking)
of relationR based on non-decreasing values of the edit
distance (possibly thresholded) betwe®gustname and
R(custname). For Qagdress ONe could decide to utilize
the techniques of [18, 7] and generate a list of approxi-
mate matches using treddressattribute ofR. A rank-

ing of R will be obtained in this case as well, based on
tf-idf and cosine similarity 0fQagdress @and R(address).
Finally, for Qjocation We could choose spatial closeness
(in terms of some spatial norm, e.g., Euclidean distance
betweerQjocation @ndR (location)) and generate a corre-
sponding list of matches (and, hence, rankindRyf Fig-

ure 1 presents an example of such (scored) rankings. No-
tice that the resulting rankings and scores heavily depend
on the specific methodology applied to derive them.

Although in principle one could use the information
conveyed by only one ranking to form an answer, this is
not necessarily a good choice. For example, tipleanks

of merging results of approximate match operations
and show how it can be modeled as an instance of the
minimum cost perfect matching problem.

We show how the preferred solution to the minimum
cost perfect matching problem, namely thengarian
Algorithm (HA), can be adapted in the context of the
topk selection problem.

We propose a modification &1 A tailored to the togk
selection problem, callelt HA, analytically show its
superiority ovetHA, and provide its full SQL speci-
fication.

We propose a new algorithm, call8&P , specifically
for the topk selection problem, and fully specify the
algorithm in SQL as well.

T We present a thorough performance evaluation of all

the applicable algorithms using real data sets on a
commercial database system, identifying their relative
performance and applicability.

In section 2, we introduce background material, and for-

second (with a score of 0.9) in the ranking bwation, mgaly define the problem of interest on ranked lists. Sec-
but ranks poorly on the other query attributes. Evidently, &0y "3 presents our proposed techniques, including com-
more conclusive answer could be obtained by merging thg|ete SQL specification of our proposed solutions. Sec-
positions and/or scores of the tuples in all rankings. Thig;o 4 details a performance evaluation of our proposals. In
can be accomplished with the usenoérging function®p- geciion 5, we discuss the enhancements of our basic tech-
erating on the tuples of the various rankings. For purposegigues to deal with scores. In section 6 we review work re-
of exposition, consider a merging function that sums thateq to the problems of interest in this paper. Finally, sec-

scores of the tuples in the various rankings. In this case ndjoy 7 concludes the paper by discussing additional prob-
tice that tuplet; achieves a better value (2.75) in that SUM|ems of interest in this important area.

than any other tuple iRR. Intuitively, this is a better ap-
proach, as it is obtained by examination of all the query at L
tributes and the results of all the induced rankings. Itis evj2 Background and Definitions

ident that, in the presence of different rankings, principledLet R be a relation of cardinality consisting ofm at-

into account information conveyed by all rankings. Suchof R is an ordered list = Xy ,, X2 ,, ::: ,, Xng, Where

637

Xi 2 R and,, is some ordering relation oR. Such a Problem 1 (topk selection problem) Given a query tu-
ranking can be obtained by applying a suitable approximatgle t, specifyingm attribute values, legi;1 = i = m
match operation between a query value and the values of dre the rankings obtained as a result of approximate match
attribute ofR. Without loss of generality, we assume that operations orR. Thetop-k selection problenaims to ef-
rankings ofR are complete in the sense that evgr? R ficiently identify the firsk (for a user specified parameter
belongs to the ranking. If this is not the case (for examplek) tuples of the ranking of R that minimizes the footrule

if the approximate match predicate is thresholded) and theistance= (;¢1;:::5¢m). 1

ranking contain$ % R tuples, we obtain a complete rank-

ing by padding the partial ranking at the end (with the same The firstk tuples of the ranking of R are derived as
rank value) with all the “missingR n S tuples. Semanti- 3 result of the minimization OF (;¢1;:::;¢m). Each tu-
cally, this declares that we are indifferent about the relaplet; in is tagged with a cost, referred to as tiaeking

tive ordering of the missing tuples and are all equivalentlycostas the result of this minimization. A tuplkg at po-
placed at the end of the ranking obtained. For aranking sifionj;1 = j = k, in has a ranking cost'(ti;j) =

we use the.notatiop(ti) to refer to the position of tuplg :Ljél(ti) i jj. The answer to the tok-selection prob-
in the ranking (a highly ranked tuple has a low numberedem is a set (of cardinalitk) of triples (ti;j; "(ti;])),
position). At times an approximate match operation usedvherej is the rank (position) of; in the result , such that
to generate a ranking provides an approximate match SCOEmong all poslgb|e mappings of the tuptggo positions
(e e, I8 17 1. er i e, AGL=iT=k () is minimized.

ven a query tupldq with m values, 18,;: - ¢m de- The bulk of this paper deals with merging ranked lists.
note the resultlng ranklngsﬁa‘after.applymg approximate In section 5, we discuss how our techniques can be ex-
m_atch operations on correspondmg vaIl_Jestcpfand at- tended to effectively deal with approximate match scores.
tributes ofR. We will deploymerging functiongo synthe-
size new rankings dR out of¢1;:::; ¢m. A variety of such _
functions have been proposed in the literature [10, 8, 20]3 Top-k Selections

The bulk of our discussion equally applies to metric merg- hi . devel d soluti h
ing functions [13]. To ease presentation, we adopt for thd" this section we develop our proposed solutions to the

bulk of the paper one instance of such a function, namel opkbselecéioln é)roblem. (\j/.\]@ first SthW thal‘lt thed_préablerg
the footrule distance We stress however that our method- can e modeled as a modification of a well-studied prob-

ologies are orthogonal to the choice of a metric merginqem' namely theninimum cost perfect matchirig] prob-
function. em and show how such an instance can be obtained given

our setting. We start from an existing technique to solve
I . _ the minimum cost perfect matching problem, namely the
DEf'mt'On 1 (Footrule Dlstan_ce) Let and ; be two Hungarian algorithm(HA), and show how this algorithm
rankings ofRR. The footrule glistance between the two rank-¢4 e adapted to obtain a solution to our koproblem.
ings is defined ab (;¢) = ;L;j (ti)i¢(t)i- 1 We then propose llodified Hungarian AlgorithniM HA)
]) that takes advantage of the special structure of thektop-

_Thus, the footrule distance is the sum of the absoluteselection problem, resulting in improved performance. We
differences of the positions of tuples @fin the two rank- also design a new solution for the tégselection problem,
ings. Notice thaF (;) can be divided by3- if nis even the S_uccessive _Shortes; _Pat@lgorithm S_SP), and pro-
or n22-. L if nis odd (this maximum value is attained when vide its declarative specification. In section 4, we present a

rankings are ordered in opposite ways) and a normalize§Omparative evaluation of the three algorithms.

value between 0 and 1 can be obtained. It is evident that, GVen an edge-labeled bipartite gra@ = (N, [

F(;¢) can be defined over the approximate match scoré‘?' E), letcij;i 2 Ny j 2 N be the edge cost associated
of the corresponding rankings as well. For simplicity of With €ach edge if. A minimum cost perfect matching in
exposition, we adopt definition 1 for the bulk of the paper.G is the set of edgel % E of minimum cumulative cost,
Such a measure generalizes in a natural way to account f&ch that each 2 N is incident to exactly ong 2 Ny in
multiple rankings. The footrule distance between rankingsE and vice versa. The solution to the minimum cost per-

and¢q;:::;¢m is defined as fect matching can be reached by solving a linear program
minimizing the overall sum of edge costs [2].
X Given rankingsj; 1 = i = m, provided as a result of
F(renniinem) = F(5éi) approximate match queries & we construct a bipartite
i=1 graphG as follows. Assume that each rankiggs a com-

plete ranking oR (thus contains tuples). We instantiate
To a large extent, any interpretation of results obtainech nodes corresponding to each tuple:::;t, of R and
will be in terms of this distance measure. While such an nodes corresponding to the positianthroughn of the
measure seems natural we will not delve into the discussiotarget ranking . For each of thea? pairs of tuples; and
of it's goodness. We refer the reader to the vast bibliograpositionsj with 1 = i; j = n weintroduce the edg@;i; j)
phy [10, 20, 8] discussing and analyzing the relative goodwith a ranking cost "(ti;j) = ™, j¢<(ti) i jj. This will
ness and applicability of the various distance measures. instantiate a full bipartite grapB. A solution of the mini-
We are now ready to define formally the main problemmum cost perfect matching problem Gnwould produce a
of interest in this paper: minimum cost assignment of each of théuples to exactly

638

o 1
1 2 3

t1 5 3 20 A
@L 62 3
ts 1 3 20

Figure 2: Example matrix for grap@

one of then positions, such that no two tuples are assigned

to the same position.

The topk selection problem is a modification of the
minimum cost perfect matching problem, in which we re-
strict our interest in identifying only th& tuples of R
matching the firsk positions of having minimum sum of

ranking costs. Notice that a solution to the minimum cost

perfect matching problem a8, restricted to the first po-
sitions, does not necessarily yield a solution to thekee-
lection problem; the cumulative cost might be sub-optimal
To illustrate this point consider the following example. Let

If kK, = n then there are independent zeros iA
and the row and column position of these zero ele-
ments provide a solution to the minimum cost perfect
matching problem.
4. If kn, < n, let N denote the matrix of non covered
elements ofA and leth be the smallest element in
N. Add h to each twice covered element &f and
subtracth from each non covered elementAf Let
the resulting matrix bé&”. Repeat step 3 using matrix
A instead ofA.

This procedure is guaranteed to terminate after a finite
number of steps, due to the reduction at each step of the
sum of the elements in the resulting matricés &7, etc).

It remains to specify the procedure to identify the maxi-

mum number of independent zerks.

G consist of three tuple vertex nodes and three position

nodes. The matrix representation@fwith each entry ex-

Identifying maximum number of independent zeros:

pressing the cost associated with the corresponding edge is

shown in figure 2. A solution to the tapproblem for this
graph isfts; tog (with a cost of 3) but the minimum cost
perfect matching solution ifts; t;; tog (with a cost of 4,
restricted to the first two positions).

3.1 The Hungarian Algorithm (HA)

Let S be then £ n matrix, corresponding to the ma-

trix representation of the bipartite graf®) with elements
"(ti;J);1 = i;J = n. The Hungarian algorithm solves

the minimum cost perfect matching problem by providing

The procedure starts by searching each columaA ahtil

a column with no entry marked with the special maré@r
is found (if every entry contains @, thenk,, = n and
the problem is solved). This column is referred topas
otal and it is searched for all its zeros. The rows in which
these zeros appear are searchedfoin turn until a row
containing nd@” is found. The zero in this row and the piv-
otal column is marked with the special market If each

0 in the pivotal column has & in its row, then these row
numbers are listed in any orde¥;; :::;i;. Further terms
are added as follows: Consider t€in row i; and all ze-

a solution to the corresponding linear problem establishegos in its column; add to the sequence the row numbers of

onS. We start by briefly reviewing this method below; we

refer the interested reader to the bibliography on the subjegtith the 6’s in rows i,
for further details [2]. We then show how such an algo-

rithm can provide a solution to the tdpselection problem
as well.
We refer to a row or column of a matrix asliae. A

these zeros in any order (avoiding duplication). Continue
;oooie as well as with the terms
of the sequence aftéf. There are two possibilities, either
a row s is reached which does not contairfaor every
row whose number is aftdg contains & In the former
case a transfer of & happens as follows: row number

set of elements of a matrix is independent if no two of theiS was added to the sequence becauseiroeontained a

elements lie on the same line. If a letteis written next to

0 in the column of & belonging to some row;. This

arow or column of a matrix, we say that the correspondingy™in the rowi, is transferred to the zero in row thus

line is covered

Theorem 1 (Konig's Theorem) For a square matrix A,

staying in the same column. Further transfers may happen
until the®”is transferred from a zero in a row in the initial
sequenceéy;:::;it. Then the zero in this row and in the

the maximum number of independent zeros of A is equgjivotal column can be marked byga. In the latter case,
to the minimum number of lines required to cover all thejet v be the rows in the sequence. These rows contéin a

zeros in A. ||

Thev columns containing the$s’s along with the pivotal
column contains 0’s only in the rows represented in the

This theorem forms the basis for the Hungarian methOdsequence. It follows that theserows a|0ng with the re-

The algorithm operates as follows:

1. Subtract the smallest element in each columrs of
from every element in the column yielding mat8x.

. Subtract the smallest element in each rovpfrom
each element in the row yielding matéx A contains
at least one zero in every row and column and it is sai
to be instandard form

of A. Using Konig’s theorem, this is the minimum
number of lines required to cover all the zerosAn

639

mainingn j v j 1 columns contain all the zeros /. Thus
the matrix can be replaced By (as dictated in step 4) and
the algorithm can proceed to step 3.

Figure 3 presents an example operatiorHoA on the
data obtained from example 1. Due to space limitations,
we do not provide the full SQL specification of algorithm

HA.

Our topk selection problem cannot be solved by a di-
rect application of this procedure, since an answer to the

. Findkn, the maximum number of independent zerosminimum cost perfect matching problem restricted to the

first k positions is not necessarily an answer to the kop-
selection problem. We observe, however, that it is possible

(@) 1 (@) 1
;’ 3 g 2 191 g 8 i’ Z, 180 H A for the topk selection problem only reduces the initial
8 1 s 5 2 1% 8 06 31 0% overhead of constructing matr#. Subsequent operations
8 5 2 1 4 7 3 0 0 3 however, will be on the entire matr& of n“ elements. The
7 4 3 4 5 5 1 0 2 3 running time of this procedure ©®(n3) since each of the
(a) Initial matrix from example 1 (b) After step 2 n columns will be considered and, in the worst case, the
o 1o 1 algorithm will have to examin®(n?) elements inA for
& 0 3 7 10 c 62/ o S each column considered.
g 0 06/ 501 0 ¢ §8 006 3 16X :
7 3 & 0 3 7 3 0 & 3 3.2 Algorithm MHA
¢ 5 1 6 2 3
5 1 0 2 3 ; ; P ;
(c) Conflict in row 4 columns 4.3 (d) Final result In this section, we propose a modification of the b4

algorithm for the topk selection problem, which operates
in spaceD(nk), with worst case running tim@ (nk?).

Figure 3: (a) Initial Matrix (b) after step 2 (c) Conflictin 5 gpservation regarding the operation of algorithm
row 4 and columns 4,3, the covered rows are shown at thayy A is that since the algorithm provides a solution to a lin-
point. Thed” in row 4 column 3 is moved to row 5 column ear program, the optimal solution is not affected by a re-
3. A @~ can now be placed at row 4 column 4 and the 5rrangement of the columns of matéx Thus, consider
algorithm proceed.s b_y plaglng the firéTat row 3 column populating matrixA as follows: insert a large positive con-
5 (d) final resultl;; tz; 5 ta; ts stant to position$i; j) of Awith1 = i=n;1=j = nijk
to modify this procedure in a way that deriving a solution alrrlzjt_;?cj)?.ullats t?e ierp\g;mrlg ?os;lte(n(sa;/mr:qaﬁ?(kgnogsﬁ%sg:
to the topk selection problem becomes possible. AR ' . . 0

In the topk selection problem one is only interested in ("n i k+J). Denote th_e resultmg matrix a& | AIO'
the firstk positions of the ranking. Thus, when realizing 90fithm MHA operates similarly tdHA on matrix A .

pute the elements (tj;j);1 = i = n;1 = j = kof A. While searching for the maximum independent number of

Algorithm HA however, requires a square matrix (of size 2&ros in the firsn j k columns the algorithm can place
0(n2)) to operate correctly since it solves ag n match- 6 in positions(l;1);1 « | = n j k of A" immediately.
ing problem (otherwise the corresponding program will beThe reason is that onc&’ is in standard form positions
under specified). l=ien;1=jenjkofthe matrix are all zero. The
We observe that we can still utilize algorithkhA for final solution is now represented by the position of@fis
the topk selection problem by inserting a large positive in columnsn j k + 1:::n. The following invariant holds
constant for each of the remaining(n j k) elements. at any point in the execution of the algorithm:
This serves two purposes: () it creates a sqéaneatrix
as required by algorithral A and (b) it guarantees that the Invariant 1 All columns from 1 to j k are identical, dif-
solution extracted from the solution of the correspondingfering only in the positions of thet™s. Moreover, for any
minimum cost perfect matching ol is a correct solution row containing nd@”, the corresponding entry for this row
to the topk selection problem. By inserting a large positive and any columi;1 = j @« n j kis 0. I
constant in the corresponding positionsfoive essentially
add edges of very high cost in the corresponding bipartite As a result of this invariant, it is evident that it is no
graph. Since such edges are of high cost they can never pdenger required to explicitly materialize the entivé€ (n j
ticipate in an assignment concerning the firgtositions. k) sub matrix ofA” with large positive values. It is suffi-
A natural question arises regarding the necessity otient to only maintairO(n) values representing the state
thosen(n i k) additional elements for the algorithm’s cor- of a|| the 6~ elements of theA” matrix in the firstn j k
rectness. The basic form of execution of algorithiA for columns. This has the potential for improved efficiency
the topk selection problem requires inserting and main-and performance as algorithM HA has to operate on a
taining these additionai(n j k) values. To see this con- matrix of sizeO(nk) as opposed to one of sif&(n?) as
sider the following: at any iteration of the algorithm, when 4 A does. The running time of this proceduredgnk?)
searching for the maximum number of independent zerogjnce onlyk columns will be considered and, in the worst
itis possible that step 4 of the algorithm executes.il® case, the algorithm will have to examifgnk) elements
the column that instigates the execution of step 4. Noticen A for each column considered.
that during the eXQCUIion Of Step 4 the contents Of a.ny Of Figure 4 presents an examp'e Operation of a|gorithm
the elements oA might change but the contents of column M HA on the data of figure 1. For purposes of exposition
i do not. As a result, the contents of colurntfor anyi) e show the entries of the entire matrix during the execu-
are always required, since they might be affected in later ittion presented in figure 4. Notice that for this tDEx-

erations. Consequently, all columns have to be maintainemple, only15 (3*n) entries are required to be explicitly
during the entire execution of the algorithm, bringing the maintained.

total space requirement @(n?).
From a performance standpoint, such an adaptation 0§ 2.1 SQL Specification oMHA

1Greater than the maximum value amon(t;;j);1 = i = n;1 = Complete SQL specification in procedural SQL of algo-
j=k rithm M HA is provided in figures 5 and 6. Such forms of

640

o 1 2 M M M 10 M M M 1 2 1
3 2 M M M M M M 3 2
5 1 8 M M M 28 M M M 11 8 2
8 5 M M M M M M 8 5
7 4 M M M M M M 7 4
(@) Initial matrix for top2 (b) After rearrangement
o g 0 0 6 0 10 0 0 0 & 0 1
0 & 0 2 0 o 0 0 2 ¢
0 0 & 10 6 SB 0 0 & 10 6 E{
0 0 0 7 3 6 0 o0 7 3
0 0 0 6 2 0 & 0 6 2

(c) Conflict in row 1 column 4 (d) Final result.

Figure 4: (a) Initial Matrix suitable for top- problem

(b) after rearrangement of columns (c) Conflict in row 1
columns 1,4. Th&™ in column 1 row 1 is moved to col-
umn 1 row 4 and th&” is placed at row 1 column 4. In
the next iteration another conflict appears between row 2
columns 5,2. Thé@ in column 2 row 2 is moved to row 5

column 2 and &~ is placed at column 5 row 2. (d) final
solution is,ty; ty

procedural SQL are offered by all major RDBMS systems.
Figure 5 contains variable declarations and initializations
required by the main procedure body shown in figure 6.
The schema associated with this procedure is not provided
due to space limitations; it can be easily derived from the
procedure body, however.

Block 1 initializes the Top relation by placing 6 in
each of the lash j k columns. We then iterate over each
remaining column. Within every iteration, block 2 tries to
place af” directly in the current column. If that is not
possible, block 3 determines whetheacan be placed in
the current column by carrying out a series of transfers, as
described in section 3.1. If possible, block 4 performs these
transfers. Block 5 handles the final case when we find a set
of kmm < n lines which cover all the zeroes of the matrix.

DECLARE COMMONCOL integer DEFAULT -1;
DECLARE pivot INTEGER,;
DECLARE rcount INTEGER,;
DECLARE rowmin FLOAT;
DECLARE colmin FLOAT;
DECLARE elemposmin FLOAT,;
DECLARE r integer;

DECLARE c integer;
DECLARE cold integer;
DECLARE cnew integer;
DECLARE found integer;

SETc=1;
WHILE (c = K) DO
select min(cost) into colmin
from Graph
where pos = c;
update Graph
set cost = cost - colmin
where pos =c;
SETc=c+1;
END WHILE;
IF (K < N) THEN
update GTail
setcost=0
where pos = COMMONCOL;
ELSE
SETr=1;
WHILE (r = N) DO
select min(cost) into rowmin
from Graph
where elem =r;
update Graph
set cost = cost - rowmin
where elem =r;
SETr=r+1;
END WHILE;
END IF;
delete from Top;

Figure 5: Initialization foMHA

to construct the togi + 1) solution two cases of inter-
. est arise; we will usé = 3 in figure 7 to illustrate these
3.3 Algorithm SSP cases. Assume that the tepsol?Jtion (ti;j;l=j =3
In this section we propose an alternate solution to thektop- identified isSp ;3 = f(t2;1); (t5;2); (t1;3)g. Thus the
selection problem which we refer to &iccessive Short- associated total cost of the t@psolution isCiopjz =
est PathSSP). We first provide the intuition behind this ~ "(t2;1) + "(t2;2) + "(t1;3). Constructing the top-
algorithm with the example shown in figure 7. solution involves including a new tuple in the solution.

The figure presents an example of a tofselection The first case arises when following a direct edge from
problem represented as an instance of a minimum cogiosition4 (position(i+ 1)) to a tuple which is currently un-
perfect matching problem. With a database consisting ofmatched (i.e., not present in the tdolution). In this case
five tuples the corresponding full bipartite gra@hs con- acandidate solutiorran be constructed by adding the new
structed. An edge between a ndglend a positiorj in fig- tuple, say(t,; 4) to the current tofs set. A top4 candidate
ure 7 is assumed to have a ranking cost'ft;i; j). We re- solution is obtained as a direct extension of the current top-
fer to the nodes i corresponding to tuples$,(tots) astu- 3 solution. If the total cost of the top-solution plus the
ple vertices and to the nodes corresponding to positibns (ranking cost of the new tuple (say tuglein figure 7) as-
throughb) as position vertices (or simply positions). Let's signed at positiod in minimum (among all possible four-
observe, in an inductive way, issues arising when, havinguple sets assigned to positiohthrough4), then this is the
constructed a top-answer, we wish to extend it and con- top-4 solution. A second case arises when we follow a path
struct a topfi 4 1) answer. from position4 via some other tuple vertex (or vertices)

First, constructing a top-answer given the graph of fig- currently inSyop ; 3 in the bipartite graph, to a tuple which is
ure 7 is an easy task. We just select the edge with minimuneurrently un-matched. Consider for example the path from
ranking cost incident to positioh The corresponding tu- position4 to tuple vertexts to position2 and back to tuple
ple (say tuplets in figure 7) is the topt answer. Assume t4 (which is currently un-matched). This path defines a new
that through some mechanism we have identified thd top-candidate solution which can be obtained by modification
answers (e.g.i = 3 in figure 7 and the answer is indi- of Sip;3 by removing(ts; 2) and adding(ts; 4); (ts;2)
cated by the highlighted edges). Using the iggplution with atotal cOSCiop;s+ "(t3;4)+ "(t4;2) i "(ts;2).

641

CREATE PROCEDURBM HA(IN K integer, IN N integer)

LANGUAGE SQL
BEGIN

— Initialization for MHA
1. SET pivot = N;
WHILE (pivot > K) DO

insert into Top values(pivot, pivot);
SET pivot = pivot - 1;

END WHILE;
SET pivot = K;
pivotiter:

WHILE (pivot , 1) DO
2 delete from SimpleAugment;
insert into SimpleAugment
select Graph.elem, pivot
from Graph
where pos = pivot and cost =0
and elem not in (select elem from Top)
fetch first 1 rows only;
select count(*) into rcount from SimpleAugment;

IF (rcount> 0) THEN
insert into Top
select elem, pos
from SimpleAugment;
set pivot = pivot - 1;
iterate pivotiter;
END IF;

3. delete from Reach4;
insert into Reach4(elem, parent)
select Graph.elem, N+1
from Graph
where pos = pivot and cost = 0;
SET cold =-1;
SET found = 0;
select count(*) into cnew from Reach4;

WHILE (found = 0 AND cnew= cold) DO
SET cold = cnew;
insert into Reach4(elem, parent)
select Graph.elem, min(Reach4.elem)
from Reach4, Top, Graph
where Top.elem = Reach4.elem
and Top.pog= K
and Graph.pos = Top.pos and Graph.cost =0

and Graph.elem not in (select elem from Reach4)

group by Graph.elem;
insert into Reach4(elem, parent)
select GTail.elem, min(Reach4.elem)
from Reach4, Top, GTail
where Top.elem = Reach4.elem
and Top.pos> K

and GTail.pos = COMMONCOL and GTail.cost =0

and GTail.elem not in (select elem from Reach4)
group by GTail.elem;

select count(*) into cnew from Reach4;
select count(*) into found
from Reach4

where Reach4.elem not in (select elem from Top);

END WHILE;

4. delete from Augment;
insert into Augment
select Reach4.elem
from Reach4
where Reach4.elem not in (select elem from Top)
fetch first 1 rows only;
select count(*) into rcount from Augment;

IF (rcount> 0) THEN
delete from AugmentingPathl;
insert into AugmentingPath1
with AugmentingPath(elem, parent, level) as (
select Reach4.elem, Reach4.parent, 0
from Reach4, Augment
where Reach4.elem = Augment.elem
UNION
select Reach4.elem, Reach4.parent,
AugmentingPath.level+1
from Reach4, AugmentingPath
where Reach4.elem = AugmentingPath.parent
and AugmentingPath.levet N)
select elem, parent
from AugmentingPath;
insert into Top values(N+1, pivot);

delete from TempTop;
insert into TempTop
select AugmentingPathl.elem, Top.pos
from Top, AugmentingPath1
where Top.elem = AugmentingPathl1.parent;

delete from Top
where elem in

(select parent from AugmentingPathl);
insert into Top

select * from TempTop;

SET pivot = pivot - 1;
iterate pivotiter;
END IF;

5. select min(cost) into elemposmin
from Graph
where elem notin
(select elem from Reach4) and (

pos = pivot or pos in (
select Top.pos from Top, Reach4
where Top.elem = Reach4.elem))
and pos= K;

update Graph
set cost = cost - elemposmin
where elem not in (select elem from Reach4) and
pos = pivot or pos in
(select Top.pos from Top, Reach4
where Top.elem = Reach4.elem))
and pos= K;

update Graph
set cost = cost + elemposmin
where elem in (select elem from Reach4) and (
pos != pivot and pos not in (
select Top.pos from Top, Reach4
where Top.elem = Reach4.elem))
and pos= K;

update GTail
set cost = cost + elemposmin
where elem in (select elem from Reach4);
END WHILE;
delete from Top
where pos> K;
END

Figure 6:MHA in Procedural SQL

642

1 Algorithm SSP (k) f
for(i=1tok)f
obtain subgrapls; of G
2 if(i==1) f
let t; the tuple vertex incident to the cheapest
edge at positio; add(t;; 1) to Sy
g
elsef
1) Starting from position compute the
transitive closure to all currently
4 un-matched vertex nodes @j

2) Compute the cost of each path in the

5 closure accounting for the negative edge
cost when traversing an edgeSp; 1 and
positive edge cost when the edge is noBirj 1

Figure 7: Example Matchin
g P g 3) Identify all edges in the cheapest path :::em

Notice that if more than one already matched vertices in and modifyS; ; , (add/remove edges) accordingly fo

. L . obtainS;
Stop; 3 are present in the path a similar expression for the Si=Si;1
total cost can be obtained by addingQe ;3 the rank- for(j=1tom)f
ing costs associated with the edges that are not present in if &j 2 Sij1thenS; = Si=¢j
Stop; 3 @and subtracting the ranking costs associated with g elseSi =Si L&j
the edges present Byop ;3. The top4 solution can be de- g
rived by identifying the path with the lowest cost, among g
all possible paths from positiofto an un-matched tuple g
vertex and making the suitable modificationsSigp ; 3 in
order to deriveStop j 4. Figure 8:SSP pseudo code

One observation from the above discussion is that dur-

ing the construction of the topsolution the entire graph Lo . . o :
G is not required. The computation can be correctly per-Optlmlzatlon 1 (Early Stopping) Atiterationi +1, if the

: : L heapest edge out of the (i+1)st position is unmatched then
formed by manipulatings;, the bipartite subgraph db ¢ . ; .
corresponding to the firgtpositions. Paths involving posi- the top{i + 1) answer contains this edgel
tions greater thanwill be considered at later steps, incre-

mentally toward. This optimization enables us to terminate the search pro-
The above example leads to a natural proceduresube cess for the toggi + 1) answer immediately, without having
cessive shortest pat{§SP) algorithm to incrementally {5 evaluate the transitive closure from tfie+ 1)-th posi-
evaluate the answer to a tépselection problem. The al- tjon, In this case the topi-+ 1) answer can be obtained by
gorithm is presented in pseudo-code in figure 8. Startingytending the topi-answer by the edge of smaller cost out

from a new positioni the algorithm obtains the subgraph of positioni + 1 to an un-matched tuple vertex.
G; of interest at this iteration, identifies the transitive clo-

sure to un-matched tuple vertices in gr&ghand maintains
the one with the cheapest cost, accounting for positive edgg 3.1 SQL Statements folSSP
costs when the edge is not present in soluBppy, and neg- e

ative edge costs when it is present. Finally, it adjusts solugjgyre 9 presents theSP algorithm in procedural SQL
tion S to obtain the new topsolution, incrementally Up (without any optimization introduced). The schema re-
to the desired value df. _ quired by this procedure is omitted due to space constraints;
_ The incremental construction of the t&panswer pro- i can he easily derived from the procedure body. Block 1
vided by algorithm5SP in figure 8 can be optimized. We injtializes the Top relation to the cheapest edge out of posi-
introduce an optimization of this basic scheme that can siggo, 1. \We then iterate over all positions franto k. Within
nificantly reduce the computation involved. We refer to thiseqcpy jteration, block 2 computes the transitive closure from
optimization as=arly StoppingES). It provides a criterion e cyrrent position to all unmatched positions. Block 3
for terminating the search for the least cost path early on '(rﬁicks an unmatched tuple with the smallest distance from
the search and subsequently avoiding the computation ghe current position and block 4 computes the path from the

the transitive closure. current position to this unmatched tuple. Finally, block 5
. updates the old solution using this path to obtain the new

Early Stopping: solution which includes the current position.

During the incremental construction of the tkpanswer, Early stopping can be also incorporated by inserting the

algorithmSSP considers positions successively. When astatements of figure 10 in the sequence of the statements
new position is considered the paths to all un-matched tuef figure 9 immediately after the firsWHILE loop. The

ples are computed. Itis easy to show that if atiteratipn ~ statements in figure 10 identify whether the least cost tuple
of the algorithm the edge of minimum ranking cost incidentvertex which is a target of the current position, is in the cur-
to positioni + 1 is also incident to an un-matched vertex rent solution. If not, then they augment the current solution
tuple, then this edge belongs to the tap+ 1) answer: and start a new iteration.

643

: . delete from Reach4
CREATE PROCEDURE ssp(IN k integer, IN N integer) : .
LANGUAGE SQL where elem in (select elem from R41);

BEGIN insert into Reach4(elem, parent, cost)

DECLARE index INTEGER DEFAULT 1: select RR.elem, min(RR.parent), RR.cost
DECLARE iter INTEGER DEFAULT 1; fromRR, R41
. where RR.elem = R41.elem
DECLARE rcount INTEGER,; and RR.cost = R41.cost
DECLARE matchsum FLOAT DEFAULT O; group by RR.elem, RR.cost:
1. delete from Top;
insert into Top(elem, pos)
select min(elem), pos
from graph
where pos = 1 and cost =
(select min(cost)
from graph where pos = 1)
group by pos;

SET iter = iter+1,;
END WHILE;
3. delete from Augment;
insert into Augment

select elem

from Reach4

where elem notin

(select elem from Top)

) . order by cost
Stlé—:ert.mdex =2, fetch first 1 rows only;

WHILE (index = k) DO
2. delete from R1;
insert into R1(selem, delem, cost)
select Top.elem, G2.elem, G2.cost - G1.cost
from Top, Graph G1, Graph G2 from Reach4, Augment

where Top.elem = G1.elem and Top.pos = G1.pos ~
and Top.pos = G2.pos; \L/Jvrlllelzg)eNReachAelem = Augment.elem

4. delete from AugmentingPath1;
insert into AugmentingPath1
with AugmentingPath(elem, parent, level) as
select Reach4.elem, Reach4.parent, 0

select Reach4.elem, Reach4.parent,

AugmentingPath.level+1

from Reach4, AugmentingPath

where Reach4.elem = AugmentingPath.parent
and AugmentingPath.levet N)

select elem, parent

SET iter = 1- from AugmentingPath;

WHILE (iter = index) DO
delete from RR;
insert into RR(elem, parent, cost)
select Y.elem, X.elem, X.cost + R1.cost
from Reach4 X, R1, Reach4 Y
where X.elem = R1.selem and Y.elem = R1.delem
and X.cost + R1.cost Y.cost;

delete from Reach4;
insert into Reach4(elem, parent, cost)
select elem, N+1, cost
from Graph
where pos = index;

5. insert into Top values(N+1, index);
delete from TempTop;
insert into TempTop
select AugmentingPathl.elem, Top.pos
from Top, AugmentingPathl
where Top.elem = AugmentingPath1.parent;
delete from Top
where elem in
(select parent from AugmentingPathl);
insert into Top
select * from TempTop;
SET index = index+1,;
END WHILE;
END

delete from R41,;
insert into R41(elem, cost)
select elem, min(cost)
from RR
group by elem;

Figure 9:SSP in Procedural SQL

4 Experimental Evaluation recursive SQL statements with UNION semantics as spec-
. . , i{ied in the SQL3 standard. However, no major RDBMS
In this section, we present the results of an experimentgl, 14 gate supports an efficient implementation of this con-
case study of the proposed algorithms in a real applicatioRyyct. n particular, DB2 V8.1 supports this construct only
scenario, varying various parameters of interest in order tquit, NION ALL semantics. As a result, since no dupli-
understand the algorithms’ comparative performance. cate elimination takes place at various stages of the recur-

sion, the number of intermediate tuples generated is very

4.1 Implementation large, and performance is affected. In order to alleviate this
. o]] ~_ problem, we simulated the effects of recursion as follows:

We first provide implementation details on the realizationinstead of using the recursive statement directly, we embed-
of the algorithms in an RDBMS and some observations orjed the join clauses in an iterative statement, issuing dupli-
the performance of various SQL constructs and then weate elimination statements after each iteration. This re-
detail our experimental case study. Our experiments wergy|ted in great performance benefits for all the approaches
conducted on DB2 V8.1 Personal Edition running on a Dellgiscussed in this paper. We note that as RDBMSs start im-

PowerEdge server P2600 with two Intel Xeon processorglementing recursion with SQL3 semantics, the need for
haVIng 3GB of memory and 400 GB of disk. We main- such workarounds will decrease.

tained the default configuration parameters DB2 ships with,
only increasing the transaction log size to 524 MB.
The procedural SQL statements of figures 6 and 9 use

644

delete from CheapElem;
insert into CheapElem(elem) a0
select elem
from graph 500
where pos = index
and cost = (select min(cost)
from graph where pos = index)
and elem not in
(select elem from Top)
fetch first row only;

Time (Second)

select count(*) into rcount from CheapElem,;
IF (rcount> 0) THEN
insert into Top(elem, pos) .
select graph.elem, graph.pos ,
from graph, CheapElem s
where graph.elem = CheapElem.ele

and graph.pos = index;

SET index = index+1; Figure 12: Performance ¢1A, MHA, SSP as a function

iterate start;
END IF: of n andk

k=20,
k=20,N=200

3

Our second experiment compares the performance of
Figure 10: Enabling Early Stopping BSP the three algorithms. Figure 12 presents their performance,
as the size of the rankings increases for two distinct values
of k. It is evident that the overhead of algorithishA is
prohibitive and its scalability is limited. We chose to keep
the scale of this experiment small, as the performance of
HA quickly deteriorated. AlgorithMHA andSSP, in
contrast, appear much faster.

This prompted us to conduct a more detailed experi-
ment, comparing the performanceMfH A andSSP. The
result of this experiment is presented in figure 13, for vary-
ing values ok andn (thex-axis in figure 13 presents pairs
of k; n values). In particular, we vang from 200 to 1800
and for each value af we present performance results for
four values ofk (10,20,30,40). A main observation from
. this experiment is that there exists a crossover point in the
performance of the algorithms which depends on the rela-
tive size ofk to n. For example, for small values of (up
Figure 11: Construction Time for Grafhas a function of to 600 in figure 13)SSP offers performance advantages

Time (Seconds)

Number of Rankings

n and the number of rankings overMHA for values ofk up to 10. In that range&§SP is
more than 50% faster thal HA. For values ok above
4.2 Experimental Case Study 10, MHA is faster tharSSP, especially ak increases.

As the value oh increases (beyond 600 in figure 13) this

We implemented all three algorithms as outlined using arossover point is experienced at a valugkdfetween 20
commercial RDBMS and we conducted experiments toand 30. In these cases, whietis below 20,SSP is up to
evaluate their performance. In our experiments we useghree times faster thaMHA, especially for largan. For
a database containing real customer data with various asalues ofk greater than 3aMIHA is clearly the algorithm
sociated attributes. We utilized the technique of Gra-of choice.
vano et al. [18] on various attributes to obtain approximate These observations lead us to the conclusion that for
matches. On a table containing seven million rows it re-small values ok comparative t; SSP is the algorithm of
quired, in our implementation, approximately 20 secondschoice. As the value df increases, compared to MHA
to perform an approximate match on an attribute with averopffers great performance advantages. Overall, if only the
age length 17 characters and approximately 25 seconds giist few top ranking results are required then algorithm
an attribute with average length 28 characters. SSP appears the algorithm of choice. For larger values

In our first experiment, we seek to quantify the time of k, algorithmM H A should be used.
required to construct the bipartite graghon which the
various technigques operate to provide answers tdtep- i ;
lection problems. Figure 11 presents this time for differ-5 Dealing With Scores
ent number of rankings and different ranking sizes. TheUp until now, for simplicity of exposition, we have pre-
construction time appears more sensitive to the size of theented techniques to merge ranked lists, where the list tu-
rankings as opposed to the number of rankings used. N@les did not have associated scores. Approximate matching
tice that, once such a graph is constructed for some valuchniques used in data cleaning, however, typically asso-
of n (size of the rankings) it can be utilized to answer top- ciate values matching a query string with a score quantify-
selection queries for arly = n. ing the degree of similarity (closeness) of the query string

645

350

ssp
200 | |2
m MHA

Time (Seconds)

150 — B

100 — - -

o

T&u_&& dﬂ“ all Jﬂ ?

S & S
e b M M o
R A

PN N N
S S S & 5
s < &

® S PSS S S S
\0515‘“ %va? & F P

NN
& & 0 N N
§ A A e A A A A AN AR A

S

K-N

Figure 13: Comparative PerformanceMfHA andSSP as a function oh andk

to the attribute value string. These scores thus carry moredge costs are given by the scored ranking co3fs; j),
information than the positions of tuples in the ranked lists.instead of the ranking costs'(t;; j). Of course, for the

In such situations, it would be desirable for (a) the mergingabsolute score differences to be meaningfully comparable
technique to use the scores (and not just the rankings) across lists, the scores in each of the lists would need to be
the tuples in each of the lists to determine the tuple rank®iormalized to, say, be a value @ 1]. This was done in

in the merged list, and (b) the tuples in the merged list tathe example of figure 1.

be associated with scores, to preserve the closure property. our techniquesMHA andSSP, can now be usedn-

We discuss both these issues in this section. changedon the resulting bipartite graph to identify solu-
. . tions to the topk selection problem, taking scores into ac-
5.1 Merging Scored Rankings count. The rankings in the merged list obtained by using

Essentially, the basis for merging ranked lists discussed igcores may be different from those obtained by simply us-
previous sections was to minimize the overall discrepencynd the input rankings. It is, however, noteworthy that if the
in rank positions of the individual tuples, as quantified by Scores associated with the tuples in the input ranked lists
the total ranking cost, where the rgnking cost of tuplert werg_unlformly distributed in acco_rdance W|th _ghelr rank
positionj was given by " (t;; j) = f”zljél(ti) i jj. This positions (for_example, the typle in r:_;mk posmprlnad a
ranking cost was used as the edge cost betweentyatel ~ score of(n j j + 1)=n), the final rankings in the merged
positionj in the bipartite graph, as described in section 3,list would be identical.
and the solution to our toR-selection problem was based
on the minimum cost perfect matching problem over this
bipartite graph. 5.2 Computing Scores in the Merged Ranking

Carrying this analogy to use the scores associated with
each of the tuples in the input ranked lists, we define theJust as scores are useful when provided by the approximate

scored ranking cosif tuplet; wrt positionj as matching techniques used in data cleaning, they can be use-
= fulin the result of the merging. However, the scores that are
S(ti;j) = St i s-()i associated with the tuples in the merged list need to satisfy

some robustness properties. First, the scores need to be
consistent with the rankings, i.e., there should not be any
where ;2(t;) is the score associated with tugigin the inversions between the rank order and the score order. Sec-
scored ranked lisg-, ands: (j) is the score associated with ond, the merged scoring should be idempotent, i.e., if two
the tuple in thej™ rank position in list;-. The bipar- identical scored ranked lists were merged, the score of each
tite graph can now be defined as before, except that theuple in the merged list should be identical to its scores in

646

the input list$ Third, the score of a tuple in thE" po- introduced the togk selection problem for which we have
sition of the merged list can be no larger than the averagalentified and proposed applicable algorithms providing
score of the tuples in thgth positions of them input lists. their full declarative specification. Our experimental case
These robustness properties eliminate some obvious canditudy using real application data, identified the cases under
dates, such as computing the score of a tuple in the mergeshich two of the proposed algorithms, naméiH A and

list as the average of its scores in tind@nput lists. SSP, are beneficial.

We describe next an intuitive scoring function that pre- Such problems are of profound interest in practical data
serves the above robustness propertiessaft); 1 = j = cleaning scenarios and we believe research in this direc-
k, be the average score of the tuples injlile positions of tion is well warranted. Future work could investigate in-
the m input lists. Letdsa(j) = sa(j) i sa(j i 1);2 = corporation of approximations (e.g., in the spirit of [14])

Jj = k; this is the difference in the average scores betweein a declarative (SQL) framework and quality/performance
consecutive positions in the input. Next if, in the mergedissues arising in this setting. Moreover, being able to ef-

ranking, tupld; is at positiory, letsrca(j) = S(ti;j)=m;
this is the average (over thn input lists) of the score dif-
ferences used in the scored ranking costs in the solution to

ficiently perform such merging operations in bulk, when a
set of queries is provided, is an interesting open question.

the topk problem. Then, the scores of the tuples at rankReferences

positionsj in the merged list are computed as follows: [1]

(2]
(3]

score(j) =sa(j) i srca(j);j =1

score(j) =score(j i 1) i

4
Itis easy to verify that the scores computed as describedI]
above satisfy the above robustness properties. A more de-
tailed discussion on this merged-scoring function is outside[5]
the scope of this paper.

max(dsa(j);srca(j));j > 1

6
6 Related Work ol
Data cleaning has attracted lots of research attention inf
recent years [16, 21, 17, 18, 4, 19, 7]. Most of the re-
cent works [19, 4, 7] deal with various aspects of the clas-
sic record linkage problem [15], while others aim to of- [8]
fer a declarative framework for cleaning and approximate
matching tasks [16, 17, 18]. Various string distance met- o]
rics have been proposed for quantifying approximate strinqlo]
matches including string edit distance, cosine similarity
[17, 18, 4] and combinations and extensions thereof [6, 5].
Various functions for merging ranked data have beeri1]
proposed and studied in the statistical literature [10, 8, 20],
including theSpearman’s footrulandKendall’'s tau Such ~ [12]
functions have been utilized in the problem of merging the
results of various search engines [11]. Variants of such®®!
measures have also been considered for similarity searc[tlh]
and classification [14]. The metric properties for a large
class of functions merging ranked lists have also been stud-
ied [13]. We are not aware of any work addressing issues dfL5]
realization of such merging functions in SQL. A different
approach to merging scored lists is to use a combining rul 6
such as min or average, that combines individual scores t]
obtain an overall score; this approach has been well investi 7]
gated in recent years (see, e.g., [12] and references therein).
7 Conclusions (18]
We have considered the problem of merging rankings prof19]
duced as a result of approximate match operations in rela-
tional databases, with the objective of identifying a consen{2°!
sus ranking (under specific metric merging functions) and?1]
identifying a few top ranking results. In this context, we [22]

2Note that rank merging satisfies this idempotence property.

647

MindBox Inc. www.mindbox.com.

R. K. Ahuja, T. Magnanti, and J. OrlinNetwork flows Prentice
Hall, 1992.

V. Borkar, K. Deshmukh, and S. Sarawagi. Automatic segmentation
of text into structured record®roceedings of SIGMOX2001.

W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarRyoceedings of
SIGMOD, 1998.

W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string
distance metrics for name-matching taskBroceedings of [IWeb
Workshop Aug 2003.

W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string
metrics for matching names and recorBsoceedings of KDD Data
Cleaning WorkshopAug 2003.

S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaningroceedings of SIG-
MOD, 2003.

D. Critchlow. Metric methods for analyzing partially ranked data
LNS, Springer-Verlag, 1985.

T. Dasu and T. Johnsoixploratory data mining and data cleaning
John Wiley, 2003.

P. Diaconis and R. Graham. Spearman’s footrule as a measure of
disarray. J. of the Royal Statistical Society, 39(Ppges 262—-268,
1997.

C. Dwork, R. Kumar, M. Naor, and D. Shivakumar. Rank aggrega-
tion methods for the weliProceedings of WWW1Q001.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware.Proceedings of PODS001.

R. Fagin, R. Kumar, and D. Shivakumar. Comparing top-k lists.
Proceedings of SOQA003.

R. Fagin, R. Kumar, and D. Shivakumar. Efficient similarity search
and classification via rank aggregatioRroceedings of SIGMOD
2003.

I. P. Fellegi and A. B. Sunter. A theory for record linkagiurnal

of the American Statistical Association, 64(328ges 1183-1210,
Dec. 1969.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and E. Saita.
Declarative data cleanindrroceedings of VLDR2001.

L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost)
for free. Proceedings of VLDR2001.

L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in
an RDBMS for web data integratioroceedings of WW\V2003.

M. Hernandez and S. Stolfo. The merge purge problem for large
databasesProceedings of SIGMO[1995.

J. MardenAnalyzing and modeling rank dat&hapman Hall, 1995.
S. Sarawagi. Special issue on data cleaniBEE Data Engineering
Bulletin, 23(4) 2000.

S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learningProceedings of KDD2002.

