
Write-Optimized B-Trees
Goetz Graefe

Microsoft

Abstract
Large writes are beneficial both on individual disks

and on disk arrays, e.g., RAID-5. The presented design
enables large writes of internal B-tree nodes and leaves. It
supports both in-place updates and large append-only
(“log-structured”) write operations within the same stor-
age volume, within the same B-tree, and even at the same
time. The essence of the proposal is to make page migra-
tion inexpensive, to migrate pages while writing them,
and to make such migration optional rather than manda-
tory as in log-structured file systems. The inexpensive
page migration also aids traditional defragmentation as
well as consolidation of free space needed for future large
writes. These advantages are achieved with a very limited
modification to conventional B-trees that also simplifies
other B-tree operations, e.g., key range locking and com-
pression.

Prior proposals and prototypes implemented trans-
acted B-tree on top of log-structured file systems and
added transaction support to log-structured file systems.
Instead, the presented design adds techniques and per-
formance characteristics of log-structured file systems to
traditional B-trees and their standard transaction support,
notably without adding a layer of indirection for locating
B-tree nodes on disk. The result retains fine-granularity
locking, full transactional ACID guarantees, fast search
performance, etc. expected of a modern B-tree implemen-
tation, yet adds efficient transacted page relocation and
large, high-bandwidth writes.

1 Introduction
In a typical transaction-processing environment, the

dominant I/O patterns are reads of individual pages based
on index look-ups and writes of updated versions of those
pages. As memory sizes grow ever larger, the fraction of
write operations among all I/O operations increases.
While “90% reads, 10% writes” was a reasonable rule of

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or dis-
tributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special
permission from the Endowment.
Proceedings of the 30th VLDB Conference, Toronto,
Canada, 2004.

thumb 15 or 20 years ago, “33% writes” is more realistic
today once a database server and its applications have
reached steady state production. In a future with 64-bit
addressing in practically all servers and even most work-
stations, we may expect ever larger fractions of write op-
erations among all I/O. In some scenarios, writes already
dominate reads. For example, in a recent result of the
SAP SD benchmark (designed for performance analysis
and capacity planning of sales and distribution applica-
tions), simulating 47,528 users required 75 MB disk reads
per second and 8,300 MB disk writes per second [LM 03].
In other words, in this environment with ample main
memory, write volume exceeded read volume by a factor
of more than 100.

In write-intensive environments, improving the per-
formance of write operations is very important. Both on
single disks and in disk arrays, large write operations pro-
vide much higher bandwidth than small ones, often by an
order or magnitude or even more. In RAID-5 and similar
disk arrays, large writes avoid the “small write penalty,”
which is due to maintenance of parity information. Log-
structured file systems have been invented to enable and
exploit large writes, but have not caught on in transaction
processing and in database management systems. We
believe this failed to happen for two principal reasons.
First, log-structured file systems introduce overhead for
finding the current physical location of a logical page, i.e.,
a mapping layer that maps a page identifier to the page’s
current location in the log-structured file system. Typi-
cally, this overhead implies additional I/O, locking, latch-
ing, search, etc., even if a very efficient mapping mecha-
nism is employed. Second, log-structured file systems
optimize write performance to the detriment of scan per-
formance, which is also important in many databases, at
least for some tables and indexes. Therefore, even if op-
timizing write performance is highly desirable for some
tables in a database, it might not improve overall system
performance if it applies indiscriminately to all data in the
database.

The techniques proposed here are designed to over-
come these concerns. First, the overhead of finding a sin-
gle page is equal to that in a traditional B-tree index; re-
trieving a B-tree node does not require a layer of indirec-
tion for locating a page on disk. Second, if scan perform-
ance is important for some tables or indexes within a da-
tabase, our design permits that those can be updated in-
place, i.e., without any adverse effect on scan perform-

672

ance. Specifically, any individual write operation can be
in-place (“read-optimized”) or part of a large write
(“write-optimized”), and the choice can be independent of
the choices taken for other pages. In other words, our de-
sign provides the mechanisms for write-optimized opera-
tion, but it does not imply or prescribe policies and it does
not force a single policy for all data and for all time.

Many policies are possible. For example, “hot” tables
and indexes may be permanently present in the I/O buffer,
which suggests write-optimized I/O when required, e.g.,
during checkpoints. Alternatively, B-tree leaf pages may
be updated in-place (read-optimized) whereas upper index
layers are presumed permanently buffered, and any re-
quired write operations bundled into large, efficient
writes. Another possible policy writes in-place during
ordinary buffer replacement but minimizes checkpoint
duration by using write-optimized I/O.

The two extreme policies are updating everything in-
place, which is equivalent to a traditional (read-
optimized) database, or bundling all write operations into
large, append-only writes, which is equivalent to a log-
structured (write-optimized) file system. The value of the
proposed design is that it permits many mixed policies,
and that it applies specifically to B-tree indexes and thus
database management systems rather than file systems.
Therefore, if policies are set appropriately, our mecha-
nisms will perform as well as or better than a traditional
file system for applications in which a traditional file sys-
tem out-performs a log-structured file system, and they
will perform as well as or better than a log-structured file
system for applications in which a log-structured file sys-
tem out-performs a traditional file system.

In the following sections, we review related work in-
cluding prior efforts to employ log-structured file systems
for transaction processing, introduce our data structures
and algorithms, consider defragmentation and the space
reclamation effort required in a log-structured file system,
describe the mechanisms that enable write-optimized B-
tree indexes, review the performance of our mechanisms,
and finally offer our conclusions from this research.

2 Related work
Our design requires limited modifications to tradi-

tional B-trees, and many of the techniques used here have
already been employed elsewhere. In this section, we re-
view B-trees, multi-level transactions, log-structured file
systems, and prior attempts to use log-structured file sys-
tems in transaction processing.

Mentioned here briefly for the sake completeness, the
proposed use of B-trees is entirely orthogonal to the data
collection being indexed. The proposed technique applies
to relational databases as well as other data models and
other storage techniques that support associative search,
both primary (clustered) and secondary (non-clustered)
indexes. Moreover, it applies to indexes on traditional

columns as well as on computed columns, including B-
trees on hash values, Z-values (as in “universal B-trees”
[RMF 00]), and on user-defined functions. Similarly, it
applies to indexes on views (materialized and maintained
results of queries) just as much as to indexes on tradi-
tional tables.

2.1 B-tree indexes

B-tree indexes are, of course, well known [BC 72,
C 79], so we review only a few relevant topics. Following
common practice, we assume here that traditional B-tree
implementations are actually B+-trees, i.e., they keep all
records in the leaf nodes and they chain nodes at the leaf
level or at each level using “sibling” pointers. These are
used for a variety of purposes, e.g., ascending and de-
scending cursors.

For high concurrency, key range locking and equiva-
lent techniques [L 93, M 90] are used in commercial da-
tabase systems. Unfortunately, when inserting a new key
larger than any existing key in a given leaf, the next-
larger key must be located on the next B-tree leaf, which
is an expensive operation even if all B-tree leaves are
chained together. Such “crawling” can be particularly
expensive (and complex to code correctly, and even more
complex to test reliably as the software evolves) if B-tree
leaves can be empty, depending on the policy when to
merge and deallocate empty or near-empty leaf pages.
Our B-tree modifications avoid all crawling for key range
locking as a desirable-but-not-essential by-product.

A common B-tree technique is the use of “pseudo-
deleted” or “ghost” records [JS 89, M90b]. Rather than
erasing a record from a leaf page, a user’s delete opera-
tion simply marks a record as invalid and leaves the actual
removal to a future insert operation or to an asynchronous
clean-up activity. Such ghost records simplify locking,
transaction rollback, and cursor navigation after an update
through the cursor. Ghost records can be locked and in-
deed the deleting user transaction retains a lock until it
commits or aborts. Subsequent transactions also need to
respect the ghost record and its key as defining a range in
key range locking, until the ghost record is truly erased
from the leaf page. Alternatively, a ghost record can turn
into a valid record due to a user inserting a new row with
the same index key. Interestingly, an insert operation real-
ized by a conversion from a ghost record into a valid re-
cord does not require a key range lock; a key value lock is
sufficient.

In most B-tree indexes, internal nodes have hundreds
of child pointers, in particular if prefix and suffix trunca-
tion [BU 77] are employed. Thus, 99% and more of a B-
tree’s pages are leaf pages, making it realistic that all or
most internal nodes remain in the I/O buffer at nearly all
times. This is valuable both for random probes (e.g.,
driven by an index nested loops join) and for large scans,
because efficient large scans on modern disk systems and
disk arrays require tens or hundreds of concurrent read-

673

ahead hints, which can only be supplied by scanning the
“parent” and “grandparent” level, not by relying on the
chain of B-tree leaves.

2.2 Multi-level transactions and system transactions

Modern transaction processing systems separate a da-
tabase’s logical contents from the database’s physical
representation. This is well known as physical data inde-
pendence when designing tables, views, and constraints
versus indexes and storage spaces. However, this distinc-
tion is also found in the implementation of query optimi-
zation, where logical query expressions with abstract op-
erations such as join are mapped to physical query evalua-
tion plans with concrete algorithms and access paths such
as index nested loops join, and in the implementation of
transaction semantics. Modification of physical represen-
tation, e.g., splitting a B-tree node or removing a ghost
record, is often executed separately as a “nested top-level
action” [MHL 92] or as a “system transaction.” System
transactions may change physical structures but never
database contents, and thus differ from user transaction in
a fundamental way. System transactions may commit and
release their locks independently of the invoking user
transaction, yet they may be lock-compatible with the
invoking user transaction if that transaction pauses until
the system transaction completes. Moreover, system
transactions can be committed very inexpensively, i.e.,
without forcing the recovery log to stable storage, because
durability of their effects is needed only if and when a
subsequent user transaction and its log records rely on the
system transaction’s effects. If a user relies on the effects
of a committed user transaction, that user transaction will
have forced the log, which of course also forces any prior
log records to stable storage, including those of any prior
system transaction.

2.3 Log-structured file systems

The purpose of log-structured file systems is to in-
crease write performance by replacing multiple small
writes with a single large write [RO 92]. Reducing the
number of seek operations is the principal gain; in disk
arrays with redundancy, writing an entire “array page” at
a time also eliminates the “small write penalty,” which is
due to adjusting parity pages after updates. While the ac-
tual parity calculations may be simple and inexpensive
“exclusive or” computations, the more important cost is
the need to fetch and then overwrite the parity page within
an array page each time one of the data pages is updated.
Thus, writing a single page may cost as much as 4 I/O
operations in a RAID-4 or RAID-5 array, and even more
in a RAID-6 or RAID-15 array.

Turning multiple small writes into a much more effi-
cient single large write requires the flexibility to write
dirty pages to entire new locations, which entails two new
costs. First, there is a distinction between page identifier
and page location – most of the file system links pages by
page identifier, and page identifiers must be mapped to

their current locations on disk. Updates to the structure
that maintains this mapping must be logged carefully yet
efficiently, quite comparable to the locking, latching, and
logging required when splitting a B-tree page in a tradi-
tional multi-user multi-threaded database system. The
main difference is that updates to the mapping informa-
tion are initiated when the buffer manager evicts a dirty
page, i.e., during write operations, rather than in the usual
course of database updates.

Second, as pages are updated and their new images are
written to new locations, the old images become obsolete
and their disk space should be reclaimed. Unfortunately,
disk pages will be freed in individual pages, not in entire
array pages at a time, whereas only entire free array pages
lend themselves to future fast write operations. The sim-
ple solution is to keep track of array pages with few re-
maining valid pages, and reclaim those disk pages by arti-
ficially updating them to their current contents – the up-
date operation forces a future write operation, which of
course will migrate the page contents to a new location
convenient for the current large write operation at that
time. Depending on the overall disk utilization, a notice-
able fraction of disk activity might need to be dedicated to
space reclamation. Fortunately, disk space is relatively
inexpensive and many database servers run with less-
than-full disks, because this is the only way to achieve the
desired I/O rates. In fact, recent and current trends in disk
technology increase storage capacity must faster than
bandwidth, which motivates our research into bandwidth
improvements through large write operations as well as
justifies our belief that disks typically will be less than
full and thus permit efficient reclamation and defragmen-
tation of free space.

2.4 Transaction processing and log-structured file
systems

A tempting but erroneous interpretation of the term
“log-structured” assumes that a log-structured file system
can support transactions without a recovery log. This is
not the case, however. If a database system supports a
locking granularity smaller than pages, concurrent trans-
actions might update a single page; yet if one of the trans-
actions commits and the other one rolls back, no page
image reflects the correct outcome. In other words, it is
important to realize that log-structured file systems are a
software technique that enables fast writes; it is not an
appropriate technique to implement atomicity or durabil-
ity. Interestingly, techniques using shadow pages, which
are similar to log-structured file systems as they also allo-
cate new on-disk locations as part of write operations,
have been found to suffer from a very similar restriction
[CAB 81]. Consequently, shadow page techniques have
been abandoned because they do not truly assist in the
implementation of ACID transaction semantics, i.e., at-
omicity, consistency, isolation, and durability [G 81].

674

Seltzer’s attempts of integrating transaction support
into log-structured file systems [S 92, S 93, SS 90] did not
materialize the expected gains in performance and sim-
plicity, and apparently were abandoned. Rather than inte-
grating transaction support into a file system, whether
read-optimized or write-optimized, our approach is to
integrate log-structured write operation into a traditional
database management system with B-tree indexes, multi-
level transactions, etc. It turns out that rather simple
mechanisms suffice to achieve this purpose, and that these
mechanisms largely exist but are not exploited for write-
optimized database operation.

Lomet observed that the mapping information can be
considered a database in its own right, and should be
maintained using storage and transaction techniques simi-
lar to database systems [L 95], as in the Spiralog file sys-
tem [WBW 96]. Our design follows this direction and
keeps track of B-tree nodes and their current on-disk loca-
tions using traditional B-trees and database transactions,
but it does not force all updates and all writes to migrate
as log-structured file systems do.

If the mapping information can be searched efficiently
as well as maintained efficiently and reliably, it is even
conceivable to build a log-structured storage system that
writes and logs not pages but individual records and other
small objects, as in the Vagabond system [NB 97]. In
contrast, our design leaves it to traditional mechanisms to
manage records and objects in B-tree indexes and instead
focuses on B-tree nodes stored as disk pages.

3 Proposed data structures and algorithms
In this section, we introduce our proposed changes to

B-tree pages on disk and consider some of the effects of
these changes. Further new opportunities enabled by these
changes are discussed in detail in the subsequent sections.

Our proposed change is designed to solve the follow-
ing problem. When a leaf page migrates to a new location,
three pointers to that page (parent and two siblings) re-
quire updating. If a leaf page moves as part of a write
operation, which is the essential mechanism of log-
structured file systems whose advantageous effects we
aim to replicate, not only its parent but also both of its
siblings are updated and thus remain as dirty pages in the
buffer pool. When those dirty pages are written, they too
will migrate, and then force updates, writes, and migra-
tion of their respective siblings. In other words, updates
and write operations ripple forward, backward, and back
among the leaf pages.

3.1 Data structures

Our proposed change in data structures is very limited.
It affects the forward and backward pointers that make up
the chain of B+-tree leaves (and may also exist in higher
levels of a B+-tree). Instead of pointing to neighboring
pages using page identifiers, we propose to retain in each
page a lower and upper “fence” key that define the range

of keys that may be inserted in the future into that page.
One of the fences is an inclusive bound, the other an ex-
clusive bound, depending on the decision to be taken
when a separator key in a parent node is precisely equal to
a search key.

In the initial, empty B-tree with one node that is both
root and leaf, negative and positive infinity are repre-
sented with special fence values. If the B-tree is a parti-
tioned B-tree [G 03], special values in the partition identi-
fier (the artificial leading key column) can represent these
two fence values. In principle, the fences are exact copies
of separator keys in the parent page. When a B-tree node
(a leaf or an internal node) overflows and is split, the key
that is installed in the parent node is also retained in the
two pages resulting from the split as upper and lower
fences.

A fence may be a valid B-tree record but it does not
have to be. Specifically, the fence key that is an inclusive
bound can be a valid data record at times, but the other
fence key (the exclusive bound) is always invalid. If a
valid record serving as a fence is deleted, its key must be
retained as ghost record in that leaf page. In fact, ghost
records are the implementation technique of choice for
fences except that, unlike traditional ghost records, fences
cannot be removed by a record insertion requiring free
space within a leaf or by an asynchronous clean-up utility.
A ghost record serving as inclusive fence can, however,
be turned into a valid record again when a new record is
inserted with precisely equal key.

The desirable effect of the proposed change is that
splitting a node into two or merging two nodes into one is
simpler and faster with fences than with physical pointers,
because there is no need to update the nodes neighboring
the node being split or merged. In fact, there is only a
single physical pointer (with page identifier, etc.) to each
node in a B-tree, which is the traditional, essential parent-
to-child pointer. The lack of a physical page chain differs
from traditional B-tree implementations and thus raises
some concerns, which we address next. The benefits of
this change will be considered in subsequent sections.

3.2 Concerns and issues

Before considering the effects of having only a single
pointer to a B-tree node, from its parent, the most obvious
issue to consider is the additional space requirement due
to the fences. After all, the fences are keys, and keys can
be lengthy strings values. Fortunately, however, these
effects can be alleviated by suffix truncation [BU 77].
Rather than propagating an entire key to the parent node
during a leaf split, only the minimal prefix of the key is
propagated. Note that it is not required to split a full leaf
precisely in the middle; it is possible to split near the
middle if that increases the effectiveness of suffix trunca-
tion, and it is reasonable to do so because the shorter
separator key in the parent will make future B-tree
searches a little bit faster. Since the fences are literal cop-

675

ies of the separator key, truncating the separator immedi-
ately reduces not only the space required in the parent
node but also the overhead due to fences.

While suffix truncation aids compressing the fences,
the fences aid compressing B-tree entries because they
simplify prefix truncation. The fences define the abso-
lutely lowest and highest keys that might ever be in a
page (until a future node split or merge); thus, if prefix
truncation within each page is guided by the fences, there
is no danger that a newly inserted key reduces the length
of the prefix common to all keys in a page and requires
reformatting all records within that page. Note that prefix
truncation thus simplified can be employed both in leaves
and in all internal B-tree nodes. If both prefix and suffix
truncation is applied, then the remaining fences retained
in a page may not be much larger than the traditional for-
ward and backward pointers (page identifiers) they re-
place.

The exclusive fence record can simplify implementa-
tion of database compression in yet another way. Specifi-
cally, this record could store in each non-key field the
most frequent value within its B-tree leaf (or the largest
duplicate value), such that all data records with duplicate
values can avoid storing copies of those values. This is a
further simplification of the compression technique im-
plemented in Oracle’s database management system
[PP 03].

Maybe the lack of forward pointers and its effect on
cursors and on large (range or index-order) scans are a
more substantial concern. Row-by-row cursors, upon
reaching the low or high edge of a leaf node, must extract
the fence key and search the B-tree from root to leaf with
an appropriate “<”, “≤”, “≥”, or “>” predicate, and the B-
tree code must guide this search to the appropriate node,
just as it does today when it processes “<” and “>” predi-
cates.

For large scans, note that disk striping and disk arrays
require deep read-ahead of more than one page. In a mod-
ern data warehouse server with 1 GB/s read bandwidth,
8 KB B-tree nodes, and 8 ms I/O time, 1,000 pages must
be read concurrently (1 GB/s × 8 ms / 8 KB/page = 1,000
pages). Thus, a truly efficient range scan in today’s multi-
disk server architectures must be guided by the B-tree’s
interior nodes rather than based on the forward pointers,
and in fact the page chain is useless today already for
high-performance query processing.

Another important use of the page chain today is con-
sistency checking – the ability of commercial database
management systems to verify that the on-disk database
has not been corrupted by hardware or software errors. In
fact, write-optimized B-trees can be implemented without
fence keys, but the reduced on-disk redundancy might
substantially increase the effort required for detection of
hardware and software errors. Thus, write-optimized B-
trees without fence keys might not be viable for commer-

cial database management systems. Fortunately, because
the fences are precise copies of each other as well as the
separator key in the parent node, they can serve the same
purpose as the traditional page chain represented by page
identifiers. Thus, our proposed change imposes no differ-
ences in functionality, performance, or reliability of con-
sistency checks.

Key range locking, on the other hand, is affected by
our change. Specifically, a key value captured in the
fences is a resource that can be locked. Note that it is the
key value (and a gap below or above that key) that is
locked, not a specific copy of that key, and that it is there-
fore meaningless to distinguish between locking the upper
fence of a leaf or the lower fence of that leaf’s successor
page. Because any leaf contains at least two fences, there
never is a truly empty leaf page, and crawling through an
empty leaf page to the next key is never required. More
fundamentally, because a gap between existing keys never
goes beyond a fence value (as the fence value separates
ranges for the purpose of key range locking), crawling
from one leaf to another in order to find the right key to
lock is eliminated entirely. Thus, key range locking is
substantially simplified by the presence of fences, elimi-
nating both some complex code (that requires complex
regression tests) and a run-time cost that occurs at unpre-
dictable times. In fact, this benefit has been observed pre-
viously [ELS 97] but not, as in our design, exploited for
additional purposes such as defragmentation, free space
reclamation, and write-optimized B-trees.

4 Defragmentation and space reclamation
Large range queries as well as order-dependent query

execution algorithms such as merge join require efficient
index-order scans. Index updates, specifically split and
merge operations on B-tree nodes, may damage contiguity
on disk and thus reduce scan efficiency. Therefore, many
vendors of database management systems recommend
periodic defragmentation of B-tree indexes used in deci-
sion support.

During index defragmentation, the essential basic op-
eration is to move individual or multiple pages allocated
to the index. Pages are usually moved in index order and
the move target is chosen in close proximity to the pre-
ceding correctly placed index node.

Reclaiming and consolidating free space as needed in
log-structured file systems is quite similar. Again, the
essential basic operation is to move pages with valid data
to a new location. Pages to move are chosen based on
their current location, and the move target is either a gap
in the current allocation map or an area to which many
such pages are moved. Not surprisingly, defragmentation
utilities attempt to combine these two purposes, i.e., they
attempt to defragment one or more indexes and concur-
rently consolidate free space in a single pass over the da-
tabase.

676

4.1 B-tree maintenance during page migration

Moving a node in a traditional B-tree structure is quite
expensive, for several reasons. First, the page contents
might be copied from one page frame within the buffer
pool to another. While the cost of doing so is moderate, it
is probably faster to “rename” a buffer page, i.e., to allo-
cate and latch buffer descriptors for both the old and new
locations and then to transfer the page frame from one
descriptor to the other. Thus, the page should migrate
within the buffer pool “by reference” rather than “by
value.” If each page contains its intended disk location to
aid database consistency checks, this field must be up-
dated at this point. If it is possible that a deallocated page
lingers in the buffer pool, e.g., after a temporary table has
been created, written, read, and dropped, this optimized
buffer operation must first remove from the buffer’s hash
table any prior page with the new page identifier. Alterna-
tively, the two buffer descriptors can simply swap their
two page frames.

Second, moving a page can be expensive because each
B-tree node participates in a web of pointers. When mov-
ing a leaf page, the parent as well as both the preceding
leaf and the succeeding leaf must be updated. Thus, all
three surrounding pages must be present in the buffer
pool, their changes recorded in the recovery log, and the
modified pages written to disk before or during the next
checkpoint. It is often advantageous to move multiple leaf
pages at the same time, such that each leaf is read and
written only once. Nonetheless, each single-page move
operation can be a single system transaction, such that
locks can be released frequently both for the allocation
information (e.g., an allocation bitmap) and for the index
being reorganized.

If B-tree nodes within each level form a chain not by
physical page identifiers but instead by lower and upper
fences, page migration and therefore defragmentation are
considerably less expensive. Specifically, only the parent
of a B-tree node requires updating when a page moves.
Neither its siblings nor its children are affected; they are
not required in memory during a page migration, they do
not require I/O or changes or log records, etc. In fact, this
is the motivation of our proposed change in the represen-
tation of B-tree nodes.

4.2 Logging and recovery of page migrations

The third reason why page migration can be quite ex-
pensive is logging, i.e., the amount of information written
to the recovery log. The standard, “fully logged” method
to log a page migration during defragmentation is to log
the page contents as part of allocating and formatting a
new page. Recovery from a system crash or from media
failure unconditionally copies the page contents from the
log record to the page on disk, as it does for all other page
allocations.

Logging the entire page contents is only one of several
means to make the migration durable, however. A second,
“forced write” approach is to log the migration itself with
a small log record that contains the old and new page lo-
cations but not the page contents, and to force the data
page to disk at the new location prior committing the page
migration. Forcing updated data pages to disk prior to
transaction commit is well established in the theory and
practice of logging and recovery [HR 83]. A recovery
from a system crash can safely assume that a committed
migration is reflected on disk. Media recovery, on the
other hand, must repeat the page migration, and is able to
do so because the old page location still contains the cor-
rect contents at this point during log-driven redo. The
same applies to log shipping and database mirroring, i.e.,
techniques to keep a second (often remote) database ready
for instant failover by continuously shipping the recovery
log from the primary site and running continuous redo
recovery on the secondary site.

A unique aspect of writing the page contents to its
new location is that write-ahead logging is not required,
i.e., the migration transaction may write the data page to
the new location prior to writing any of its log records to
stable storage. This is not true for the changes in the
global allocation information; it only applies to the newly
allocated location. The reason is that any recovery con-
siders the new location random disk contents until the
allocation is committed and the commit record is captured
in the log. Two practically important implications are that
a migration transaction with forced data write does not
require any synchronous log writes, and that a single log
record can capture the entire migration transaction, in-
cluding transaction begin, allocation changes, page migra-
tion, and transaction commit. Thus, logging overhead for
a forced-write page migration is truly minimal, at the ex-
pense of forcing the page contents to the new location
before the page migration can commit. Note, however,
that the page at the new location must include a log se-
quence number (LSN), requiring careful sequencing of
the individual actions that make up the migration transac-
tion if a single log record captures the entire transaction.
The forced-write migration transaction will be the most
important one in subsequent sections.

The most ambitious and efficient defragmentation
method neither logs the page contents nor forces it to disk
at the new location. Instead, this “non-logged” page mi-
gration relies on the old page location to preserve a page
image upon which recovery can be based. During system
recovery, the old page location is inspected. If it contains
a log sequence number lower than the migration log re-
cord, the migration must be repeated, i.e., after the old
page has been recovered to the time of the migration, the
page must again be renamed in the buffer pool, and then
additional log records can be applied to the new page. To
guarantee the ability to recover from a failure, it is neces-

677

sary to preserve the old page image at the old location
until a new image is written to the new location. Even if,
after the migration transaction commits, a separate trans-
action allocates the old location for a new purpose, the old
location must not be overwritten on disk until the mi-
grated page has been written successfully to the new loca-
tion. Thus, if system recovery finds a newer log sequence
number in the old page location, it may safely assume that
the migrated page contents are available at the new loca-
tion, and no further recovery action is required.

Some methods for recoverable B-tree maintenance al-
ready employ this kind of write dependency between data
pages in the buffer pool, in addition to the well-known
write dependency of write-ahead logging. To implement
this dependency using the standard technique, both the
old and new page must be represented in the buffer man-
ager. Differently than in the usual cases of write depend-
encies, the old location may be marked clean by the mi-
gration transaction, i.e., it is not required to write anything
back to the old location on disk. Note that redo recovery
of a migration transaction must re-create this write de-
pendency, e.g., in media recovery and in log shipping.

The potential weakness of this third method are
backup and restore operations, specifically if the backup
is “online,” i.e., taken while the system is actively proc-
essing user transactions, and the backup contains not the
entire database but only pages currently allocated to some
table or index. Moreover, the detail actions of backup
process and page migration must interleave in a particu-
larly unfortunate way. In this case, a backup might not
include the page image at the old location, because it is
already deallocated. Thus, when backing up the log to
complement the online database backup, migration trans-
actions must be complemented by the new page image. In
effect, in an online database backup and its corresponding
restore operation, the logging and recovery behavior is
changed in effect from a non-logged page migration to a
fully logged page migration. Applying this log during a
restore operation must retrieve the page contents added to
the migration log record and write it to its new location. If
the page also reflects subsequent changes that happened
after the page migration, recovery will process those
changes correctly due to the log sequence number on the
page. Again, this is quite similar to existing mechanisms,
in this case the backup and recovery of “non-logged” in-
dex creation supported by some commercial database
management systems.

While a migration transaction needs to lock a page
and its old and new locations, it is acceptable for a user
transaction to hold a lock on a key with the B-tree node. It
is necessary, however, that any such user transaction must
search for the B-tree node again, with a new search pass
from B-tree root to leaf, in order to obtain the new page
identifier and to log further contents changes, if any, cor-
rectly. This is very similar to split and merge operations

of B-tree nodes, which also invalidate knowledge of page
identifiers that user transactions may temporarily retain.
Finally, if a user transaction must roll back, it must com-
pensate its actions at the new location, again very simi-
larly to compensating a user transaction after a different
transaction has split or merged B-tree nodes.

4.3 System transactions for page migration

While one may assume that database management
systems already include defragmentation and a system
transaction to migrate a page, our design is substantially
more efficient than prior designs yet ensures the ability of
media and system recovery. The most important advan-
tage of the presented design over traditional page migra-
tion are the minimal log volume and the avoidance of
ripple effects along the page chain. To summarize details
of the redesigned page migration, as they may be helpful
in later discussions:

• Since page migration does not modify database con-
tents but only its representation on disk, it can be im-
plemented as a system transaction.

• A system transaction can be committed very inexpen-
sively without writing the commit record to stable
storage.

• A page migration changes only one value in one B-
tree node, i.e., the pointer from a parent node to one
of its children, plus global allocation information.

• A migration transaction can force the page contents
to its new location, log the page contents, or log only
the migration without flushing.

• For system or media recovery after minimal logging,
the page contents must be preserved in the old loca-
tion, i.e., the old page location must not be overwrit-
ten, until the first write to the new location.

• The page migration operation must accept as parame-
ters both the old and the new locations.

• When a B-tree node migrates from one disk location
to another, it is required that the page itself is in
memory in order to write the contents to the new lo-
cation, and that its parent node is in memory and
available for update in order to keep the B-tree struc-
ture consistent and up-to-date.

• The buffer pool manager can contribute to the effi-
ciency of page migration by providing mechanisms to
rename a page frame in the buffer pool.

We now employ this system transaction in our design
for write-optimized B-trees.

5 Write-optimized B-trees
Assuming an efficient implementation of a system

transaction to migrate a page from one location to an-
other, the essence of our design is to invoke this system
transaction in preparation of a write operation from the
buffer pool to the disk. If the buffer pool needs to write
multiple dirty pages to disk that do not require update-in-
place for efficient large scans in the future, the buffer

678

manager invokes the system transaction for page migra-
tion for each of these pages and then writes them to their
new location in a single large write. In other words, the
unusual and novel aspect of our design is that the buffer

manager initiates and invokes a system transaction, in this
case a page migration for each page chosen to participate
in a large write.

Figure 1. Page migration in a B-tree with fence keys.

Figure 1 illustrates the main concept enabling write-
optimized B-trees, and also demonstrates the difference
from B-trees implemented on top of log-structured file
systems. When a page migrates to a new location as part
of large write operation, its current location and thus the
migration are tracked not in a separate indirection layer
but within the B-tree itself. There is no need to adjust
sibling pointers because those have become logical point-
ers, i.e., when a leaf is split, the separator key propagated
to the parent node is retained in both leaves as lower and
upper fence keys.

In many ways, recording a page’s new location in a
parent node is very comparable to recording the new loca-
tion of a page in a log-structured file system. In fact, all
the operations required in our system transaction are also
required in a log-structured file system. The main differ-
ence is that our design keeps track of page migrations
within the B-tree structures already present in practically
all database management systems rather than imposing a
separate mapping from logical page identifier to physical
page location.

5.1 Accessing the parent node

It is essential for efficient page migration that access
to the parent node is very inexpensive. We offer three
approaches to this concern, with the third approach repre-
senting the preferred solution.

First, it is possible to search the B-tree from the root
and simply abandon the page migration if the parent node
cannot be found without I/O – recall that our design does
not require page migration as part of every write as a tra-
ditional log-structured file system does.

Second, given that a B-tree node can only be located
from its parent node, it is extremely probable that the par-
ent is still available in the buffer pool, suggesting that it is
reasonable to require that for each B-tree node in the

buffer pool, its parent (and transitively the entire path to
the root) be present in the buffer pool. Incidentally, cursor
operations can also benefit from the parent’s guaranteed
presence in the buffer pool. This requirement can be im-
plemented efficiently by linking the buffer descriptor of
any B-tree node to the buffer descriptor of its parent node.
Since multiple children can link to a single parent, refer-
ence counting is required. The most complex and expen-
sive operation is splitting a parent node, since this re-
quires probing the buffer pool for each of the child nodes
that, if present, must link to the newly allocated parent
node. Note that this operation requires no I/O; only the
buffer pool’s internal hash tables are probed. To assess
the overhead, it may be useful to consider that some com-
mercial database management systems today approximate
the effect of write-only disk caches [SO 90] by probing
prior to each I/O the buffer manager’s hash table for
neighboring disk pages that are dirty and could be written
without an additional disk seek.

Third, in order to avoid a hard requirement that the
parent node be in the buffer for each B-tree node in the
buffer, the buffer manager simply avoids page migrations
for pages without a link to a parent node. Thus, when
evicting an internal B-tree node, all links from child nodes
also in the buffer must be removed first, which requires
multiple probes into the buffer pool’s hash tables but no
I/O. If a parent is reloaded into the buffer pool, the buffer
manager may again search whether any child nodes are in
the buffer, or a child-parent link may be re-established the
next time a B-tree search navigates from the parent to a
particular child node.

5.2 B-tree root nodes

B-tree root nodes have no parent node, of course, and
their locations are recorded in the database catalogs. For
root nodes, two alternatives suggest themselves.

Old

New

679

First, given that page migration must be possible for
defragmentation, there probably exists a system transac-
tion to migrate a root page and correctly update the data-
base catalogs. If root pages are appropriately marked in
their buffer descriptors, this system transaction could be
invoked by the buffer manager.

Second, B-tree root pages are always updated in place,
i.e., they do not migrate as part of large write operations.
Either the root pages are specially marked in their buffer
descriptors or the absence of a link to the buffer descriptor
of the parent page is interpreted precisely as for other B-
tree nodes whose parent nodes have been evicted from the
buffer pool, as discussed above.

5.3 Storage structures other than B-trees

If the database contains data structures other than B-
trees, those structures can be treated similar to B-tree root
nodes. In other words, they can be updated in place or
specialize migration transactions could be invoked by the
buffer manager. However, since the focus of this research
is on write-optimized B-trees, we do not pursue the topic
further. It may be worth to point out, however, that prior
research has suggested employing B-tree structures even
for somewhat surprising purposes, e.g., for run files in
external merge sort [G 03].

5.4 Allocation and deallocation of disk pages

Keeping track of free space is a concern common to
all log-structured file systems. Typically, a bitmap with a
bit per page on the disk is divided into page-sized sec-
tions, these pages kept in the buffer pool for fast access,
and dirty pages written to disk during database check-
points. Some database systems, however, also maintain a
bitmap per index. These bitmaps can guide fast disk-order
index scans, provide added redundancy during consis-
tency checks, and speed the search for a “lost” page iden-
tified in a consistency check. In a write-optimized envi-
ronment, however, redundancy and update costs should
be kept to a minimum, i.e., per-index bitmaps should be
avoided. Instead, consistency checks and large scans
should exploit the upper B-tree levels. Given that file sys-
tems rely entirely on tree structures for both purposes, and
given that database management systems often use files in
a file system to store data and logs, it is reasonable to
conclude that database management systems also do not
need this extra form of redundancy.

If a page is newly allocated for an index, e.g., due to a
node split, it does not seem optimal to allocate a disk lo-
cation for the new node if it will migrate as part of writing
it to disk for the first time. For those cases, we suggest
simulating a virtual disk device. Its main purpose is to
dispense unique page identifiers that are used only while a
newly allocated page remains in the buffer pool. In fact,
the location of the buffer frame within the buffer pool
could serve this purpose. When a new page is required, a
page identifier on this virtual device is allocated and re-

corded in the node’s parent. More importantly, this page
identifier is used in log records whenever a page identifier
is required. When the page is written to disk, it migrates
from its virtual disk location to a genuine disk location,
using the system transaction for page migration defined
earlier. This technique avoids the cost of allocating a free
disk page when splitting a B-tree node. Its expense, how-
ever, is additional complexity should the buffer manager
attempt to evict the parent node prior to writing such a
newly allocated page.

A very similar technique also applies to deallocation
of pages. While multiple newly allocated pages require
different virtual page identifiers, deallocated pages can
probably all migrate to a single “trash bin” location.

5.5 Benefits
Having considered our design for write-optimized B-

trees in some details, let us now review some benefits and
advantages of the design, comparing it both to traditional
read-optimized B-trees and to log-structured file systems.

An important benefit relative to log-structured file
systems is that page migration is tracked and recorded
within the B-tree structure. Thus, probing a B-tree for
individual nodes, e.g., in an index nested loops join opera-
tion, is just as efficient as in read-optimized B-trees,
without the complexity and run-time overhead associated
with a log-structured file system. Thus, we believe that
this design is attractive for online transaction processing
environments, whereas prior designs based on log-
structured file systems were not.

An important benefit relative to read-optimized B-
trees is that write operations can be much larger than in-
dividual B-tree nodes. It is well known that disk access
time is largely seek and rotation time except for very large
transfers, and that random disk writes are not as fast as
strictly sequential log writes. In fact, our design enables
enormously flexible write logic. Dirty pages can be writ-
ten in-place as in traditional database management sys-
tems, they can use the append-only logic of log-structured
file systems in order to make previously random data
writes as fast as sequential log writes, or they can be writ-
ten very opportunistically at a location that is currently
particularly convenient. For example, the NetApp file
system [HM 00] uses “write anywhere” capabilities to
write in any free location near the current location of the
disk access mechanism. Using the same rationale, a data-
base management system can write a dirty page to any
free location near a currently active read request, as an
alternative to write-only disk caches [SO 90].

In disk arrays, the ability to convert multiple small
write requests into a single large write operation provides
continuous load balancing and it circumvents the “small
write penalty” [PGK 88]. In RAID-4, -5, -6, and -15 ar-
rays [CLG 94], modifying a single data page requires
reading, modifying, and updating one or more pages with

680

parity data, and possibly even logging them for recovery
purposes. Write-optimized B-trees and their large write
operations are therefore a perfect complement to such
disk arrays.

Finally, B-trees can benefit from a particularly simple
and efficient form of compression. Recall that B-tree
pages are utilized only about 70 % in most realistic sce-
narios [JS 89]. Thus, if multiple B-tree pages are written
sequentially, multiple B-tree nodes can be compressed
without any encoding effort. Unfortunately, data from an
individual B-tree node may straddle multiple pages, and
whether or not this form of compaction is an overall per-
formance gain remains a topic for future research.

5.6 Space reclamation overhead

Write-optimized B-trees migrate individual pages
from their current on-disk location to a new location, very
similar to log-structured file systems, and must reclaim
the fragmented free space left behind by page migrations.
The required mechanisms must identify which areas of
disk space to reclaim and then initiate a page migration of
the valid pages not yet migrated from the area being re-
claimed. It might very well be advantageous to distin-
guish multiple target areas depending on the predicted
future lifetime of the data, e.g., using generation scaveng-
ing [OF 89, U 84] or a scheme based on segments like
Sprite LFS [RO 92]. Our design makes no novel contribu-
tions for space reclamation policies, and we propose to
adopt mechanisms developed for log-structured file sys-
tems, including space reclamation that also achieves de-
fragmentation within each file or B-tree as a side benefit.

There is, however, an additional technique that is
compatible with write-optimized B-trees but has not been
employed in log-structured file systems. If disk utilization
is very high and space reclamation is urgent, frequent, and
thus expensive, the techniques explored in this research
permit switching to read-optimized operation at any time.
Thus, write-optimized B-trees can gracefully degrade to
traditional read-optimized operation, with performance no
worse than today’s high performance database manage-
ment systems. Moreover, as space contention eases and
free space is readily available again, write-optimized B-
trees can switch back to large, high-bandwidth writes at
any time.

6 Performance
In migration transactions, each page write requires an

update in the page’s parent page as well as a log record
due to that update. In this section, we analyze how these
increases in write volume affect overall performance.

Large write operations increase the write bandwidth of
a single disk or of a disk array by an order of magnitude
or more. If the increase in write volume is substantially
lower than the increase in write bandwidth, the increased
write volume will diminish but not negate the I/O advan-
tage of write-optimized B-trees.

If migration transactions happen frequently, it seems
worthwhile to optimize their logging behavior. We expect
the log volume due to a migration transaction to be be-
tween 160 and 400 bytes. If a data page and therefore a B-
tree node are as large as 8 KB, and if every single write
operation initiates a migration transaction, the logging
overhead will remain at 2-5%. Assuming the log writes
are always sequential and always fast, the additional log-
ging volume should be small compared to the time sav-
ings in data writes.

More importantly, writing a page might dirty a parent
page that had been previously clean. If so, this parent
page must also be written before or during the next check-
point. If the parent migrates at that time, the grandparent
needs to be written in the subsequent checkpoint, etc., all
the way to the B-tree root. Thus, write-optimized B-trees
increase the volume of write operations in a database.

Clearly, the B-tree root should be written only once
during each checkpoint, no matter how many of its child
nodes, leaf pages, and pages in intermediate B-tree layers
have been migrated during the last checkpoint period.
Thus, in order to estimate the increase in write volume, it
is important to estimate at which level sharing begins on a
path from a leaf to the root.

Assuming that each B-tree node has 100 children (a
conservative value for nodes of 8 KB, in particular if pre-
fix and suffix truncation are employed) and assuming that
updates and write operations are distributed uniformly
over all leaves, sharing can be estimated from the fraction
of updated leaves during each interval between two
checkpoints. If 1% of all leaves are updated, each parent
node will see one migrated leaf per checkpoint interval,
whereas grandparent nodes will see many migrations of
parent nodes during each checkpoint interval, i.e., no ef-
fective sharing at the parent level but lots of sharing at the
level of grandparent nodes. Thus, the volume of write
operations is increased by a factor marginally larger than
2. If the fan-out of B-tree nodes is 400 instead of 100, for
example because nodes are larger or because prefix and
suffix truncation are employed, sharing happens after 2
levels if as little as 0.25% of leaves are updated in each
checkpoint interval. If 1% of 1% of all leaf pages (or 1
page in 10,000; or 1 in 160,000 assuming the larger fan-
out of 400) are updated during each interval between
checkpoints, sharing occurs after two levels. In those
cases, the write volume is increased by as much as a fac-
tor of 3. If write bandwidth due to large writes increases
by a factor of 10, the increased write volume diminishes
but does not erase the advantage of large writes.

The situation changes dramatically if updates are not
distributed uniformly across all leaves, but instead con-
centrated in a small section of the B-tree. For example, if
a B-tree is partitioned, e.g., using an artificial leading key
column [G 03], the most active keys and records can be
assigned to a single “hot” partition. Leaf pages in that

681

partition will be updated frequently, whereas all other leaf
pages will be very stable. For a data collection where 80%
of all updates affect 20% of rows, this design can be quite
attractive, not only but in particular when the storage is
organized as a partitioned and write-optimized B-tree.
Alternatively, a pair of partitions can operate similar to a
differential file [SL 76], i.e., one partition is not updated
at all and the other one contains all recent changes.

7 Summary, future work, and conclusions
In summary, the design presented here advances data-

base index management in two ways: it improves the per-
formance of B-tree defragmentation and reorganization,
and it can be used to implement write-optimized B-trees.

For defragmentation, it substantially reduces the log-
ging effort and the log volume without much added com-
plexity in buffer management or in the recovery from
system and media failures. In fact, the reduction in log
volume may reverse today’s advantage of rebuilding an
entire index over defragmentation of the existing index.
Incremental online defragmentation, one page and one
page migration transactions at a time, is preferable due to
better database and application availability, and can now
be achieved with competitive logging volume and effort.

Incidentally, efficient primitives for page movement
within a B-tree also enable a promising optimization that
seems to have been largely overlooked. O’Neil’s SB-trees
are ordinary B-tree indexes that allocate disk space in
moderately large contiguous regions [O 92]. A slight
modification of that proposal is a B-tree of super-nodes,
each consisting of multiple traditional single-page B-tree
nodes (this is reminiscent of proposals to interpret a sin-
gle-page B-tree node as a B-tree of cache lines, e.g.,
[CGM 02]). When a super-node fills up, it is split and half
its pages moved to a newly allocated super-node. The
implied page movement is very similar to that in B-tree
defragmentation, and it could be implemented very effi-
ciently using our techniques for defragmentation.

For write-optimized B-trees, the design overcomes the
two obstacles that have prevented success in prior efforts
to combine ideas from log-structured file systems with
online transaction processing. First, page access perform-
ance is equal to that of traditional (read-optimized, up-
date-in-place) B-trees, with no additional overhead due to
write-optimized operation and page migration. Second,
the presented design permits an arbitrary mixture of read-
optimized and write-optimized operation, allowing a wide
variety of policies that can range from traditional update-
in-place to a pure log-structured file system.

Alternatively, the presented design for write-
optimized B-trees could be employed in a traditional log-
structured file system to manage and maintain the map-
ping from logical page identifiers to their physical loca-
tions. Database researchers have recommended maintain-
ing this mapping and its underlying index structure with

strict and reliable transaction techniques, including shared
and exclusive locks, transaction commits, checkpoints,
durability through log-based recovery, etc. [L 95]. How-
ever, to the best of our knowledge, this recommendation
has not yet been pursued by operating system or file sys-
tem researchers.

The essential insights that enable the presented design
are that the pointers inherent in B-trees can keep track of
a node’s current location on disk, and that page migra-
tions in log-structured file systems are quite similar to
defragmentation. Exploiting the pointers inherent in B-
trees eliminates the indirection layer of log-structured file
systems. The similarity to defragmentation permits ex-
ploiting traditional techniques for concurrency control,
recovery, checkpoints, etc. Thus, the principal remaining
problem was equivalent to making defragmentation very
efficient. This problem was solved by representing the
chain of neighboring B-tree nodes not with physical
pointers as in traditional B+-trees but with fence keys,
which are copies of the separator key posted to the parent
node when a B-tree node is split. Migrating a page from
one location to another, both during defragmentation or
while assembling multiple dirty buffer pages into a large
write operation, requires only a single update in the
node’s parent. This change can be implemented reliably
and efficiently using a system transaction that does not
require forcing its commit record to stable storage and
also does not require logging or writing the page contents.

In addition to enabling fast defragmentation and write-
optimized operation, the design also simplifies splitting
and merging nodes as well as prefix truncation within a
node. It even substantially simplifies key range locking,
because it entirely eliminate the code complexity and run-
time overhead of crawling to neighboring pages in search
of a key to lock. Thus, lower and upper fence keys instead
of sibling pointers may be a worthwhile modification of
traditional B+-trees even disregarding defragmentation
and write-optimized larger I/O.

As the required mechanisms are simple, robust, and
quite similar to existing data structures and algorithms,
we expect that they can be implemented with moderate
development and test effort. A thorough and truly mean-
ingful performance analysis of alternative policies for
page migration and space reclamation will be possible
only with a working prototype implementation within a
complete database management system supporting real
applications. This future investigation must consider poli-
cies for choosing between in-place updates and append-
only writes, for logging during page migration, for buffer
management, for space reclamation, and for incremental
defragmentation using the mechanisms described earlier.

Acknowledgements
Discussions with Phil Bernstein, David Campbell, Jim

Gray, David Lomet, Steve Lindell, Paul Randal, Leonard

682

Shapiro, and Mike Zwilling have been stimulating, help-
ful and highly appreciated. Barb Peters’ suggestions have
improved the presentation of the material.

References
[BC 72] Rudolf Bayer, Edward M. McCreight: Organiza-

tion and Maintenance of Large Ordered Indices. Acta
Inf. 1: 173-189 (1972).

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-Trees.
ACM Trans. Database Syst. 2(1): 11-26 (1977).

[C 79] Douglas Comer: The Ubiquitous B-Tree. ACM
Comput. Surv. 11(2): 121-137 (1979).

[CAB 81] Donald D. Chamberlin, Morton M. Astrahan,
Mike W. Blasgen, Jim Gray, W. Frank King III, Bruce
G. Lindsay, Raymond A. Lorie, James W. Mehl, Tho-
mas G. Price, Gianfranco R. Putzolu, Patricia G. Selin-
ger, Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, Robert A. Yost: A History
and Evaluation of System R. Commun. ACM 24(10):
632-646 (1981).

[CGM 02] Shimin Chen, Phillip B. Gibbons, Todd C.
Mowry, Gary Valentin: Fractal prefetching B+-Trees:
optimizing both cache and disk performance. SIGMOD
Conf. 2002: 157-168.

[CLG 94] Peter M. Chen, Edward L. Lee, Garth A. Gib-
son, Randy H. Katz, David A. Patterson: RAID: High-
Performance, Reliable Secondary Storage. ACM Com-
put. Surv. 26(2): 145-185 (1994).

[ELS 97] Georgios Evangelidis, David B. Lomet, Betty
Salzberg: The hB-Pi-Tree: A Multi-Attribute Index
Supporting Concurrency, Recovery and Node Consoli-
dation. VLDB J. 6(1): 1-25 (1997).

[G 81] Jim Gray: The Transaction Concept: Virtues and
Limitations (Invited Paper). VLDB Conf. 1981: 144-
154.

[G 03] Goetz Graefe: Sorting and indexing with parti-
tioned B-trees. Conf. on Innovative Data Systems Re-
search, Asilomar, CA, January 2003.

[HM 00] Dave Hitz, Michael Marchi: A Storage Net-
working Appliance. Network Appliance, Inc., TR3001,
updated 10/2000, http://www.netapp.com/
tech_library/3001.html.

[HR 83] Theo Härder, Andreas Reuter: Principles of
Transaction-Oriented Database Recovery. ACM Com-
put. Surv. 15(4): 287-317 (1983).

[JS 89] Theodore Johnson, Dennis Shasha: Utilization of
B-trees with Inserts, Deletes and Modifies. PODS
Conf. 1989: 235-246.

[L 93] David B. Lomet: Key Range Locking Strategies
for Improved Concurrency. VLDB Conf. 1993: 655-
664.

[L 95] David B. Lomet: The Case for Log Structuring in
Database Systems. HPTS, October 1995. Also at
http://www.research.microsoft.com/~lomet.

[LM 03] Bernd Lober, Ulrich Marquard: Anwendungs-
und Datenbank-Benchmarking im Hochleistungs-

bereich von ERP-Systemen and Beispiel von SAP.
Datenbank-Spektrum 7: 6-12 (2003). See also
http://www.sap.com/benchmark.

[M 90] C. Mohan: ARIES/KVL: A Key-Value Locking
Method for Concurrency Control of Multiaction Trans-
actions Operating on B-Tree Indexes. VLDB Conf.
1990: 392-405.

[MHL 92] C. Mohan, Donald J. Haderle, Bruce G. Lind-
say, Hamid Pirahesh, Peter M. Schwarz: ARIES: A
Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using
Write-Ahead Logging. ACM Trans. Database Syst.
17(1): 94-162 (1992).

[NB 97] Kjetil Nørvåg, Kjell Bratbergsengen: Write Op-
timized Object-Oriented Database Systems. Conf. of
the Chilean Computer Science Society, Valparaiso,
Chile, November 1997: 164-173.

[O 92] Patrick E. O'Neil: The SB-Tree: An Index-
Sequential Structure for High-Performance Sequential
Access. Acta Inf. 29(3): 241-265 (1992).

[OF 89] John K. Ousterhout, Fred Douglis: Beating the
I/O Bottleneck: A Case for Log-Structured File Sys-
tems. Operating Systems Review 23(1): 11-28 (1989).

[PGK 88] David A. Patterson, Garth A. Gibson, Randy H.
Katz: A Case for Redundant Arrays of Inexpensive
Disks (RAID). SIGMOD Conf. 1988: 109-116.

[PP 03] Meikel Pöss, Dmitry Potapov: Data Compression
in Oracle. VLDB Conf. 2003: 937-947.

[RO 92] Mendel Rosenblum, John K. Ousterhout: The
Design and Implementation of a Log-Structured File
System. ACM Trans. Computer Syst. 10(1): 26-52
(1992).

[S 92] Margo I. Seltzer: File System Performance and
Transaction Support. Ph.D. thesis, Univ. of California,
Berkeley, 1992.

[S 93] Margo I. Seltzer: Transaction Support in a Log-
Structured File System. ICDE 1993: 503-510.

[SL 76] Dennis G. Severance, Guy M. Lohman: Differen-
tial Files: Their Application to the Maintenance of
Large Databases. ACM Trans. Database Syst. 1(3):
256-267 (1976).

[SO 90] Jon A. Solworth, Cyril U. Orji: Write-Only Disk
Caches. SIGMOD Conf. 1990: 123-132.

[SS 90] Margo I. Seltzer, Michael Stonebraker: Transac-
tion Support in Read Optimizied and Write Optimized
File Systems. VLDB Conf. 1990: 174-185.

[U 84] D. Unger: Generation Scavenging: A Non-
Disruptive High Performance Storage Reclamation Al-
gorithm. ACM SIGSOFT/SIGPLAN Software Eng.
Symp. on Practical Software Development Environ-
ments, Pittsburgh, April 1984.

[WBW 96] Christopher Whitaker, J. Stuart Bayley, Rod
D. W. Widdowson: Design of the Server for the Spi-
ralog File System. Digital Technical Journal 8(2): 15-
31 (1996).

683

