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Abstract

We consider the efficiency of queries generated by
XML to SQL translation. We first show that
published XML-to-SQL query translation algo-
rithms are suboptimal in that they often trans-
late simple path expressions into complex SQL
queries even when much simpler equivalent SQL
queries exist. There are two logical ways to deal
with this problem. One could generate subopti-
mal SQL queries using a fairly naive translation
algorithm, and then attempt to optimize the re-
sulting SQL; or one could use a more intelligent
translation algorithm with the hopes of generat-
ing efficient SQL directly. We show that optimiz-
ing the SQL after it is generated is problematic,
becoming intractable even in simple scenarios; by
contrast, designing a translation algorithm that
exploits information readily available at transla-
tion time is a promising alternative. To support
this claim, we present a translation algorithm that
exploits translation time information to generate
efficient SQL for path expression queries over tree
schemas.

1 Introduction

Exporting XML views of relational data gives rise to
the problem of translating XML queries into SQL. To
date, the focus of most of the work in the published
literature [10, 16, 21] has been on mechanisms for
correctly translating complex XML queries into SQL
queries, with less emphasis on evaluating the quality of
the resulting SQL queries. The efficiency of the SQL
queries generated by the translation process is the fo-
cus in this paper.
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Figure 1: Stages in using an RDBMS to evaluate an
XML query

Translating XML queries to SQL involves translat-
ing queries over hierarchical schemas into queries over
flat relational schemas. This turns out to be prob-
lematic — a closer look at the queries generated by
the published translation algorithms shows that the
hierarchical nature of the exported XML schema is
often blindly reflected in the generated SQL query,
even when this is clearly not necessary. As a result, in
many cases even simple path expression queries result
in unnecessarily complex SQL queries. This problem
is aggravated when the input XML query includes a
traversal of the descendant axis (//), because it does
not have a simple equivalent in SQL.

A natural question to ask next is whether the phe-
nomenon of large, complex SQL queries arising from
simple XML queries is avoidable, or if it is intrinsic due
to the mismatch in data models. We show by example
in Section 2.1 that complex SQL is not necessary in
many cases — while the SQL generated by published
translation algorithms is complex, usually there is a
much simpler equivalent SQL query. This observation
motivated us to search for techniques that make use of
readily available semantic information to improve the
quality of the generated SQL.

To understand the alternatives for how we can
do this, consider the different stages in the transla-
tion process as shown in Figure 1. Given an XML-
to-Relational mapping, some relational integrity con-
straints, and an XML query, the XML-to-SQL query
translator generates an equivalent SQL query and
hands it over to the relational query processor. The



relational query processor optimizes and executes the
query, and returns the results to the query translator,
which adds the appropriate XML tags to the results
and returns them to the user. There are two impor-
tant points to note here: (i) As the XML-to-Relational
mapping and relational integrity constraints are valid
across multiple query invocations, they are shown sep-
arately, and (ii) We have made no assumptions about
whether the XML-to-SQL query translator is inside
an RDBMS or in middleware. This is the reason for
using the term Relational Query Processor instead of
RDBMS for the box on the right.

There are two logical extremes in approaches to-
ward obtaining efficient SQL queries for XML work-
loads. Omne could generate suboptimal SQL queries
using a fairly naive translation algorithm, and then op-
timize the resulting SQL queries (SQL Optimization);
or one could use a more intelligent query translation al-
gorithm and attempt to generate efficient SQL queries
directly (Intelligent Query Translation).

In Section 4, we will show that if we take the SQL
Optimization approach, then in order to obtain effi-
cient SQL queries we have to solve the relational query
minimization problem under bag semantics. The tech-
niques for query minimization in the published litera-
ture rely on algorithms for query containment or query
equivalence. Unfortunately, these problems become in-
tractable in even simple scenarios, making the SQL
Optimization approach impractical. In view of this
problem, we need to find a way to generate good SQL
queries that does not require the solution of these in-
tractable problems during actual query translation.

In response to this goal, we propose that Intelligent
Query Translation should be used instead of SQL Opti-
mization, and propose a translation approach that re-
lies upon three main ideas. First, we identify a class of
tree XML-to-relational mappings called bijective map-
pings. Bijective mappings cover a large class of the
mappings we have encountered in print, and they have
the desirable property that they can be optimized us-
ing containment and equivalence algorithms under set
semantics instead of multiset semantics.

Second, we observe that for a given XML schema
over a given relational schema, the SQL queries gen-
erated from XML queries are not arbitrary. That is,
the XML-to-Relational mapping determines the class
of SQL queries that are likely to be output by the
XML-to-SQL query translation algorithm, which in
turn fixes the class of queries that need to be mini-
mized. Since the XML-to-Relational mapping and the
underlying relational integrity constraints are indepen-
dent of the query being optimized, we can use them
to precompute some useful information, and then use
this information during the runtime query translation.
This way, we can move the potentially expensive task
of reasoning about integrity constraints to the precom-
putation phase, keeping the run time overhead small.

Third, the conjunctive queries produced by XML to
SQL translation are mainly chain queries of the form
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As we will show, in the XML to SQL translation do-
main, exploiting integrity constraints enables the min-
imization of such queries by removing a prefix of the
relational predicates. We refer to this as prefiz elimi-
nation. This turns out to be more tractable than gen-
eral conjunctive query minimization.

We show that by exploiting the above three ideas,
the XML-to-SQL query translation problem can be
solved in polynomial time for path expression queries
over bijective tree mappings. Our proof works by
presenting a query translation algorithm that solves
the problem with the required efficiency. Our algo-
rithm works correctly even over non-bijective map-
pings; it identifies the bijective portions of the map-
ping and performs more efficient query translation in
those parts. This translation algorithm produces SQL
queries that in many cases are far more efficient than
those produced by previously published translation al-
gorithms.

The rest of the paper is organized as follows. In Sec-
tion 2.1, we present an example scenario to illustrate
the problems with published XML-to-Relational trans-
lation algorithms. Next we define the query transla-
tion problem in Section 3. Then, in Section 4, we
present some of the known complexity results we bump
into if we attempt to minimize the SQL queries after
generating them. We describe our strategy for more in-
telligent query translation in Section 5. A more formal
description of the various components of this approach
is presented in Section 6.

1.1 Related Work

Translating XML queries into SQL in an XML Pub-
lishing context has been addressed in [9, 10, 12, 16,
17, 20]. Excepting MARS [9], the main focus has been
on translating complex XML queries into SQL, and
not on the quality of the final SQL query. A more
detailed description of the existing published work on
XML-to-SQL query translation is given in [15].

In MARS [9], a technique for translating XQuery
queries into SQL is given, when both Global-As-View
(GAV) and Local-As-View (LAV) views are present.
The system achieves the combined effect of rewriting-
with-views, composition-with-views, and query mini-
mization under integrity constraints. While this tech-
nique has its own advantages, it does not produce ef-
ficient SQL queries for simple XML queries that con-
tain the descendant axis (//) (like the example in Sec-
tion 2.1). The technique in MARS [9] can be viewed
as a SQL Optimization technique since the main opti-
mization occurs after the SQL query is generated from
the XML query. In our work, we assume a simpler set-
ting of only GAV-style views and show how one can
obtain efficient SQL queries by placing the intelligence
in the translation process.



2 DMotivation
2.1 Translation example

In this section, we present an example recursive query
(with the descendant axis //) over a tree XML schema
to illustrate that even simple XML queries can give
rise to fairly complex SQL queries if we use published
translation algorithms.

Part of a sample relational schema for an auction
database is shown in Figure 2. The figure also shows
one way of exporting this data as XML. The exam-
ple XML schema is part of the XMark benchmark [23]
schema. The associated view definition is easy to con-
struct and is omitted. Each node in the XML schema
is annotated with a table name, to indicate the re-
lational table that corresponds to the element repre-
sented by the node. Each leaf node has a column name
next to it, which indicates the column in which the
value of corresponding element is stored.

Consider the evaluation of the following query @1,
which finds the number of items in a given category:

count (/Site/Regions//Item/InCategory[
@Category = ‘catl’])

Consider the following simple algorithm for han-
dling queries with the descendant axis (//) [12]: Iden-
tify all paths in the schema that satisfy the query. For
each path, generate a relational query by joining all
relations appearing in this path. The final query is
the union of the queries over all satisfying paths (six
paths for @1). This algorithm will result in the follow-

ing SQL query SQ;.

select count (*)
from Site S, Item I, InCat C

where §S.id = I.siteid and I.id = C.itemid and
C.category=‘catl’ and I.continent=’africa’
union all ... (6 queries)

Suppose furthermore that the underlying relational
schema has the following domain integrity constraint
(in addition to the key and foreign key constraints
shown in the figure): the column Item.continent has
only six potential values {asia, africa, australia, eu-
rope, namerica, samerica }.

For the above query, we have found through experi-
mentation that the optimizers in current relational sys-
tems will use foreign key constraints to eliminate some
redundant joins. For instance, the join between Site
and Item can be removed. Though the join between
Item and InCat is a key-foreign key join, it cannot
be removed due to the condition on Item.continent.
Thus the query as rewritten by a relational optimizer
becomes the new query SQ1:

select count (*)
from Item I, InCat C

where 1I.id = C.itemid and C.category=‘catl’
and I.continent = ’africa’
union all ... (6 queries)
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We have seen that existing commercial RDBMS op-
timizers convert SQ; to SQi. A reasonable question
is whether the XML to SQL translation routines pro-
posed in SilkRoute [10] and Xperanto [21] do better.
We find that by merging common subexpressions, they
generate a better initial query than S@Q;. But, inter-
estingly, if you feed the queries that they generate to
a relational optimizer, the resulting final query is once
again SQi. So, no matter whether we use a naive
XML to relational translation, or these more sophisti-
cated translation schemes, in the end the RDBMS will
evaluate SQ1.

Another valid question to ask at this point is
whether the algorithms for minimizing XML queries,
such as in [3, 18], will help in this context. These algo-
rithms remove parts of the XML query that are made
redundant by other parts of the query. Notice that the
XML query @1 has no redundant parts in it, and so
XML query minimization will not help in this case.

Unfortunately, SQ1 is far from optimal, since all of
these queries are equivalent to the even simpler OQ1
given below:

select count(*)
from InCat
where category = ‘catl’

The equivalence between the queries SQ1, SQi and
OQ@1 holds under the key, foreign key and domain con-
straints mentioned above. Notice how we are able to

1 . . . . .
replace a query SQ7, which was the union of six queries
each with a join, by a single scan query OQ;.

2.2 Experimental Study

The previous example showed that while published
algorithms translate the example XML query into a
fairly complex SQL query, there is an equivalent query
that looks much simpler. An important question to
answer at this point is whether the associated perfor-
mance gains are substantial. In order to demonstrate
that this improvement can be sizable in practice, we
performed an experimental study using two datasets: a
synthetic ADEX dataset conforming to a standard ad-
vertisement schema [1] and a dataset from the XMark
Benchmark [23].

The ADEX dataset conforms to the standard
DTD being developed by the Newspaper Associa-
tion of America Classified Advertising Standards Task
Force [1]. This standard is intended to pave the way
for the aggregation of classified ads among publishers
on the Internet, as well as to enhance the develop-
ment of classified processing systems. We generated
synthetic data conforming to the ADEX schema. This
generated data consists of 100K advertisements and
200 publications, and is approximately 150 MB. The
XMark Benchmark [23] schema contains information
about an auction database and we used the standard
100 MB dataset defined in the benchmark. For both
scenarios, we built indexes on all columns that ap-
peared in a query. We ran the experiments using the
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Figure 2: Sample relational schema and corresponding XML view
Speedup Speedup
Queries (Cold buffer) | (Warm buffer)
A1l | Get the number of open-house ads in the campus area 1.22 1.15
A2 | Get the number of real-estate ads in the campus area 2.73 3.25
A3 | Get the addresses of ads in the campus area 27.05 31.1
A4 | For each geographic area, get the number of ads in that area 51.34 92.96
A5 | For each person, get the number of times (s)he is a reference 12.82 29.79
A6 | For each job category, get the number of people interested in that category 6.11 34.13
X1 | Get the number of items in a particular category 2.69 5.56
X2 | For a particular person, get categories of items for which (s)he made a bid 5.35 13.20
X3 | For each category, get the number of items in that category 6.40 7.63

Table 1: Relative performance improvement obtained by using constraint information

IBM DB2 database on a Linux workstation with an In-
tel 800 MHZ Pentium processor and 256 MB of main
memory. The buffer pool was set to 32 MB. A com-
plete description of the experimental setup is given
in [14].

We compare the execution times we measured for
the queries in Table 1. The queries labeled Ai are
on the advertisement dataset, while those labeled Xi
are on the XMark dataset. Note that query X1 in
this table is the example query we considered in the
previous section. For each XML query, we generated
relational queries using several prior published algo-
rithms and used the best timing for comparison with
our approach, where we use the constraint information
as well. The speedups obtained in execution times are
given in the table.

The relative improvement in performance ranges
from 1.15 to 93. In general, by using the constraint in-
formation we do no worse than any of the prior strate-
gies; so the relative performance is always greater than
or equal to 1. We found that the actual performance
improvement depends on two main factors: (i) number
of satisfying paths that can be merged together due to
the fact that they have the same relation sequence and
(ii) the length of the prefix that can be eliminated.

For example, the wild card in query Al had two
satisfying paths, while that in A2 and A3 had seven
and twenty satisfying paths respectively. The response
times show that as the number of satisfying paths for
a wild card increases, the benefit obtained by our ap-
proach also increases considerably. The above three
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queries have a selection condition on the geographic
area of an advertisement. Queries A4, A5 and A6
compute information across all areas. For example,
A4 gets the number of ads for each area. Even for
these queries, we observed significant speedups when
constraint information was used to generate optimized
SQL queries.

Similarly, queries X1, X2 and X3 on the XMark
dataset also had significant speedups ranging from a
factor of 2.7 to a factor of 13.2. The speedup was
smaller in these cases relative to the ADEX dataset
as the maximum number of satisfying paths for a wild
card is only six for the XMark schema.

2.3 Observations

The above experimental results show that by using
constraint information it is possible to obtain signifi-
cant speedups in SQL query execution times in a num-
ber of cases. This improvement is markedly higher
when the XML query has wild cards in it and the con-
straints on the data allow several of these branches to
be merged. Opportunities for such optimizations occur
when we build a hierarchy in the XML view from flat
relational data. For example, in the XMark schema in
Figure 2 a hierarchy was created by partitioning items
based on the continents to which they belong to.

In the rest of the paper, we look at two dif-
ferent ways of attempting to automatically generate
these better queries: SQL Optimization, and Intel-
ligent Query Translation. In the former approach,
SQL queries are generated in a straightforward fashion



and then optimized using the relational integrity con-
straints. In the latter approach, we use the constraint
information during the XML-to-SQL query translation
process itself.

3 Problem Definition

In this section, we present a formal description of the
XML-to-SQL query translation problem.

For concreteness, we need to provide some mecha-
nism for representing how an XML schema is mapped
to arelational schema. In this paper, we use the simple
approach of defining an XML view with annotations
on the XML schema nodes and edges. A non-leaf node
is annotated with a relation name, while a leaf node is
annotated with the name of a relational column. Each
edge ¢ = (u — v) is annotated with a conjunctive
query, where the relations allowed in the query are the
relational annotations of nodes on the path from the
root of the graph to node v. A simple XML view is
one in which each of the edge annotations involves at
most one join condition.

We illustrate this approach to defining views with
an example!. Consider the relational schema and the
corresponding XML view definition in Figure 2. Con-
sider a top-down traversal of this schema, which illus-
trates how an XML document can be constructed from
underlying relational data. The Site element is the
root of the document and it has an id child whose value
is the value of Site.id attribute. A Regions child ele-
ment is created within the Site element and six subele-
ments are created within Regions, one for each conti-
nent. Within each continent element, the information
about the items in that continent are exported. For
example, consider the element Africa. The annotation
on the outgoing edge (4, 10) indicates that for each tu-
ple in the Item relation corresponding to this continent
and satisfying the join condition, an ltem subelement
is created. For each such item, its id is exported as an
id child element and the categories to which the item
belongs is represented as incategory subelements. The
annotation on edge (10,12) is a join condition Item.id
= InCategory.itemld (not shown in figure). This view
definition is an example of a simple view definition as
each edge annotation has at most one join condition.

In this paper we focus on a simple but useful class
of queries: simple path expressions. A simple path
expression can be denoted as “sy 1 s2 ls... si li,”
where each of the [; is a tag name and each of the
s; is either / (denoting a parent-child traversal) or //
(denoting an ancestor-descendant traversal).

For a path expression query over a tree XML view,
the equivalent relational query output by published
translation algorithms can be viewed as the union of
several conjunctive queries. So, we consider this class
of queries with a simple extension: a disjunction of
selection conditions is allowed for each conjunctive

query.

ISee [14] for a formal description of the view definition
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For concreteness, we need to define what is meant
by a translation of an XML query to a SQL query.
That is, we need to define when a SQL query is consid-
ered a correct translation for a given path expression
query @ under a mapping 7. Our approach to defining
these semantics is to present a straightforward trans-
lation algorithm that returns the query baseline(Q).
Any SQL query SQ@ that is equivalent to baseline(Q)
under the given relational integrity constraints is a cor-
rect SQL translation for the XML query Q.

For a leaf node n in the schema, we define the
root-to-leaf query rtol(n) as the SQL query obtained
by (conjunctively) combining the annotations on the
edges of the root-to-leaf path of n and projecting the
annotation of node n. For example, rtol(14) is the

query

select C.category

from Site S, Item I, InCat C

where S.id = I.siteid and I.id = C.itemid
and I.continent=’africa’

Given a tree XML-to-Relational mapping 7 and
a simple path expression query @, let S =
{ni,mn2,...,n,} denote the set of nodes in 7 that
match the query Q). Then a baseline query translation
algorithm is to return the SQL query J,g7tol(n).
Let baseline (Q) denote this query.

Finally, we are able to define what we mean by the
XML-to-SQL translation problem: Given an XML-
to-Relational mapping 7, a simple path expression
query @ and integrity constraints on the underlying
relational schema, find the equivalent SQL query with
minimum cost.

The above definition is precise modulo the interpre-
tation of the phrase “minimum cost.” Different prob-
lems will result with different cost metrics. A reason-
able cost metric is the traditional metric for conjunc-
tive query minimization — that is, the cost of a query
is the number of relational conjuncts. Let us denote
this metric RelCount.

4 The SQL Optimization approach

The scenario we presented in Section 2.1 showed that
query minimization is a core issue in generating effi-
cient SQL queries for XML workloads. For the class of
path expression queries over a tree XML-to-Relational
mapping, recall that baseline (Q) is a union of con-
junctive queries. Hence, we need to minimize a union
of conjunctive queries under multiset semantics in the
presence of relational integrity constraints. In this sec-
tion, we first discuss prior work on relational query
minimization and then discuss the impact on the SQL
Optimization approach.

4.1 Previous work on Relational Query Mini-
mization

Most, if not all, techniques in the published litera-
ture for minimizing relational queries are based on al-
gorithms for query containment or query equivalence.



We next present some known results about the com-
plexity of these problems.

e The containment, equivalence and minimization prob-
lems for conjunctive queries under set semantics are
NP-complete (2, 5].

e The containment problem for conjunctive queries un-
der multiset semantics is 73 -hard [6].

e The equivalence problem for conjunctive queries un-
der multiset semantics is same as graph isomor-
phism [6].

e The containment and equivalence problems for mono-
tonic relational expressions under set semantics is 74 -
complete [19].

e The containment problem for union of conjunctive
queries is undecidable under multiset semantics [11].

There has also been a lot of work on the use of con-
straints in query optimization of relational queries [7,
13, 25]. In [13], the query containment problem un-
der functional dependencies and inclusion dependen-
cies is studied. In [22], a scheme for utilizing seman-
tic integrity constraints in query optimization, using a
graph theoretic approach, is presented. In [24], a nec-
essary and sufficient condition for the IC-RFT problem
(does a conjunctive query always produce an empty
result under a given set of implication constraints) is
presented and in [25] the results are extended when
referential constraints are also allowed. Polynomial
equivalence to other problems like the query contain-
ment problem are also proved.

More recently, the chase and backchase algorithm
(c&b) was introduced in [7] motivated by logical re-
dundancy and physical independence in mediator-like
components. This approach brings together use of in-
dexes, use of materialized views, semantic optimiza-
tion and join/scan minimization and allows non-trivial
use of indexes and materialized views through the use
of semantic constraints. In [8], the authors present
a generalization of the classical chase algorithm for
embedded dependencies [4] to a richer class of con-
straints known as Disjunctive Embedded Dependen-
cies (DEDs).

4.2 Impact on the SQL Optimization ap-
proach

While a lot of research has been done on relational
query optimization in the presence of constraints,
there are some mismatches with what we need in the
XML-to-SQL query translation scenario.

e Most of the prior work is on reasoning under set
semantics. On the other hand, we need to op-
timize relational queries under multi-set seman-
tics. We are not aware of any published algorithm
for minimizing union of conjunctive queries under
multi-set semantics (both in the absence and pres-
ence of integrity constraints).
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e Even under set semantics, the running time of
these algorithms are exponential in the size of the
input (relational schema, constraints and query).
Incurring this overhead on a per-query basis may
be expensive in practice.

e The class of constraints handled by different ap-
proaches vary considerably and no single tech-
nique dominates the others.

By a simple reduction, we have the following result.

ProproSITION 1 Solving the XML-to-SQL Query
Translation problem wusing the SQL Optimization
approach for a simple tree XML view under the metric
RelCount is at least as hard as minimizing a union of
conjunctive queries under multiset semantics.

5 Intelligent Query Translation

In this section, we present our approach to generating
SQL queries that are often more efficient than those
generated by existing translation algorithms. We are
able to do so by focusing on a tractable yet important
subpart of the problem space. This section is some-
what complex; we begin with an overview of our ap-
proach and then explain the main components of our
approach. A more formal description is presented in
the following section (Section 6).

5.1 Outline of our approach

As we saw in the previous section, the SQL Optimiza-
tion approach has three main problems: (i) lack of
techniques for query minimization under multi-set se-
mantics, (ii) high overhead for reasoning using con-
straints even under set semantics and (iii) variety of
techniques for different class of constraints. In the In-
telligent Query Translation approach, we circumvent
each of these problems in the following fashion.

While reasoning about query minimization under
multi-set semantics can be a lot different from reason-
ing under set semantics, there are scenarios where the
two notions are similar. In our approach, we identify
a class of views that, informally speaking, have the
property that the target relational data is exported
ezxactly once in the XML view. We refer to such views
as bijective, and describe this concept in more detail in
Section 5.2. Such mappings have the desirable prop-
erty that they can be optimized using containment and
equivalence algorithms under set semantics instead of
multiset semantics. In our approach, we identify parts
of the mapping that are bijective and apply our opti-
mizations to those parts.

In order to address problems (ii) and (iii), we adopt
the following strategy. By observing that the XML-
to-Relational mapping and the underlying relational
integrity constraints remain constant across multiple
query invocations, we compute some summary infor-
mation in a precomputation phase. In this precom-
putation phase, we make use of an algorithm for rea-
soning about conjunctive query containment under set
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Figure 3: Sample mapping

semantics (say A). Then, when we need to translate
an XML query into SQL, we use this summary infor-
mation in the run-time query translation phase. This
way, the potentially expensive part of reasoning using
integrity constraints is moved to a (offline) phase and
the run-time overhead is kept small. In addition, we
can make use of different algorithms for A that work
for varying classes of relational integrity constraints.
This is especially useful as we can choose algorithm
A based on the class of relational integrity constraints
that are applicable for the current relational schema.

Since, we are going to use some summary informa-
tion during the run-time query translation process, we
need to relax the optimality metric that we hope to
achieve. As we have seen in Section 2.1, optimizing
SQL generated by XML to SQL translation frequently
involves eliminating unnecessary prefixes in the SQL
queries. Motivated by this observation, we define a dif-
ferent notion of minimality for generated SQL queries
— one where we would like to maximize the length
of the prefix eliminated for each matching path in the
schema. We define this metric, PrefitMetric in Sec-
tion 5.3.

Using the above techniques, we developed a
constraint-aware approach to efficiently translate path
expression queries into SQL. We describe the main
components of our approach informally in the follow-
ing subsections. A more formal description of our ap-
proach is presented in Section 6.

5.2 Bijective mappings

Consider the XML schema shown in Figure 3, which
represents information about a collection of books.
The XML view has created a simple hierarchy, par-
titioning the books into cheap and costly books by the
relationship of their prices to two constants P; and Ps.

Let us now consider three possible scenarios: P; =
PQ,Pl <P2 andP1 >P2. IfP1:P2,thentheXML
view has information about all the books exactly once,
while if P; < P, the XML view has information about
only certain books. On the other hand, when P; > P,
the XML view has information about the books in the
price range {P, — P, } twice.

The scenario when P; = P, corresponds to an in-
teresting and common class of mappings, one in which
there is a one-to-one correspondence between the XML
view data and the underlying relational data. We refer
to this class of mappings as bijective. These mappings
have the property that the query results of two root-to-
leaf path queries do not have any common results, so
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the corresponding SQL queries can be merged without
worrying about preserving counts of duplicates.

For example, the rtol queries for nodes 3 and 7 re-
turning the titles of cheapbooks and costlybooks will
not have any common results when the mapping is
bijective. This simple observation makes the query
minimization process a lot simpler as we can use al-
gorithms for query minimization under set semantics
instead of multiset semantics.

Notice that whether an XML view definition is bi-
jective or not is a property of the view, and that one
cannot determine if an XML view definition is bijective
by simply examining the relational schema without the
mapping. So, while one can easily use this information
during the query translation process (where we know
about the XML view), in order to perform similar op-
timizations after the SQL query has been generated,
the appropriate module (be it the relational optimizer
or some other module) needs to know about proper-
ties of the XML view. This means that if existing
relational optimizers are to be extended to handle op-
timizations based upon bijective views, they need to
be extended to understand XML views, which is not
very attractive.

5.3 Prefix Elimination Optimality

We define the cost metric PrefitMetric(SQ,7T) to
be the number of nodes in the XML-to-Relational
mapping 7 that correspond to the SQL query
S@Q. For example, consider the query S@; in Sec-
tion 2.1. The fragment of this query identifying
items in Africa corresponds to the sequence of nodes
<1,3,4,10,12,14>, and so the cost is six. Since
there are six such fragments in S@Q;, the total cost
PrefitMetric(SQ1,7T) is 36. Similarly, the cost for
each fragment of query SQ1 is four and the total cost
PrefirtMetric(SQ%, T) is 24. For query OQ1, the total
cost PrefitMetric(OQ4,T) is six.

By definition, the cost of any SQL query that does
not correspond to a path in the mapping is undefined.

Notice that the definition of the PrefixMetric met-
ric restricts the class of equivalent SQL queries consid-
ered. For example, we are only interested in finding
equivalent queries that are in some sense “syntacti-
cally” contained in some conjunctive query fragment
in baseline (Q). While this misses opportunities to find
equivalent queries that involve materialized views or
cached query results or eliminating intermediate rela-
tions in the conjunctive query, it is still general enough
to cover a large number of interesting scenarios.

5.4 The query translation algorithm

In this section, we briefly explain the main compo-
nents of our query translation algorithm using exam-
ples. The algorithm has two parts: an (offline) pre-
computation phase, in which summary information is
computed; and a run time phase when the actual query
translation occurs.



5.4.1 Precomputation Phase

Here, we make use of the fact that the XML-to-
Relational mapping and the relational integrity con-
straints are valid across multiple queries and use them
to precompute some summary information. The in-
formation that we precompute is related to properties
of the root-to-leaf queries we discussed in connection
with the semantics of translation in Section 3.

For a given node in the XML schema, it may be
possible to eliminate a prefix of its corresponding root
to leaf query. The actual prefix that can be elimi-
nated for a leaf node varies depending on the subset
of schema nodes selected by the query. We define the
notion of Least Distinguishing Ancestors (LDAs) to
capture this. For each pair of leaf nodes (u,v), we
compute LDA(u,v) = w. Intuitively, w is the lowest
ancestor of v such that if node v matches a given XML
query, it is sufficient to issue the query from w —u (in-
stead of the root to leaf query for u) without returning
any results corresponding to node v. In order to create
the query for a node wu, it suffices to pick the highest
ancestor among LDA (u,v) over all leaf nodes v not
matching the query.

For example, for the schema in Figure 2,
LDA(14,39) = 4 and LDA(39,14) = 9. In other words,
if node 14 matches a query and node 39 does not,
then it suffices to issue the query corresponding to the
path {4,10, 12,14} in order to return the results cor-
responding to node 14. This query is shown below.

select IC.category
from Item I, Incat IC
where I.id = IC.itemid and I.continent = ’africa’

In our precomputation phase, for every pair of non-
leaf nodes u, v that have the same annotation, we com-
pute LDA(u,v). In addition, we identify the parts of
the XML view definition that are bijective. In our
running example, the entire XML view is bijective.

5.4.2 Run-time Query Translation

We use the following query on the mapping schema in
Figure 2 to illustrate the translation algorithm.

Q: //Item/InCategory/Category

We first execute () on the schema graph and iden-
tify the satisfying nodes: S = {14,19, 24,29, 34, 39}.
For each node n € S, issuing rtol(n) is a correct trans-
lation. Our goal is to find the smallest suffix of each
such query. Consider the leaf node n; = 14. We need
to identify the lowest ancestor a; of n; such that it suf-
fices to output the query for the path <ai,...,n;>.
In order to find a;, we look at the other nodes with
the same annotation, namely C' = {19, 24,29, 34,39}
and compute LDA(14,x),Vx € (C — S). The highest
node among these corresponds to a1. In this particular
case, (C'—S) is empty, so we do not have to look at the
LDA values. As a result, for node 14 it suffices to is-
sue the scan query corresponding to the leaf node. We
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obtain a similar scan query for the other five schema
nodes in S. Since the six scan queries are on the same
relation, we merge them and issue a single query OQ
given below:

select C.eid from InCat C

On the other hand, using existing algorithms we
would have obtained a relational query SQ that is the
union of six queries, each with two joins (similar to the
example query S@Q; in Section 2.1).

5.5 Analysis

The proofs of the theorems in this section are omitted
due to lack of space and are presented in [14].

THEOREM 1 Given a tree XML-to-Relational map-
ping T along with the integrity constraints that hold on
the underlying relational schema, and a path expres-
sion query P, the constraint-aware algorithm outputs
a correct equivalent SQL query in polynomial time.

We would like to point out that our algorithm per-
forms XML-to-SQL query translation correctly even
when part of the mapping is not bijective or when the
conjunctive query containment algorithm A is sound
but not complete for the class of relational constraints
that are applicable. Note that the running time of
algorithm A does not impact the complexity of the
translation algorithm, since A is run once as a precom-
putation step, not on a per-query basis during trans-
lation.

Let @1 be a conjunctive query and Q2 be a union
of conjunctive queries. Let UQC denote the problem:
is Q1 C @2 under set semantics? and DUP denote the
problem: Are the results of ()1 duplicate-free?

Suppose C is the class of integrity constraints that
hold on the relational schema and A and A’ are sound
and complete algorithms for the UQC and DUP prob-
lems over this class of constraints. Examples of such
algorithms and a description of the corresponding class
of integrity constraints can be found in [7, 25]. In
such cases, our algorithm actually outputs the opti-
mal query under metric PrefiztMetric.

THEOREM 2 Given sound and complete algorithms A
and A’ for the UQC and DUP problems over the class
C, the XML-to-SQL Query Translation problem for a
bijective tree XML view under metric PrefixMetric can
be solved in polynomaial time.

6 The constraint-aware approach

In this section, we formally describe the various com-
ponents of our approach. We start by describing
some terminology used in the formalization followed
by the actual description of the two main components:
precomputation phase and run-time query translation
phase.



6.1 Terminology

Most of the properties we talk about address leaf nodes
in the schema that are annotated with the same rela-
tional column. We define nodes(R.C') to be the set
of leaf nodes annotated with R.C. We call two leaf
nodes column-compatible if they are annotated with
the same relational column. We refer to the annota-
tion of node n as annot(n).

Recall that we defined rtol(n) to be the root-to-leaf
query for a node n. We generalize this notion to an ar-
bitrary sequence of nodes as follows. A node sequence
NS =< ni,ng,...,n, > is a sequence of nodes in the
schema graph that corresponds to a path starting from
the node ny = NS.first and terminating in the leaf
node n, = NS.last. The relational query Query(NS)
is obtained by combining the conditions on the edges of
the sequence and projecting annot(ng). The relational
query keyQuery(N.S) is the same as Query(NNS), ex-
cept that the key column(s) of Rel(ny) is (are) also
projected. Query(N.S) and keyQuery(NS) are always
conjunctive queries. Just like Query(N.S) corresponds
to rtol(n), we refer to keyQuery(N.S) as keyrtol(n).

Let RelSeq(NS) denote the sequence of relations
joined in Query(NS), in a bottom-up order. For
example, for NS =<1,3,4,10,12>, RelSeq(NS) =
<InCat,Item,Site>.

Two node sequences NS; and NS, are said to
be combinable if the corresponding relation sequences
RelSeq(NS1) and RelSeq(NSz) are the same, the join
conditions are on the same set of columns for each pair
of relations, and N.Si.last and NSs.last are column-
compatible. In other words, the two relation sequences
are identical modulo the selection conditions.

6.2 Precomputation Phase

Recall that, in the precomputation phase we identify
the parts of the XML-to-Relational mapping that are
bijective and also compute LDA information. We for-
mally define these two notions in the next two subsec-
tions and then describe how we compute this informa-
tion.

6.2.1 Bijective column mappings

For a relational column R.C, let KeyProject(R.C)
denote the query “select R.key, R.C from R” and
NodeKeyProject(R.C) denote the query Unenodes(R.c)

keyrtol(n). Here, R.key denotes the key column(s) of
R. We will make use of the following definitions:

DEFINITION 1 For a relational column R.C,

e [If KeyProject(R.C) C NodeKeyProject(R.C),
then R.C is At-least-once mapped

e If KeyProject(R.C) 2 NodeKeyProject(R.C),
then R.C is At-most-once mapped

e If KeyProject(R.C) = NodeKeyProject(R.C),
then R.C is bijectively mapped
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In the preceding definition, the containment opera-
tions are under multi-set semantics.

Informally, if all the values in the column R.C ap-
pear in the XML view “exactly once”, then the rela-
tional column is bijectively mapped. In order to check
this under multi-set semantics, we use the key field(s)
of the relation R.

An XML-to-Relational mapping 7 is bijectively
mapped if each of the relational columns annotating
some leaf node in 7 is bijectively mapped.

6.2.2 Lowest Distinguishing Ancestor

Let v and v be two column-compatible leaf nodes in the
schema. Let node sequence NS =< ni,ng,...,ng >,
where ny = root(7) and ny = u, represent the root-
to-leaf path in to u.

DEFINITION 2 The node n; is a distinguishing ances-
tor for uw with respect to v if the intersection of the
results of the two queries, keyQuery(< n;,...,ng >)
and keyrtol(v), is empty.

If n; is a distinguishing ancestor for u with respect to
v, then we write w |™ v. Thus, for the above exam-
ple, 4 is a distinguishing ancestor of 14 with respect to
every other column-compatible node. In other words,
issuing the query from 4 to 14, we will obtain all the
results corresponding to node 14 and no result corre-
sponding to any other column-compatible node (such
as node 39).

Observe that the distinguishing ancestor relation
is not a symmetric relation. For example, in the
annotated schema graph shown in Figure 2, con-
sider schema nodes 14 and 39, which are column-
compatible. Now, 14 |* 39 is true. Notice that node 4
is an ancestor of node 14 but not an ancestor of node
39. So, 39 |* 14 is false.

DEFINITION 3 The lowest distinguishing ancestor for
u with respect to v, u || v, is the lowest ancestor w of
u such that u |* v.

We represent this as w = lda(u,v) or w = u || v. The
Ida relation is not symmetric. For example, 14 || 39 =
4+39 | 14.

Using these definitions, and our previously defined
notion of a a bijective column mapping, we have the
following lemma that aids in the identification of low-
est distinguishing ancestors:

LEMMA 1 Letu andwv be two column-compatible nodes
in the schema graph T, where annot(u) = annot(v) =

R.C and R.C' is bijectively mapped. Then u |"0°UT) y
holds.

6.2.3 Computing Summary Information from
the Constraints

Given an XML-to-Relational mapping 7 and the in-
tegrity constraints that hold on the underlying rela-
tional schema, we precompute the following informa-
tion



e For each relational column R.C, is R.C' bijective?

e For every pair of column-compatible nodes (u, v),
u || vand v || u.

In this computation, we use procedures for solving
the following problems on conjunctive queries in the
presence of constraints.

UQC: Given a conjunctive query )7 and a union of con-
junctive queries @2, is @1 C Q)2 under set seman-
tics?

EQI: Is the intersection of two given conjunctive queries
empty?

DUP: Are the results of a given conjunctive query
duplicate-free?

We have developed procedures for these three prob-
lems by adapting the chase and query containment al-
gorithms proposed in [8]. We have also designed an al-
ternate solution using the algorithm proposed in [25].
In general, any algorithm for conjunctive query con-
tainment under set semantics can be used to develop
procedures for the above three problems. The details
of the above procedures and how we use them to pre-
compute the required summary information are omit-
ted due to lack of space. These details can be found
in [14].

6.3 Run-Time Query Translation Algorithm

The run-time query translation algorithm is outlined
in Figure 4. Given a path expression query @, we first
identify the parts of the schema that match the query.
Let S denote the set of matching schema nodes. For
purposes of exposition, we assume that S consists only
of leaf nodes, leaving the handling of non-leaf nodes to
Section 6.4.1.

We then partition the set .S into two sets based on
whether the corresponding relational column is bijec-
tively mapped. For the set Syonpij, We construct the
root-to-leaf queries just like prior algorithms. On the
other hand, for the set Sy;; we utilize the summary
information to eliminate parts of the query that are
redundant. This is a two stage process: first we find
the longest prefix that can be eliminated for each node
n € Sy (Prefiz-Elimination); then we construct the
SQL query using the prefix-eliminated set of nodes
(SQLGen). Finally, we union the queries correspond-
ing to the bijective and non-bijective nodes.

We next describe the prefix-elimination and SQL-
Gen stages.

6.3.1 Eliminating Redundant Prefixes

The Prefiz- Elimination algorithm is given in Figure 5.
We use the pre-computed information about least dis-
tinguishing ancestors in this computation. Instead of
taking the naive approach of issuing the full query for
each of these nodes and taking their union, we wish,
at the very least, to be able to issue a smaller query
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procedure constraint-aware(Q)
begin
Let S « Nodeld(Q)
Partition S into Syi; and Syonsij
based on whether annot(n) is bijective
SQLnonbi; = Unes,,ny,; Tt0HN)
Prefix-Elimination(Sy;; )
SQLyij = SQLGen(Spi;)
Return SQL(,U U SQLnonbij
end
Figure 4: constraint-aware query translation algo-
rithm for path expression queries

procedure Prefix-Elimination(S)
begin
for each node n € S do
Let Schema(n) denote the set of schema nodes
mapped to the same column as n
Let Conflict(n) « Schema(n) — S
Let LDA_Set(n) denote set of n || = for
every node z in Conflict(n)
C_da(n) = highest node in LDA_Set(n)
While true do
If (3n,nq € S), such that
RelSeq(Cda(n),n) and RelSeq(Clda(ni),n1)
are not combinable and
n || ny is a strict ancestor of C_lda(n)
Then
Clda(n) =n || n1
Else
Break
end

Figure 5: Prefix-Elimination phase

for each node n € S. Thus, we want to find the low-
est ancestor a such that Query(< a,...,n >) returns
the correct answer, that is, where the prefix of rtol(n)
from root(7) to a can be safely eliminated. There are
two conditions to check here:

e g must distinguish n from all column-compatible
nodes not in S. This computation corresponds
to the for loop in Figure 5.

e For each column-compatible node ny € S, either
the two queries are combinable or a distinguishes
n from n;. This corresponds to the while loop in
Figure 5.

The while loop is an iterative process that will ter-
minate in at most (k*d) iterations, where k = |S| and
d is the maximum depth (in the XML schema) among
all nodes in S. At the end of this process we have the
prefix eliminated node sequence for every node in S.

6.3.2 SQLGen Stage

We next construct the optimized SQL query by taking
the prefix-eliminated set of nodes and grouping multi-
ple paths that involve the same sequence of relations.



Let NS = {<Clda(n),...,n >:n € Nodeld(Q)}. No-
tice that combinability of node sequences is an equiva-
lence relation. We partition /S based on combinabil-
ity and construct a SQL query for each equivalence
class created. The final SQL query is the union of
the queries across all equivalence classes. Notice that
all the queries in an equivalence class have the same
relation sequence and differ only in the selection con-
ditions. This operation is correct under multi-set se-
mantics because it is only applied to columns that are
bijectively mapped.

6.4 Extensions to More General Cases

In this section, we discuss how the methods discussed
to up to this point extend to more general situations.
Note that our optimization techniques will never gen-
erate an incorrect query — they will either not apply
(in which case we will generate the naive query) or
they will apply and will generate a query expected to
be more efficient than the naive query. Hence the dis-
cussion here outlines techniques that allow us to apply
optimizations to more queries.

6.4.1 Path Expression Queries Involving Non-
Leaf Nodes

In our discussion in Section 6.3 on translating path ex-
pression queries, we assumed that the query matches
a set of leaf nodes in the schema. If the result includes
non-leaf nodes as well, then there are two alternative
ways of returning the resulting XML elements corre-
sponding to the non-leaf nodes.

1. For each non-leaf element, we can return an iden-
tifier or representative subelement. In this case,
each non-leaf node n in the schema is associated
with a child leaf node n.. If n appears in a query
result, then the corresponding n. elements are re-
turned instead. For example, we can associate
the key field(s) of the corresponding relations with
each non-leaf node.

2. For each non-leaf element, we can return the en-
tire subtree rooted at this element. The problem
of efficiently constructing entire subtrees of XML
documents has been considered in [10, 21]. We
leave the interesting problem of combining our al-
gorithm with one of these algorithms for future
work.

6.4.2 Beyond Path Expressions

Our techniques can be extended in a straightforward
way to handle branching path expression queries (as
we show in [14]); because that extension does not pro-
vide any additional insight, and due to space con-
straints, we do not discuss that extension here.

We now briefly describe how to extend constraint-
aware translation to more general queries. A path
expression query corresponds to a single For clause
in XQuery. Consider an XQuery that has several of
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these For clauses and (optional) Where clauses. A
natural way of applying our techniques is to perform
constraint-aware translation for each of the individ-
ual path expressions, and then combine the resulting
queries with appropriate join conditions. For example,
consider a query X (@ involving two path expressions
p1 and po with a join condition between them. We
apply our constraint-aware translation on p; and po
individually to obtain relational queries @ and Q5 re-
spectively. Note that ()1 and @2 are the union of k;
and ko queries respectively. We generate the query
Q = Q1 M Q3 as the SQL query corresponding to X Q.
If k&1 > 1 or ko > 1, then we could have generated the
final SQL query in a number of other ways. For exam-
ple, we could have distributed the unions over the join
and generated the query @’ that is the union of ky * ko
queries. Choosing the best query from amongst these
(possibly exponential) alternatives is also an interest-
ing area for future work.

6.4.3 Beyond Bijective Mappings

Recall that our technique optimizes the SQL query cor-
responding to bijective parts of the mapping. It con-
structs the baseline query for the non-bijective parts
of the mapping. While we expect bijectively mapped
columns to be common, we have extended our algo-
rithm to perform efficient XML to SQL query transla-
tion when either the At-least-once or the At-most-once
condition is satisfied. We outline the main ideas here
with an example and omit the details due to lack of
space.

Let us look at the scenario when a relational column
R.C satisfies the At-most-once condition but violates
the At-least-once condition. For example, consider the
example in Figure 2. While the XMark XML schema
contains information about items in six continents, in
reality, there is actually a seventh continent (Antarc-
tica). So, it is reasonable to assume that the relational
schema has an integrity constraint on Item.continent
allowing seven potential values. In this case, parts of
the relational data are not present in the XML view,
namely the items corresponding to Antarctica. Now
while SQ; and SQ1 are correct SQL queries for @1,
0OQ); is not. The best query in this scenario will be a
variation of SQ1 that combines all the six queries into
one, since they are on the same sequence of relations.
This query is given below.

select count (*)
from Item I, InCat C
where I.id = C.itemid and C.category=‘catl’
and I.continent IN {’africa’,...,’samerica’}

Notice how we were able to group together the six
paths corresponding to different continents. This was
possible due to the fact that InCat.category satisfied
the At-most-Once condition. As a result, the rtol
queries corresponding to any two column-compatible
schema nodes mapped to InCat.category will not have
any common results. So, we can translate the unions



to a disjunction. In other words, we can perform the
SQLGen phase without any change.

On the other hand, we need to be careful in the
prefix-elimination stage. We cannot eliminate any
prefix below the continent nodes due to one missing
continent in the XML schema. To account for this
fact, we have to augment the prefix-elimination stage.
We do this as follows: S = nodes(InCat.category) =
{14,19,24,29,34,39}. For each schema node n € S,
we compute the lowest schema node below which the
prefix cannot be eliminated (since the column is not
completely exported). Let us call this lowest required
ancestor (Ira(n)). For example, Ira(14) = 4 and Ira(39)
= 9. This ensures that the selection condition on
Item.continent is always present in the query.

The Ira computation is another summary informa-
tion that we precompute for schema nodes correspond-
ing to relational columns that violate the At-least-once
condition.

7 Conclusion

We have considered the problem of generating efficient
SQL queries for XML workloads and showed that pub-
lished translation algorithms can generate SQL queries
that are suboptimal. We consider the problem of
where to add the intelligence in order to obtain opti-
mized SQL queries using integrity constraint informa-
tion. Our results argue that the quality of the resulting
SQL should be a concern of the translation algorithm
itself, rather being left in the hands of a traditional
relational optimizer. This is because many “easy” op-
portunities for optimization are apparent only when
the XML view definition and relational integrity con-
straints are considered simultaneously. These oppor-
tunities vanish by the time the relational optimizer is
presented with SQL.

A number of directions for future research ex-
ist. Extending our approach to a more general class
of XML-to-Relational mappings (including recursive
mappings) is an interesting problem. Similarly, look-
ing at a larger class of input XML queries gives rise
to other interesting problems. In a different direc-
tion, the XML-to-SQL query translation problem also
arises in another context: XML Storage, where data
that was originally XML is to be stored and queried
in an RDBMS (as opposed to the case considered
here, where data that was originally relational is to be
viewed and queried as XML.) The class of XML-to-
Relational mappings produced by existing techniques
for XML storage are bijective and there may be al-
ternative ways of computing the summary informa-
tion without even resorting to relational integrity con-
straints. Exploring this variant of the problem is an-
other open problem.
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