
Cache-Conscious Radix-Decluster Projections

Stefan Manegold Peter Boncz Niels Nes Martin Kersten

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
fStefan.Manegold,Peter.Boncz,Niels.Nes,Martin.Kersten g@cwi.nl

Abstract

As CPUs become more powerful with Moore’s law and
memory latencies stay constant, the impact of the memory
access performance bottleneck continues to grow on rela-
tional operators like join, which can exhibit random ac-
cess on a memory region larger than the hardware caches.
While cache-conscious variants for various relational algo-
rithms have been described, previous work has mostly ig-
nored (the cost of) projection columns. However, real-life
joins almost always come with projections, such that proper
projection column manipulation should be an integral part
of any generic join algorithm. In this paper, we analyze
cache-conscious hash-join algorithms including projections
on two storage schemes: N-ary Storage Model (NSM) and
Decomposition Storage Model (DSM). It turns out, that the
strategy of first executing the join and only afterwards deal-
ing with the projection columns (i.e., post-projection) on
DSM, in combination with a new finely tunable algorithm
calledRadix-Decluster, outperforms all previously reported
projection strategies. To make this result generally applica-
ble, we also outline how DSM Radix-Decluster can be inte-
grated in a NSM-based RDBMS using projection indices.

1 Introduction

Random memory access outside the CPU cache(s) has
become very expensive over the past decade and will re-
main so in the future. As such, the bottleneck for low-level
database data access is shifting from I/O to memory ac-
cess [2, 9, 3]. While the performance penalty for inefficient
usage can be dramatic, the database field need not despair.
Several decades of progress in database technology has al-
ready produced a host of techniques for processing data
volumes stored on large but slow memories (i.e., disks) by

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

making efficient use of a smaller but faster memory (RAM).
The recent research intocache-conscious query processing
focuses on transforming these techniques to work one level
higher up the memory hierarchy (optimize memory access
by making efficient use of the CPU caches) and/or to de-
vise new techniques. We build on recent work into making
the join operator cache-conscious, among others by intro-
ducing aPartitioned Hash-Join[18] that can be paired with
a fine-grained partitioning operator calledRadix-Cluster[6]
to partition huge relations into a large number of small clus-
ters that each fit a CPU cache with just a few tens of KBs.

A limitation of these previous efforts is that so far they
only considered joins on thin relations consisting solely
of the join keys and producing only a table of matching
oid pairs (i.e., a join-index [20]). However, any real-life
RDBMS join query goes accompanied by some projection
of non-join columns into the result. The cost of handling
such projection columns depends on their number, type(s)
and the relation cardinalities (both inputs and result). The
actual cost impact can vary from zero (in the not-so-realistic
case where there are no projections at all), to totally dom-
inating (e.g., imagine a join with thousands of projection
columns to propagate feature vectors in a multimedia ap-
plication). In our performance evaluation, we find that
queries may spend more than 90% of their time in projec-
tion. Therefore, efficient handling of projections should be
part of any cache-conscious join technique.

1.1 Problem Statement

This paper describes optimization of CPU- and memory-
resources of generic equi-joinincludingprojections:

SELECT larger.a1, .., larger.aY,
smaller.b1, .., smaller.bZ

FROM larger, smaller
WHERE larger.key = smaller.key

The focal point of our analysis is the performance impact
of the amount of projection columnsa1..aY respectively
b1..bZ , given various relation and join result sizes. Han-
dling projections efficiently only becomes hard whenboth
the smaller and larger table have many tuples, such that
their individual columns do not fit the cache. OurRadix-
Declusteralgorithm addresses this situation.

684

PRE−PROJECTION: POST−PROJECTION:
a1 b1

result
bXaY a1 b1

result
bXaY

a1 aY key

larger
key bXb1

smaller
a1 aY key

larger
key b1

smaller
bX

π (a1,..,aY,key)

radix_cluster(P1,B1) radix_cluster(P2,B1)

(key,b1,..,bY)π

phash_join(B1)

radix_cluster(P3,B2) radix_cluster(P4,B2)

phash_join(B2)

π(a1,..,aY) (b1,..,bX)π

Figure 1. Pre- vs. Post-Projection

The commonly applied projection strategy in a RDBMS
is pre-projection (see Figure 1), where the projection
columns are fetched in the table scans preceding the join,
and where the projection column values travel as ’extra lug-
gage’ together with the join keys through the join pipeline.
In contrast, Radix-Decluster is apost-projectionmethod,
i.e., one where first the join result is computed, creating a
(partial) join-index, and only afterwards the full query result
is produced by computing the projection columns. Though
we focus the experiments on one particular join algorithm
(Partitioned Hash-Join), the Radix-Decluster algorithm is
independent of the join method chosen.

1.1.1 RAM vs. Disk Optimization

Since we have already mentioned the analogy between op-
timizing CPU cache-access and optimizing disk access, it is
instructive to point out the main similarities and differences.
As for similarities, both disk and RAM have to contend with
a high random access latency, that relative to CPU speed
is increasing exponentially over time. Also just like disk,
RAM is a block device (block=cache line), and sequential
data access has now become much faster than random ac-
cess, even when random access makes use ofall data in the
block (we call this “optimal” random access). This effect
is caused by a new feature in memory subsystems called
data prefetching: the CPU or in some cases the memory
chipset automatically detect sequential access patterns and
schedule data loads in advance for these [10, 8]. This is
complemented by advances in DRAM technology, which
keeps banks of recently accessed locations open, such that
adjacent locations can be more quickly available. On our
experimentation platform, sequential access – as obtained
by STREAM [15] – is almost 10 times faster than “optimal”
random access: 3.2GB/s vs. 360MB/s (a 178ns latency for
getting a cache-line of 64 bytes makes for 360MB/s).

An important difference between disk and RAM is that
the disk can be controlled using an OS interface, allow-
ing traditional DBMS systems full control over their buffer
cache. In contrast, RAM is cached implicitly in hardware,
(most often) using an LRU mechanism with limited associa-
tivity. Thus, the only way that query processing algorithms
can now influence RAM caching is indirectly by controlling

data placement and access pattern. A second difference is
the small granularity of the CPU caches. There is a “15
year gap” between CPU cache and RAM sizes: problem
sizes of 2004 must now be crammed in caches having the
RAM sizes of 1989. This means that e.g., partitioning to fit
something large into the CPU cache must createmanymore
small partitions than classical partitioning to fit something
on disk into RAM ever had to. Having to manage (tens of)
thousands of partitions rather than a handful can expose bot-
tlenecks that remained unnoticed in the disk case, as we will
see in our discussion of the Radix-Cluster algorithm.

1.1.2 Experimentation Platform

The work reported here partly builds upon the research into
cache-conscious query processing in the MonetDB project.
MonetDB1 is a main-memory database system targeted at
query-intensive applications [5] that uses a vertically frag-
mented storage scheme called the Decomposition Storage
Model (DSM) [7]. In DSM, each tuple gets a unique
system-generatedoid that is typically densely ascending
(0,1,2,...), and for each column a DSM table is created that
holds [oid,value] pairs. Comparable to what RowIds are
in Oracle, the MonetDB system has support forimplicit
columns – also dubbedvoid columns (“virtual-oids”) – to
represent such densely ascendingoid columns on the log-
ical level without taking any physical storage. Thus in
MonetDB, each relational column is stored in a separate
[void,value] table. Most DSM systems [19, 17] do away
with the extra storage for theoid s, such that the DSM data
layout boils down to a single array for each column. DSM
is cache-friendly when (OLAP) queries need only a subset
of all table columns (i.e., in case of lowprojectivity). In the
commonly used NSM storage scheme (i.e., a layout with
each tuple contiguously stored), this means that parts of the
cache line will not be used. In DSM, each cache line only
contains values from the same column, and only relevant
columns are loaded, achieving optimal cache line usage.

A second characteristic of MonetDB is its column-wise
query processing model, which allowed for an implementa-
tion of its query processing algebra without need for an in-
terpreter to evaluate expressions (each operation performs
a simple, hard-coded, operation on large arrays of values,
producing a new column as result). This goes in conjunc-
tion with the absence of low-level record/attribute lookup
and data movement functionality, as columns are accessi-
ble by position as arrays of a homogeneous type. The ex-
periments performed confirm these factors give MonetDB a
significant advantage in terms of raw CPU efficiency that is
strongly linked to this query execution model.

The third main characteristic of MonetDB is cache-
conscious query processing. MonetDB has been the
birth ground for a number of novel cache-conscious algo-
rithms [6]. Radix-Decluster– the contribution of this paper
– is a crucial addition to this collection.

1Available athttp://www.sourceforge.net/projects/monetdb

685

1.1.3 Related Work

Though our experimentation platform is MonetDB, which
is a DSM system, we compare our approach with its more
common counterpart NSM, and in particular with pre-
projection in NSM (which is used in almost all commer-
cial database systems). However, there has recently also
been some research into NSM post-projection, in particular
the Slam- and Jive-Join algorithms [11]. While these al-
gorithms work under the assumption that the join-index is
already computed and available (hence pre-projection is not
an option), and they are designed mainly for an I/O setting,
we also include them in our NSM comparison with Radix-
Decluster to evaluate their usefulness from the perspective
of cache-conscious query processing.

An interesting alternative storage scheme is PAX[1],
which basically does DSM within an NSM disk page. Thus,
PAX cache-line usage can be as efficient as DSM under low
projectivity, but PAX still wastes I/O bandwidth on such
queries, which easily can cause a performance bottleneck.
Though we will make our case that Radix-Decluster on
DSM can be scaled to a disk-based RDBMS that runs on
a high bandwidth I/O subsystem (e.g., using a well-sized
RAID array of SCSI disks controlled through PCI-X), our
experimentation is limited to main-memory execution, by
lack of such an (expensive) setup. As in main-memory the
difference between PAX and DSM is small, we limit our-
selves here to the two extremes NSM and DSM.

Finally, we build here on previous work on detailed
performance modeling of hierarchical memory access
cost [12, 13] using hardware-independent formulas that are
parametrized by all relevant architectural characteristics.
These parameters can be derived automatically at run-time
with the Calibrator utility 2, which is also integrated in
MonetDB. The cost formulas are easy-to-define as they con-
sist of a combination of a number of basic patterns (with
known formulas) that can be combined automatically with
composition functions. In all, these cost models allow us to
quickly analyze the behavior of the various algorithms, and
to draw conclusions on their optimal parameter settings.

1.2 Outline

In Section 2, we give a short re-cap on cache-conscious
Partitioned Hash-Join and Radix-Cluster, which are basic
building blocks in this research. In Section 3, we show how
Radix-Cluster can be used to optimize memory access of
post-projections to one of the join relations. In order to op-
timize cache usage for projections onboth join relations,
we then introduce our newRadix-Declusteralgorithm. In
Section 4, we perform exhaustive experiments with pre-
and post-projection strategies both for the DSM and NSM
storage schemes, and compare non cache-optimized stra-
tegies with our Radix algorithms, as well as with Jive-
Join. In Section 5 we make our case why and how DSM

2Calibrator is available fromhttp://monetdb.cwi.nl/Calibrator

post-projection with Radix-Decluster should be integrated
in standard RDBMS technology, before we present our con-
clusions and discuss directions for future work in Section 6.

2 Cache-Conscious Join

We give a short re-cap on cache-conscious join, us-
ing Partitioned Hash-Joinin conjunction with Radix-
Cluster [6]. In [14], we give cost model descriptions for
these algorithms, and show how these correctly predict their
performance (see resp. Figures 9a and 9b).

2.1 Partitioned Hash-Join

In the Hash-Join algorithm considered in this paper, the
outer relation is scanned sequentially, while a hash-table is
used to probe the inner relation. The very nature of the hash-
ing algorithm implies that the access pattern to the inner re-
lation (plus hash-table) is random. Therefore,Partitioned
Hash-Joinfirst scans both relations, and partitions them ac-
cording to a hashing criterion, making each inner partition
smaller than the cache size, such that the subsequent Hash-
Joins on the corresponding partitions all have good cache
behavior [18]. The “cursors” in the output partitions where
the partitioning operator inserts tuples as it scans its input,
all need to be in a cache-line in order to achieve good per-
formance during partitioning. As the number of available
cache lines is limited (especially in systems that have a slow
TLB cache, with usually only 64 entries) and the number of
cursors grows with the size of the relation (a bigger relation
leads to more partitions of a given size), the simple single-
pass partitioning is limited in its scalability: above a certain
relation size, the partitioning operation itself becomes a per-
formance problem due to cache thrashing, as not all cursors
can be kept in cache anymore.

2.2 Radix-Cluster

The Radix-Clusteralgorithm, which uses incremen-
tal multi-pass partitioning, has been shown to solve the
operand partitioning problem. It provides efficient par-
titionings needed for large joins in two or even more
passes [6]. Briefly,radix cluster (B,P) uses the lowerB
Radix-Bitsof the integer hash-value of the join attribute to
cluster a relation intoH = 2B partitions. By performingP
sequential passes, each of which useBp bits, starting from
the left (∑P

1 Bp = B), Radix-Cluster limits the number of
partitions created per pass toHp = 2Bp (∏p

1 Hp = H). Fig-
ure 2 sketches a Partitioned Hash-Join of two relations L
and R. First, both relations are clustered into 8 partitions
(3 bits) using 2 passes. The first pass uses the 2 left-most
of the lower 3 bits to create 4 partitions. In the second pass,
each of these partitions is sub-divided into 2 partitions using
the remaining bit. Once both relations are clustered, a hash-
join is performed on all matching partitions. For ease of

686

00

11

10
01

0

0

1
1 0

1

0

1

001

010

100

111

011

000

0
1

0
1

0
1

0

11
10

01

00

2−pass radix−cluster

(111)
(100)

(110)

(001)

(001)
(001)
(011)

(001)
(100)

(000)
(101)
(010)

2−pass radix−cluster
hash−join

partitioned

92

57
17
81

66

06

96
75

03

20
37

47

96
57
17
81
75
66
03

20

06
47

92

37

17

32

35
20

96

03

66

10
2

47 1

32

17

66
2

96

47

35
20

03
10

(011)

(010)

(000)

(100)
(111)

(001)

(011)

(010)
(000)

(010)

L
R

47
92

06

66
75

57

03
17

81

20

37
96

66

47
20

03

35

96
2

32

10

17

black tuples hit (lowest 3-bits of values in parenthesis)

Figure 2. Partitioned Hash-join

presentation, we did not apply a hash-function in Figure 2.
In practice, though, a hash function should even be used on
integer values to ensure that all bits of the join attribute play
a role in the lowerB bits used for clustering.

3 DSM Post-Projection

The DSM post-projection strategy has two phases:

1. Make a join-index.First we access only the DSM ta-
bles storing the key columns, and join these together
to find matching pairs of tuples: a join-index [20].

2. Do column projections.One-by-one, we construct the
columns of the result relation, each in a separate DSM
table, by using the join-index to fetch values from one
input column (also stored in a DSM table).

The join-index consists of[oid,oid] combinations of
pointers into both “smaller” and “larger” input relations.
Theseoid s are not necessarily implemented as pointers, but
may also be integer record numbers, byte offsets or RowIds
(combinations of disk-block numbers and byte offsets). The
projection operations are Pointer-Based Joins orPositional-
Joins, with negligible CPU cost. In MonetDB, columns are
stored in[void,value] tables, which are implement as ar-
rays3. Thus, anoid is a simple integer (starting at 0 for the
first entry), and Positional-Join equals array lookup.

One should note that the DSM post-projection join strat-
egy materializesthe join result. This is inevitable for the
so-called “hard” join cases, where we must join two re-
lations that do not fit the small-but-fast memory (i.e., the
CPU cache). This is similar to scalable I/O-based join algo-
rithms such as Sort-Merge-Join or Hybrid Hash-Join, that
must be applied when the inner relation exceeds the RAM
buffer size and pipelining is not possible.

3Columns of variable-sized types like string use an extra – separate –
memory buffer, where the array simply contains integer offsets into.

In MonetDB, a join only is “hard” if theindividual
columns - rather than the entire “smaller” relation - exceed
the CPU cache. In the other, so-called “easy” cases, we
can use e.g., simple non-partitioned Hash-Join, by build-
ing a hash-table on the “smaller” relation to generate the
join-index. The join-index will then contain theoid s
of the “larger” relation in ascending order, such that the
Positional-Joins for projecting the input columns into the re-
sult exhibit a sequential RAM access pattern. As discussed
in Section 1.1.1, sequential RAM access is well-supported
by modern hardware. In contrast, the Positional-Joins for
the projections from the “smaller” relation will have a ran-
dom access pattern. Luckily, these columns fit the CPU
cache in the “easy” cases, so the cache-lines where the in-
put columns are stored will stay cached in the CPU after the
first access, such that subsequent (adjacent) data fetches can
be serviced from the cache.

In this paper, we attack the problem of executing “hard”
joins in a cache-conscious manner. With CPU caches lim-
ited to a couple of MBs, and assuming an average column-
width of 4 bytes, this currently translates into joins between
(intermediate) relations thatbothhave 500K or more tuples,
which is a common and thus relevant problem.

3.1 Partial Radix-Cluster

We use Partitioned Hash-join, as described in Section 2,
to join two relations that both exceed the CPU cache in a
cache-conscious manner. Due to the nature of Partitioned
Hash-Join, neither theoid s of the “larger” nor those of the
“smaller” relation appear in ascending order in the resulting
join-index. A (standard) improvement is therefore to sort
the join-index, in the order of theoid s of the “larger” rela-
tion. In MonetDB, we re-use the Radix-Cluster algorithm as
a fastRadix-Sort, by exploiting the property thatoid s stem
from dense domains[0::Ni (whereN is the size of some
relation). For all types butoid , Radix-Cluster transforms
each value with a hash function, both to obtain integer bits
and to combat skew. Foroid s, hashing is not applied as
oid s are integers already and not skewed. This also means
that a Radix-Cluster on allsignificantbits (i.e., the lower-
mostlog2(N) bits) is equivalent to Radix-Sort. Radix-Sort
can be compared with traditional run-generating sort algo-
rithms, as it also partitions the data on a sequential pass, and
then (iteratively) further processes each partition.

Fully sorting the join-index, however, is overkill as a
partial ordering can achieve the same effect. If the join-
index consists of clusters that each containoid s of only a
certain (disjoint) range, a Positional-Join into a projection
column sequentially processes each cluster one by one, and
while processing each individual cluster, accesses only a
limited region in the projection column. If this region is
small enough (such that it fits the cache), the algorithm will
approach optimal cache (re-)usage. To make partial cluster-
ing possible, we added the possibility to indicate to Radix-
Cluster to stop early and ignore a certain number of lower

687

’spanned’ cluster size in
source column is chosen such

that it fits the cache,
as the positional joins

access them randomly

5
2
4
0
1

3
1
2
3

0

4
5

3
0
4
7
7

3

4

7

3

1xx

0xx
0
3

7

y
y
x
z
y
y

1
2
3

0

4
5

D
D
A
C
D
D

1
2
3

0

4
5

H
H
E
G
H
H

1
2
3

0

4
5

x
z
z
y

y

z
z

y

0
1
2
3
4
5
6
7

A
A
B
D
C
D
D
D

0
1
2
3
4
5
6
7

E
E
F
H
G
H
H
H

0
1
2
3
4
5
6
7

5
4
2
0
1

3
3
4

7
7

3

0

(Partial Radix−Cluster)

mark

radix_cluster(P=1,B=1,I=2)

source table

(JOIN_LARGER)

void (zero−storage) column (dashed)

arrow−head indicates sortedness

(JOININDEX)

with clustered access
positional joins

prior computation
of join index

result table

CACHE
SIZE

Figure 3. Projection Joins Using Partial
Radix-Cluster

Radix-Bits. Stopping early leaves the relation unsorted on
the lowermost bits (i.e., partially ordered). The benefit of
this “partial-cluster” strategy is that it has the potential to
optimize memory performance of the column projections
using Positional-Joins just as well as a full Radix-Sort, but
at a clustering cost that is much less.

Figure 3 shows that we first Partially Radix-Cluster
JOININDEX in one pass (P= 1), using one Radix-Bit (B= 1)
and stopping early at the first (I = 1), lowermost, Radix-Bit.
On the resulting[oid,oid] table, we create a[void,oid]
view JOIN LARGER(using themark() operator [5]). The right
column ofJOIN LARGERcontains the clusteredoid column,
and the left column consist of a new densely ascending
oid sequence that represents the join result. Subsequent
Positional-Joins between thisJOIN LARGERview and the in-
put columns have a nice sequential access pattern, eliminat-
ing the cache problem. We compute the optimal number of
Radix-BitsB and Ignore-BitsI as follows:

B = 1 + log2(jCOLUMNj) – log2(C / COLUMN))

I = log2(jJOININDEXj) – B
wherejRj denotes the number of tuples in a tableR, R de-
notes the byte-width of these tuples,C is the size of the
cache in bytes (see [12, 13]). For example, if we have a
CPU cache of 64KB and we have values that are 4 bytes
wide, then a cluster of 16,384 tuples would just fit. If the
source table from where the projections come has 10M tu-
ples, we would create 210 = 1024 clusters to arrive at a mean
cluster size of 10,000 (which would be the largest cluster
size< 16,384). Such clusters can be created with a partial
Radix-Cluster on the highest significant 10 bits (i.e., bits 24-
15, aslog2(10M) = 24), allowing Radix-Sort to ignore the
lowermost 14 bits.

1xx

0xx 5
2
4
0
1

3
3
0
4
7
7

3
5
4
2
0
1

3
3
4

7
7

3

0

1
2
3

0

4
5

4
7
7

3

0
3

k
l
j
i
i
j

1
2
3

0

4
5

g
h
f
e
e
f

1
2
3

0

4
5

.

.

.

.

.

.

1
2
3

0

4
5

.

.

.

.

.

.

1
2
3

0

4
5

1
2
3

0
2
2
0

2

e
f
g
f
h
e

1
2
3

0

4
5

i
j
k
j
l
i

1
2
3

0

4
5

1
2
3
4
5

0
5
0
2
1
3

4

(CLUST_VALUES)5
0
2

4
1
3
2

0

10x

00x

01x

1
2
3
4
5

0
5
2
4
0
1

3

11x

1
3

5
4

(Partial Radix−Cluster)

(CLUST_RESULT)

(JOIN_SMALLER)

column values from
used for fetching

other source table
(see figure 3)

(JOIN_LARGER)

(JOININDEX)

radix_cluster(P=1,B=2,I=1)

e
f

g

h
e

f
1
2
3

0

4
5

i
j

k

l
i

j
1
2
3

0

4
5

(COLUMNS)

1
2
3
4
5

0
1
3
2
5

0

4

(CLUST_SMALLER)

mark

mark

radix_cluster(P=1,B=1,I=2)
(Partial Radix−Cluster)

(CLUST_BORDERS)

mark

radix_count(B=2,I=1)

result table

RADIX DECLUSTER

with clustered access
positional−join

prior computation
of join index

source table

Figure 4. Optimized DSM Post-Projection Us-
ing Radix-Decluster

3.2 Radix-Decluster

Even when using Partial Radix-Cluster to optimize pro-
jections into the “larger” relation, cache problems still occur
for the projections from the “smaller” relation. It is clear
that the join-index (and thus the join result) cannot simul-
taneously be clustered inboth oid orders. Figure 4 shows
that after performing the projections into the “larger” rela-
tion, we re-cluster the viewJOIN SMALLER(that similar to
JOIN LARGERconsists of fresh densely ascendingoid s left,
paired with the right column of the clustered join-index).
This yields a temporary[oid,oid] table. We then cre-
ate two[void,oid] viewsCLUST RESULTandCLUST SMALLER
from this table using themark() operator. The left column
of these views is a fresh “void” column of new ascending
oid s. The right column ofCLUST SMALLERholds theoid s of
the join-index that point into the “smaller” table in a nice
clustered order, while the corresponding values of the right
column ofCLUST RESULThold the correct position of those
join-tuples in the final result. The next step in the process is
to useCLUST SMALLERto perform the projections with cache-

688

3
5

1
4
6

2
1
2

4
5

0
4
0

1
5

3 e
f
g
f
h
e

1
2
3

0

4
5

g
h1

2
3

0

4
5

e

put f at 2; delete empty cluster;
advance window; reset

1
2
3
4
5

4
0
2
1
5

e
f
g
f
h
e

1
2
3

0

4
5

1
2
3

0

4
5

4
6

2
2
4

0

next cluster (3 is outside window)

2
3
4
5

0

0
2
1
5

3 e
f
g
f
h
e

1
2
3

0

4
5

g
h
f
e

1
2
3

0

4
5

6
2

5
1

put f at 4; delete empty cluster

3
5

1
4
6

2

2
3
4
5

0

0
2
1
5

3 e
f
g
f
h
e

1
2
3

0

4
5

g
h1

2
3

0

4
5

e

next cluster (4 is outside window)

g
h
f

f

1
2
3

0

4
5

1
2
3
4

0
4
0
2
1

3 e
f
g
f
h
e

1
2
3

0

4
5

6 5

put e at 5; delete empty cluster

e

advance window; ready

1

3
4
5

0
4

2
1
5

3 e
f
g
f
h
e

1
2
3

0

4
5

1
2
3

0

4
5

4
6

2
2
4

0

put g at 0; advance in cluster

3
5

0 g
h1

2
3

0

4
5

1
2
3
4
5

4
0
2
1
5

e
f
g
f
h
e

1
2
3

0

4
5

4
6

2

put e at 3; advance in cluster

1
2
3

5

0
4
0
2

5

3 e
f
g
f
h
e

1
2
3

0

4
5

g
1
2
3

0

4
5

3
4

0
4
6

2

put h at 1; advance window; reset

1
2

4
5

0
4
0

1
5

3
3
4

0 e
f
g
f
h
e

1
2
3

0

4
5

g
1
2
3

0

4
5

4
6

2

next cluster (2 is outside window)

cluster end positions

cluster start positions

result column

insertion window

current element
under consideration

MEMORY ACCESS PATTERN:

− single multi−cursor sequential

− cacheable random access in result column
(clustered in insertion window)

− repeated sequential scan over cluster
start/end array (which generally is small enough to be cacheable)

CLUST_RESULT

1
2
3

0
2
2
0

2

CLUST_VALUES

scan over CLUST_RESULT and CLUST_VALUES

3 2

0
1 4

1 4

5 5

2 0

0 3

4 1
3 2

3

CLUST_BORDERS

Figure 5. The Memory Access Pattern Of Radix-Decluster

efficient Positional-Joins. This, however, produces projec-
tion columns (denotedCLUST VALUES) which are not yet in
the correct order. TheRadix-Declusteralgorithm – depicted
in detail in Figure 5 – performs the task of putting them in
the correct final result order in a cache-friendly manner.

Radix-Decluster exploits the following two properties of
the right column ofCLUST RESULT, which was created by
Radix-Clustering a leftvoid column on the order of its right
column: (1) as Radix-Cluster neither adds nor deletes any
values, this column would again form a dense sequence
(0;1; ::N�1) when sorted.(2) within each cluster, theoid s
are still sorted. This happens because Radix-Cluster scans
its input sequentially, and appends values to their respective
output cluster, thus locally respecting the input order.

Property (2) implies that this right column can be sorted
by merging all sorted clusters. However, the CPU cost of a
merge ofN tuples partitioned overH = 2B sorted clusters is
at leastO(log(H)N). Alternatively, using Property (1) we
could just insert the values fromCLUST VALUESin the result
array using theoid s fromCLUST RESULTas array index, with

CPU costO(N). However, these insertions would constitute
a random access pattern larger than the CPU cache.

We obtain the best of both approaches, by restricting the
random access to aninsertion-window W(cf., Figure 5).
Each iteration of the algorithm processes each cluster once,
advancing a cursor in it while theoid s still fit in the win-
dow, inserting the values at thisoid position. Property (1)
tells that after processing each cluster once,all positions in
the insertion window will have been filled (it is a denseoid
sequence). Then, the window is shiftedjWj positions and
the process repeats until all cursors have reached the end of
their cluster. The window sizejWj is preferably much larger
than the number of clusters, such that per iteration in each
cluster multiple tuples fall into the window. These multiple
tuples are accessed sequentially in bothCLUST RESULTand
CLUST VALUES. This memory access pattern is crucial, as the
sequential access fully uses the cache lines that store both
columns. The only restriction is thatjWj must fit the mem-
ory cache (i.e.,jjWjj �C), as it is filled in random order.

Pseudo-code of the algorithm is in Figure 6. The

689

<Type>[]
radix_decluster<Type>(

int cardinality, nclusters,
Type values[cardinality],
oid IDs[cardinality],
struct { int start, end } cluster[nclusters])

{
<Type> result_column[] = malloc(cardinality*sizeof(<Type>));
int windowLimit, windowSize = CACHESIZE / 2*sizeof(<Type>);

for(windowLimit=windowSize; nclusters>0; windowLimit+=windowSize) {
for(int i=0; i < nclusters; i++) {

while (IDs[cluster[i].start] < windowLimit) {
result_column[IDs[cluster[i].start]] = values[cluster[i].start];
if (++cluster[i].start >= cluster[i].end) {

cluster[i] = cluster[--nclusters]; // delete empty cluster
if (i >= nclusters) break;

}
} // while more cluster elements in window

} // while more clusters to merge
} // while more insertion windows to fill result
return result_column;

}

Figure 6. The Radix-Decluster Algorithm

radix count previously mentioned in Figure 4, analyzes a
(partially) Radix-Clustered column and returns the actual
sizes of the clusters. These sizes are used in the Radix-
Decluster to initialize thecluster border structure.

The Radix-Decluster projection strategy is more expen-
sive than the partial-cluster strategy discussed earlier. Both
strategies feature one initial Radix-Cluster, and for each
projection column a Positional-Join, but the former adds
an extra Radix-Decluster operation for each projection col-
umn. Hence, it will only be used for getting projection
columns from the table with cheaper projections. Which
input relation in the join has the cheapest projection phase
depends on the number of projection columns in both re-
lations, the data types in these projection columns, and the
number of tuples in both input relations.

4 Performance Evaluation

In this section, we present experiments done on a
2.2GHz Pentium 4 machine, with a 64-entry TLB with miss
latency of 50 cycles, a 16KB L1 cache with 32-byte cache
lines and a miss latency of 28 cycles, a 512KB L2 cache
with 128-byte lines and a miss latency of 350 cycles (i.e,
the latency of the 2GB PC800 RDRAM main memory is
178ns).4 Our experimentation platform is MonetDB, also
in the NSM experiments, where NSM is “simulated” by in-
troducing new atomic types that hold 1, 4, 16, 64, and 256
integer column values, and which are copied and projected
from using a NSM projection routine that iterates over such
a “record” and copies selected values out of it.

In our experiments, we executed our example project-
join SQL query using various DSM and NSM query pro-
cessing strategies described in the following. We use re-
lations of equal sizeN ranging from 15K to 16M tuples,

4The early work on cache-conscious query processing [18] reported a
30 cycle latency, thus we observe a 12-fold increase in 9 years.

consisting ofω2f1;4;16;64g all-integer (4-byte) columns.
We vary the join hit ratesh 2 f3;1;0:3g, and projectπ 2
f1;4;16;64jπ � ωg columns from both relations into the
result. Finally, we also present experiments where one of
the join relations is a selection on a base-table that selected
a fractions2 f1;0:1;0:01g, such that we getsparseprojec-
tions. In all experiments, all processing happens in main-
memory (no I/O or page faults).

4.1 DSM Post-Projection Experiments

We first analyze the performance behavior of Radix-
Decluster in isolation. Figure 7a shows the relationship be-
tween size of the insertion window (cf., Section 3.2 and Fig-
ure 5) and performance. We used hardware performance
counters [8] to obtain detailed information on the amount
of L1, L2 and TLB misses. This data enabled us to formu-
late and validate the performance model described in [14].
In this formula, #w= jX0j=jWj denotes the total number of
insertion windows used. Our models can predict and accu-
rately explain what is happening, as is seen by the fact that
the dots (values obtained by experiments) and lines (the cost
model) in Figures 7a, 7b and 9d nicely coincide.

If we look in detail at Figure 7, we see Radix-Decluster
become faster as the insertion window becomes larger,
which is explained by the fact that a larger insertion win-
dow leads to higher average number of tuplesw processed
per cluster in each iteration, improving sequential memory
bandwidth usage inCLUST RESULTandCLUST VALUES. How-
ever, the insertion window sustains a random access pattern,
such that whenjjWjj becomes bigger than the cache sizeC
(our L2 has 512KB), performance drops sharply, due to an
increase in L2 misses. A less important threshold is when
jjWjj becomes bigger than the number of pages that fit the
TLB, after which TLB misses will start to occur during the
inserts. Both these thresholds are drawn in Figure 7a. An-
other cause for TLB misses is the number of input clusters:
if it is bigger than the number of TLB entries (and it is,
in the depicted case of 8 Radix-Bits = 256 clusters), each
Radix-Decluster iteration will cause two TLB misses when
starting to process a new cluster, both inCLUST RESULTand
CLUST VALUES. However, this happens only every one inw
tuples, such that its impact diminishes quickly with increas-
ing window size. Our analysis showed that choosingw= 32
is sufficient to achieve good memory bandwidth usage, and
this is the value we use in Figure 9d to confirm the accuracy
of our model on multiple cardinalities and Radix-Bits.

We then turn our attention to the interplay between
Radix-Cluster, Positional-Join and Radix-Decluster in our
Radix-Decluster DSM post-projection strategy, as depicted
in Figure 7b. In Section 3.1, we already gave a formula
for computing a good number of bits for Radix-Clustering
the join-index, such that the subsequent Positional-Joins
run well. Figure 9c confirms the accuracy of our predic-
tive model for Positional-Joins between relations of multi-
ple cardinalities (hit-rate 1), clustered with varying granu-

690

1k 32k 1M 32M

insertion window size (||W||) [in bytes]

L1 TLB L2 (||W|| matches
cache sizes)

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

L1 misses
L2 misses
TLB misses
milliseconds

 0 5 10 15 20 25

number of radix-bits (B)

1e+2

1e+3

3e+3

m
ill

is
ec

on
ds

total
radix cluster
positional join
radix decluster

 1 2 4 8 16 32 64 128 256

number of projection-attributes (π)

2e+1

1e+2

1e+3

1e+4

1e+5

2e+5

m
ill

i-
se

co
nd

s

unsorted
sorted

p.-clustered
declustered

cardinalities:
8000000

500000

Modeled (lines) vs. Measured (points) Performance
a) Number of Events and Elapsed Time

(input clustered on 8 bits)
b) Components and Total Cost

(using best insertion window size)

Figure 7. Radix-Decluster (N = 8M, π = 1)

”larger” table: Unsorted vs Sorted vs Radix-Cluster
”smaller” table: Unsorted vs Radix-Decluster
(see text for details)

Figure 8. DSM Post-Projection

larity (Radix-Bits). In the setting of Figure 7b we can in-
deed verify thatjRj = 8M, R = 4 leads toB = 8, which
is the lowest number of Radix-Bits for which Positional-
Join runs optimally (it then achieves minimal L2 misses).
This is usually the optimal point overall, as Radix-Decluster
cost only increases with more Radix-Bits. It sometimes is
better to use even fewer Radix-Bits. The performance hit
taken on Positional-Join, might then be compensated by a
cheaper Radix-Cluster. As Radix-Cluster is executed only
once, but Positional-Join for every projection column, this
usually happens only if the number of projection columns
π is very low. To perform well, that is, without running
into cache or TLB problems, Radix-Decluster is limited by
two factors. First, we need to process a sufficiently high
w tuples from each input cluster to exploit the sequential
memory bandwidth. We saw above, thatw = 32 is the
value to choose. Second, the insertion window size must
not exceed the cache sizeC. From this, we can conclude
that Radix-Decluster can handle relations of sizes up to
jRj = C2=(32�W

2
) efficiently. This formula resembles a

similar bound as given in [11] for Jive-Join.
We finally analyze which DSM post-projection strategy

for our generic join query works best and under which cir-
cumstances. Note that for DSM systems onlyπ matters, not
the actual number of columns in the tableω (as they are
fragmented vertically in distinct columns - and the unused
columns stay untouched). Therefore, a DSM experiment for
a certainπ holds for allω. We consider four strategies, each
identified with a one-letter code:

u Unsorted:one Positional-Join from the join-index into
each projection column.

s Sorted: first Radix-Sort the join-index, then execute
the Positional-Joins.

c partial-Cluster: first partially cluster the join-index.
We take the number of Radix-Bits that works best (on

our platform, this leads to 256KB clusters).

d radix-Decluster:like the previous, but each Positional-
Join is followed by Radix-Decluster.

Figure 8 summarizes the performance of the various
DSM post-projection strategies, depending on the amount
of projection columnsπ and cardinalityN. For small
cardinalities (N � 125K), all strategies that do any kind
of reordering lose to simple unsorted processing of the
Positional-Joins, since the columns are so small that they
fit the cache anyway. For larger cardinalities, however, the
unsorted approach always loses by a big margin (e.g., by
almost a factor 10 atN = 8M andπ = 256). With small
π, partial-clustered processing beats sorted processing. The
gap shrinks with growingπ, and withπ > 16, sorted pro-
cessing wins. Finally, we see that the Radix-Decluster
strategy always loses from the partial-cluster strategy, but
is actually quite competitive, beating unsorted processing
by a large margin. As explained, Radix-Decluster is to be
used only for the second (smaller) projection table, with
unsorted processing as the only alternative, as sorting or
partial-cluster is only applicable to the first projection table.

4.2 Comparison of Overall Join Strategies

Figure 10 shows a comparison of DSM Post-Projection
using Radix-Decluster with NSM Pre-Projection, DSM Pre-
Projection, and two NSM Post-Projection variants: our own
Radix-Decluster and Jive-Join [11]. All these variants use
the cache-conscious Partitioned Hash-Join; they vary only
in the projection strategy. To show the overall effect of all
cache optimizations, we also include NSM Pre-Projection
with naive non-partitioned Hash-Join (“NSM-pre-hash”).

To analyze the impact of all parameters (π;N;h), Fig-
ure 10 depicts three plots, each varying one parameter while
keeping the others fixed. We observed similar behavior in
experiments with different values for the fixed parameters.

691

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

number of radix-bits

3e+04
L1TLB L2

m
ill

is
ec

on
ds

cardinalities in all plots:

a) Radix-Cluster

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

number of radix-bits (0 = unclustered)

3e+04
L2 TLB L1

m
ill

is
ec

on
ds

16000000 4000000

b) Partitioned Hash-Join

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

number of radix-bits (0 = unclustered)

3e+04
L2 TLB L1

m
ill

is
ec

on
ds

1000000 250000

c) Clustered Positional Join

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

number of radix-bits

3e+04
L1TLB L2

m
ill

is
ec

on
ds

cardinalities in all plots:

d) Radix-Decluster

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

number of radix-bits

3e+04
L1TLB L2

m
ill

is
ec

on
ds

16000000 4000000

e) Left Jive-Join

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

number of radix-bits

3e+04
L2 TLB L1

m
ill

is
ec

on
ds

1000000 250000

f) Right Jive-Join

Figure 9. Modeled (lines) vs. Measured (points) Performance of various Join-Phases (DSM, π = 1)

Figure 10b shows that with decreased hit-rate, all strate-
gies become cheaper (due to the smaller join result) but
DSM Post-Projection even more, which is explained by the
decreased overall impact of the projection phase (with the
relatively expensive Radix-Decluster), with respect to the
cost for creating the join-index with Partitioned Hash-Join.

Figure 10c shows that all strategies scale linearly with
cardinality. The steeper increase of DSM Post-Projection
(“DSM-post-decluster”) in the lower range ofπ occurs be-
cause on small cardinalities, individual columns fit in the
cache, such that the relatively expensive Radix-Decluster is
not necessary, as indicated by the point types that identify
the projection method used for both the left and the right
table (with the one-letter codes defined in Section 4.1).

4.2.1 Pre-Projection Alternatives

Most systems other than MonetDB that use DSM or other
forms of vertical fragmentation, such as transposed files [4]
or projection indices [16], use a scan operator that scans all
columns simultaneously (calledAssemble() in [17]).

One factor to consider in all our comparisons is that
DSM Post-Projection has a CPU efficiency advantage over

all other alternatives. Due to the column-at-a-time execu-
tion in MonetDB, its operators have “zero degree of free-
dom”, such that in their implementation a hard-coded oper-
ation on a hard-coded type is executed in a tight inner loop
that iterates over large arrays. Modern compilers can handle
such code well, achieving high IPC by e.g., loop pipelining.
The other strategies handle all projection columns simulta-
neously (tuple-at-a-time), and have to deal with some de-
gree of freedom, namely a list of projection columns, which
is passed at run-time (additionally, the NSM strategies have
to extract column values from a NSM record by looking at
record offsets stored in a table header). Such code not only
has to perform some more work (CPU overhead) but the ad-
ditional complexity and dependencies in the inner loops are
bound to hinder the compiler in getting a good IPC.

The main difference in Figure 10a between DSM Pre-
Projection (“DSM-pre-phash”) and DSM Post-Projection is
this very CPU advantage of the latter. A second smaller dif-
ference is that as Pre-Projection handles all projections at
the same time (during the join), less tuples fit in the clusters
created by Radix-Cluster, such that it more quickly needs
multiple passes. This is again compounded by the CPU

692

 1 2 4 8 16 32 64

number of projection-attributes (π)

(applies to all plots)

3000

1000

 100

m
ill

is
ec

on
ds

NSM-pre-hash
NSM-post-decluster
NSM-post-jive

a) Impact of Projectivity
(N = 500K, ω = 64, h= 1:1)

1:3 1:1 3:1

join hitrate (h)

(applies to all plots)

3000

1000

 100

m
ill

is
ec

on
ds

NSM-pre-phash
DSM-pre-phash

b) Impact of Join Hit Rate
(N = 500K, ω = 64, π = 4)

15k 62k 250k 1M 4M 16M

cardinality (N)

(applies to all plots)

10000

 1000

 100

 10

 1

m
ill

is
ec

on
ds

DSM-post-decluster:
left/right: u/u

c/u
c/d
s/d

c) Impact of Cardinality
(ω = 64, π = 4, h= 1:1)

DSM Post-Proj. vs NSM Post-Proj. (Radix-Decluster & Jive-Join) vs NSM Pre-Proj. (simple & partitioned Hash-Join) vs DSM Pre-Proj.

(Error bars indicate sparse DSM Post-Projection performance; i.e., one join relation is a 10% resp. 1% selection of a larger base table.)

Figure 10. Overall Join Performance

disadvantage, allowing it to trade less extra CPU for better
memory access (e.g., two-pass Radix-Cluster for creating
many clusters almost never wins, leaving the strategy with
a bad memory access pattern).

The difference between DSM Pre-Projection and NSM
Pre-Projection (“NSM-pre-phash”) is mainly in the better
cache-line usage of DSM. On the positive side, the projec-
tions done by the Radix-Clustering of the NSM relations
access the input relation sequentially. Thus, even if cache-
lines are used sparsely, the pain will be reduced somewhat
by automatic memory prefetching on modern hardware (it is
“only” a bandwidth problem). As can be seen in Figure 10a,
this impact is only considerable at lowπ.

Finally, the big difference in NSM Pre-Projection be-
tween non-partitioned and Partitioned Hash-Join is ex-
plained by the performance hit taken by uncachable random
memory access. As the projectivityπ increases, naive Hash-
Join uses its cache lines relatively better, and it approaches
Partitioned Hash-Join (but on no occasion surpasses it).

4.2.2 NSM Post-Projection Alternatives

The performance of NSM Pre-Projection atπ = 1 in Fig-
ure 10a roughly corresponds to the first phase (the creation
of the join-index) in the NSM Post-Projection strategies.
This cost is considerable, giving both Radix-Decluster on
NSM (“NSM-post-decluster”) and Jive-Join (“NSM-post-
jive”) a hard time competing with the other strategies, as
creating the join-index is only their first step. Subsequently,
they need to access the wide NSM base tables one more
time for performing the projections. This would of course
have been very different had we assumed the (clustered)
join-index to be already present as an accelerator structure.
As we concentrate on large ad-hoc joins, however, the join-
index cannot have been precomputed.

Jive-Join first sorts the join-index, and then carries out a
special Positional-Join (“Left Jive-Join”) with the one join
input, that directly re-sorts its output on theoid s of the other
table. It generates two separate outputs, in the same order
(which is the final result order), one containing the clus-
teredoid s, the other containing all projection columns from
the first join input. In the second phase, a second special
Positional-Join (“Right Jive-Join”) is done between each
cluster ofoid s (that is first sorted for better access) and the
second table, where the results are written back in the order
of the result (the order of theoid s before re-sorting) [11].

As the detailed performance results on Left and Right
Jive-Join in Figures 9e and 9f show, the Left Jive-Join phase
may suffer from a too high cluster fanout in much the same
way single-pass Radix-Cluster does, while the Right Jive-
Join may suffer from too few (=big) clusters, much like Par-
titioned Hash-Join does. However, the strategy of creating
not too many cluster in the first phase, then refining them
with Radix-Cluster in order not to have too big clusters in
the Right Jive-Join, does not work as then the reordering in
Right Jive-Join has random access to a too large cluster.

The scalability of both Radix-Decluster as well as Jive-
Join is limited toO(C2=T2), whereT is the tuple width.
Therefore, on large cardinalities, wide NSM tuples can
quickly get these algorithms into cache problems, limiting
their applicability for cache-conscious join.

4.2.3 Sparse Projections

Sparse projections occur when a join relation is a selection
on a base table. Figure 11 shows that the performance of
Positional-Join suffers significantly with a decreasing se-
lection percentage. This is more of an issue for DSM than
for NSM, as in DSM cache-lines hold values of multiple
consecutive tuples, and if only a small percentage is used,

693

1e+01

1e+02

 0 5 10 15 20 25

m
ill

is
ec

on
ds

number of radix-bits (0 = unclustered)

2e+02

selectivities: 1% 10% 100%

Figure 11. Impact of Selectivity: Sparse Clus-
tered Positional Join (N = 1M)

sequential RAM bandwidth utilization decreases. In NSM,
cache-lines typically hold only values of a single tuple, and
bandwidth efficiency mainly depends onprojectivity, not on
selectivity. Still, this need not be a show-stopper, as sequen-
tial RAM bandwidth is in rather generous supply and unlike
latency shows steady progress as hardware evolves.

The effect of sparse projections on DSM Post-Projection
is also shown in all Figures 10a,b,c using error bars. The
smallest error bar shows performance with 10% selectivity
(i.e., cardinality of the underlying base-table is 10N) and the
second corresponds to 1% selectivity (cardinality is 100N).
While we see that DSM Post-Projection performance de-
creases with a lower selectivity percentage, it clearly stays
the better strategy overall.

We should note that this comparison is worst-case for
DSM Post-Projection. First, for brevity we omitted the
sparse access data for NSM, which is also affected by sparse
access, only to a much lesser degree. Second, if the selec-
tivity is low, such as 1% or less, then in many cases the in-
termediate relation would become small, making the join an
“easy” instead of a “hard” case (see Section 3). For “easy”
joins, DSM Post-Projection could use an u/u strategy, thus
significantly improving its performance.

5 DSM Radix-Decluster in a NSM DBMS

Our results strongly suggest that RDBMS performance
can be enhanced by introducing vertical fragmentation as
an accelerator structure, i.e., projection indices [16]. Such a
“DSM-subsystem” would profit in OLAP queries that touch
many tuples but few columns, and would preferably use
CPU-efficient MonetDB-like hard-coded operators that ma-
nipulate columns at-a-time, such as Positional-Join, Radix-
Cluster and Radix-Decluster. The very purpose of Mon-
etDB’s cache-conscious query processing algorithms is to
restrict all random access to very small ranges that fit the
CPU caches. Thus, the only I/O access to the DSM frag-
ments are sequential bulk reads and writes. On our evalu-
ation platform, our algorithms caused read and write rates
between 200MB/s and 500MB/s, which can be supported

1
2
3
4
5

0
1
2
3
4
5

0
5
0
2
1

4

3

1
2
3

0

4
5

efficient

great
fast

hashing
effective

fast

0

0

0
0 0

14
19
29
39

6

44

5

6
8

(SIZE_VALUES)(CLUST_RESULT) (CLUST_VALUES)

1
2
3
4
5

0

gni
a s h

ht
r ae

g

=strlen("fast")+1
=strlen("hashing")+1
=strlen("great")+1

INSERTION WINDOW

hdr hdrhdr

insert "fast"

PHASE 1: radix−decluster, but only fill an integer array

PHASE 3: radix−decluster again,

page header

using SIZE_VALUES to copy each
tuple to its correct page and offset

 SIZE_VALUES with the (variable) tuple length.

PHASE 2:
make a sequential pass
over SIZE_VALUES creating
incremental sums.

BUFFER MANAGER PAGES
ALLOCATED

record offsets
at end of page

page# = B / P
page offset = B % P
B = sizeof(short)*i + CLUST_VALUES[i]
P = sizeof(page)−(sizeof(hdr)+sizeof(short))

PAGE,OFFSET COMPUTATION:

Figure 12. Handling Non-Continuous Ad-
dressing and Variable-sized Data

using a PCI-X RAID consisting of 12 SCSI disks.5

A case for a DBMS with mixed DSM-NSM storage is
made in [17], which also describes how updates could be ac-
commodated efficiently using differential files to the DSM
file images. In such an architecture, a buffer manager would
still be used as an efficient means of well-controlled (asyn-
chronous) I/O. In MonetDB, however, columns are con-
tiguous arrays, while in an RDBMS the columns would
be stored in pages at various locations of the buffer pool.
Therefore, the Radix-Decluster technique of inserting “by
position” in the insertion window would not apply directly.
Finding the correct page and offset would be especially dif-
ficult if we were to handle variable-sized values such as
strings. Figure 12 shows how both problems are solved in
a buffer manager that uses NSM-like pages for storing se-
quences of variable-size values. Output space has been allo-
cated in a number of buffer pages, whose start addresses are
stored in an index array. First, the Radix-Decluster is exe-
cuted, but it does not insert any values, but just records the
lengths of the variable-size values in an extra integer array.
This temporary array is, of course, addressable by position.
In a second phase, the lengths are summed to calculate lo-
cations. In a third phase, the Radix-Decluster operation is
re-executed to copy values into the result, and this time the
correct page and offset for each value can be calculated,
using the computed location accessible by position in the
array. Note that for fixed-size values, the extra passes are
not even necessary, and page and offset can be determined
from theoid , which is the result tuple sequence number.

5Preliminary experiments with lightweight data (de-)compression indi-
cate that a negligible CPU investment can more than half the needed I/O
bandwidth on problems like TPC-H. As I/O bandwidth is precious, this
looks a worthwhile approach to help scale DSM to disk-based scenarios.

694

6 Conclusion

We have investigated the problem of performing large
equi-joins with projections in a cache-conscious manner.
As can be seen in the left graph of Figure 10, performance
may vary by more than an order of magnitude with differ-
ent relation projectivity, thus proving that projection cost
can have a strong impact on overall join efficiency.

Our main contribution, the Radix-Decluster algorithm, is
the crucial tool of MonetDB to process (i.e., join, but also
re-order) huge tables with a good access pattern, both in
terms of CPU cache access as well as I/O access (through
virtual memory).

In our experiments, we tested various cache-conscious
join (projection) strategies both on the NSM and DSM stor-
age schemes. One important conclusion from these exper-
iments is that Partitioned Hash-Join significantly improves
performance not only for MonetDB and DSM, but also for
the NSM pre-projection strategy, as is used by all standard
RDBMS products (compare in Figure 10 the non-cache-
friendly “NSM pre-hash” with “NSM pre-phash”), proving
that this algorithm carries generic merit.

The performance evaluation further shows that Radix-
Decluster is pivotal in making DSM post-projection the
most efficient overall strategy. We should note, that un-
like Radix-Cluster, Radix-Decluster is a single-pass algo-
rithm, and thus has a scalability limit imposed by a maxi-
mum number of clusters and thus tuples. This limit depends
on the CPU cache size and is quite generous (assuming four-
byte column values, the 512KB cache of a Pentium4 Xeon
allows to project relations of up to half a billion tuples) and
scales quadratically with the cache size (so the 6MB Ita-
nium2 cache allows for 72 billion tuples).

This limitation also explains why Radix-Decluster is
less successful in NSM post-projection, as its scalability
is also inversely quadratically related to the tuple width.
Rephrased positively, vertical fragmentation (DSM) and
column-wise execution reduce tuple width, fit more tuples
in the CPU cache and quadratically improve scalability.
For NSM, however, we find the “traditional” pre-projection
technique to work best, also outperforming the alternative
NSM post-projection strategy of Jive-Join, which was not
intended as a generic join method, but rather for exploiting
precomputed join-indices.

As for the prospects of applying DSM Radix-Decluster
in off-the-shelf RDBMS products, we support the case
made in [17] for systems that combine DSM and NSM
natively, or that simply add DSM to the normal NSM
representation asprojection indices[16], and show how
such disk-based systems could use our Radix-Algorithms
through their buffer manager.

References

[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weav-
ing Relations for Cache Performance. InProc. VLDB Conf.,

pages 169–180, Roma, Italy, Sept. 2001.

[2] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs
on modern processors: Where does time go? InProc. VLDB
Conf., pages 266–277, Edinburgh, Scotland, UK, Sept. 1999.

[3] L. Barroso, K. Gharachorloo, and E. Bugnion. Memory Sys-
tem Characterization Of Commercial Workloads. InProc.
ISCA, Barcelona, Spain, June 1998.

[4] D. Batory. On Searching Transposed Files.TODS, 4(4):531–
544, 1979.

[5] P. Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. PhD thesis, UVA, Amster-
dam, The Netherlands, May 2002.

[6] P. Boncz, S. Manegold, and M. Kersten. Database Architec-
ture Optimized for the New Bottleneck: Memory Access. In
Proc. VLDB Conf., pages 54–65, Edinburgh, Scotland, UK,
Sept. 1999.

[7] G. Copeland and S. Khoshafian. A Decomposition Storage
Model. In Proc. SIGMOD Conf., pages 268–279, Austin,
TX, USA, May 1985.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the
Pentium 4 Processor. InIntel Technology Journal, http://
developer.intel.com/ technology/ itj/, Feb. 2001.

[9] K. Keeton, D. Patterson, Y. He, A. Raphael, and W. Baker.
Performance Characterization of a quad Pentium Pro SMP
using OLTP workloads. InProc. ISCA, pages 15–26,
Barcelona, Spain, June 1998.

[10] G. Lauterbach and T. Horel. UltraSparc-III: designing 3rd
generation 64bit platforms.IEEE Micro, 19(3):56–66, 1999.

[11] Z. Li and K. Ross. Fast Joins Using Join Indices.The VLDB
Journal, 8(1):1–24, 1999.

[12] S. Manegold. Understanding, Modeling, and Improving
Main-Memory Database Performance. PhD thesis, UVA,
Amsterdam, The Netherlands, Dec. 2002.

[13] S. Manegold, P. Boncz, and M. Kersten. Generic Database
Cost Models for Hierarchical Memory Systems. InProc.
VLDB Conf., pages 191–202, Hong Kong, China, Aug. 2002.

[14] S. Manegold, P. Boncz, N. Nes, and M. Kersten. Cache-
Conscious Radix-Decluster Projections. Technical Report
INS-E0406, CWI, Amsterdam, The Netherlands, June 2004.
Available viahttp://www.cwi.nl/htbin/ins1/publications .

[15] A. McCalpin. Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers.IEEE Technical Committee on
Computer Architecture newsletter, Dec. 1995.

[16] P. O’Neil and D. Quass. Improved Query Performance with Variant
Indexes. InProc. SIGMOD Conf., pages 38–49, Tucson, AZ, USA,
May 1997.

[17] R. Ramamurthy, D. DeWitt, and Q. Su. A Case for Fractured Mir-
rors. InProc. VLDB Conf., pages 430–441, Hong Kong, China, Aug.
2002.

[18] A. Shatdahl, C. Kant, and J. Naughton. Cache Conscious Algorithms
for Relational Query Processing. InProc. VLDB Conf., pages 510–
512, Santiago, Chile, Sept. 1994.

[19] Sybase Corp. Whitepaper.Adaptive Server IQ, July 1996. http://
www. sybase. com/content/1008840/ iqwp l00899.pdf.

[20] P. Valduriez. Join Indices. ACM Trans. on Database Systems,
12(2):218–246, June 1987.

695

