
REHIST: Relative Error Histogram Construction
Algorithms

Sudipto Guha Kyuseok Shim Jungchul Woo

University of Pennsylvania
sudipto@cis.upenn.edu

Seoul National University
shim@ee.snu.ac.kr

Seoul National University
jcwoo@kdd.snu.ac.kr

Abstract

Histograms and Wavelet synopses provide use-
ful tools in query optimization and approxi-
mate query answering. Traditional histogram
construction algorithms, such as V-Optimal,
optimize absolute error measures for which
the error in estimating a true value of 10 by
20 has the same effect of estimating a true
value of 1000 by 1010. However, several re-
searchers have recently pointed out the draw-
backs of such schemes and proposed wavelet
based schemes to minimize relative error mea-
sures. None of these schemes provide satis-
factory guarantees – and we provide evidence
that the difficulty may lie in the choice of
wavelets as the representation scheme.

In this paper, we consider histogram construc-
tion for the known relative error measures.
We develop optimal as well as fast approxi-
mation algorithms. We provide a comprehen-
sive theoretical analysis and demonstrate the
effectiveness of these algorithms in providing
significantly more accurate answers through
synthetic and real life data sets.

1 Introduction

Motivation and Background: Histograms and
Wavelet synopsis provide useful tools in query opti-
mization [13] and approximate query answering [1].
Recently these techniques have also been used in
constructing short signatures of time series data for
various mining tasks [2]. In all these problems, given
a sequence of data values x1, . . . , xn, the task is to

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

construct a suitable summary of the data which can
be stored in small space (e.g. a small fixed number,
say B, of the n coefficients in the Wavelet transform,
or a histogram involving B buckets). In the query
optimization context, the value xi is the frequency of
i and is non-negative. In the context of time-series
data, [2], xi is the value seen in the stream at time
i and may be arbitrary. We make no assumptions
about xi.

Given a query that asks the value at i, a suitable
“estimate” of xi, say x̂i, is constructed and returned
as an answer. This is known as a “point query”. The
error, defined as the absolute error, incurred in the pro-
cess for the point i is |xi − x̂i|. The objective of good
synopsis construction algorithms is to build the sum-
mary structure restricted by B that minimizes a suit-
able function of these errors. Histograms are typically
defined to be a piecewise constant representation∗, and
are constrained to have at most B pieces or “buckets”.
The popular V-Optimal histogram minimizes the sum
of squares of absolute errors (i.e.

∑
i(xi − x̂i)2) and

was introduced in [12]. Approximation algorithms for
the V-Optimal histogram were given in [14, 9, 8, 5, 7].

Authors of [16, 4] rightly point out that, the mea-
sures (e.g. sum, sum of squares, etc.) which minimize
some function of the absolute errors at the data points
are not the most desirable measures†. The drawback
of these measures involving the absolute errors is that
the error in approximating xi = 1000 by x̂i = 1010 has
the same effect of approximating xi = 10 by x̂i = 20.
In percentages, the first is a 0.1% error and the latter
is a 100% error. Notice, if we multiply all the involved
numbers by 100, the disparity in the error remains —
the disparity is scale independent and arises because
10 is relatively small compared to 1000.

The relative error measures seek to minimize a suit-

∗Quantile summaries are sometimes referred as histograms
as well, but we will use histograms to denote piecewise constant
representations.

†The discussion here is limited to point queries. For “range
queries”, which will be out of scope for this paper, the reader is
asked to follow the pointers in [15, 6, 10].

300

able function of |xi−x̂i|/ max{|xi|, c}, where c is a san-
ity constant which is used to reduce excessive domina-
tion of relative error by small data values. The authors
of [16] propose the use of deterministic thresholding to
select the wavelet coefficients of the data value. The
work in [4] introduces probabilistic thresholding and
provides the first theoretical guarantees on the qual-
ity of the approximation achieved by the constructed
wavelet synopsis. However their proposed solution us-
ing wavelets suffers the following drawbacks:

• Difficulty of optimizing relative error mea-
sures. It is observed in [4] that wavelets are not
easily amenable for minimizing functions other
than L2 norms. The fundamental problem is that
a change of any wavelet coefficient affects more
than a single data value. In fact, in [4], con-
vex programming (not known to be solvable in
polynomial time) was used. To simplify, the au-
thors of [4] restricted the problem to select co-
efficients from the wavelet representation of the
data. However if the coefficients are selected from
the wavelet representation, the relative error mea-
sures do not monotonically decrease as the num-
ber of selected coefficients increase.

Consider a simple example X = [4, 3, 2, 1] whose
Haar wavelet transform with normalization is
[2.5, 1, 0.35, 0.35]. If we do not choose any coef-
ficient to store, the zero vector has 100% error for
the maximum relative error (considered in [4]).
However, choosing any single coefficient to store
gives an error larger than 100% relative error. In-
terestingly, if we replace 2.5 by 1.6 and use the
corresponding wavelet vector, the maximum rela-
tive error becomes 60%.

• Expectation guarantees. In [16], the authors
do not provide any error guarantee for relative
error measures with their scheme. In [4], they
give expected guarantees on both the error and
the space used. For example, if we have a solu-
tion with error 9 and space 1 (in some unit) and
a second solution with error 1 and space 9; then
choosing a solution with the same probability 0.5
for each solution will give a solution with expected
space and expected error 5. Thus although in ex-
pectation we have a space bound of 5 and error
bound 5, if we choose any one of the two solu-
tions we will have to settle for twice the expected
space or twice the expected error irrespective of
the number of times we repeat the experiment.
Expectation guarantees would have been useful if
any one of the parameters were obeyed strictly. In
fact preliminary calculations show that the vari-
ance of the space requirement of algorithms in [4]
can be as large as Θ(B) implying that the space
bound is likely to be overshot significantly.

The above issues clearly demonstrate the need
for algorithms that minimize relative error measures
optimally. Motivated by the above we consider his-
togram representations instead of wavelet synopses.
Many researchers have the following in support of
histograms: (1) Any (reasonable) error measure does
not increase as the number of buckets increase (2)
Histograms consider arbitrary intervals, compared to
fixed wavelet boundaries. Thus, histograms offer a
richer class of representations and often allow a better
representation of the data‡.

In this paper we propose histogram construction al-
gorithms under relative error measures. We seek to
design deterministic optimal and approximation algo-
rithms that obey the space bound strictly. We can
summarize our contributions as follows:

• Optimal algorithms for relative error mea-
sures. We provide the first optimal histogram
construction algorithms for minimizing the rela-
tive error measures. For minimizing the maxi-
mum relative relative error, we give a determinis-
tic algorithm in time required by the complicated
approximation strategy in [4]. For the other mea-
sures, the running time is similar to the time re-
quired for computing the V-Optimal histogram.

• Histogram construction for data streams.
We also provide truly linear (O(n), with no hid-
den constants like B, 1

ε in the O) approximation
algorithms for most of the error measures. The
linear algorithms have the special property that
they examine the data only once in a left-to-right
order and require small memory. Thus, they are
suitable for constructing histograms for streaming
time series data as well. For the rest, the approx-
imation runs in time O(n log n), with no hidden
terms.

• Extensive experimentation validating our
algorithms. We demonstrate the effectiveness of
our histogram construction algorithms in provid-
ing highly accurate answers using synthetic and
real-life data sets. We use the real-life data sets
used in the previous work. We compare our al-
gorithms with those proposed in [16, 4] in both
quality of answers and execution time.

The paper is organized as follows. In the next sec-
tion, we present preliminary definitions and formally
introduce the problem of constructing histograms with
relative error measures. In Section 3 and Section 4,
we introduce optimal and approximation algorithms
respectively. Section 5 presents experimental results,
and finally, we summarize in Section 6. Due to the lack

‡It can be shown that a B bucket wavelet synopsis can be
represented exactly by 3B+1 bucket histograms, but a B bucket
histogram may require O(B log n) wavelet coefficients.

301

of space, we omit the proofs of lemmas and theorems
presented in the paper. They can be found in [11].

2 Preliminaries & Related Work

2.1 Problem Statement

Let X = x1, . . . , xn be a finite data sequence. The
general problem of histogram construction is as fol-
lows: given some space constraint B, create and store
a compact representation HB of the data sequence.
HB uses at most B storage and is optimal under some
notion of error.

The representation collapses the values in a se-
quence of consecutive points xi where i ∈ [sr, er] (say
sr ≤ i ≤ er) into a single value x̂(r), thus forming a
bucket br, that is, br = (sr, er, x̂(r)). The histogram
HB is used to answer queries about the value at point
i where 1 ≤ i ≤ n. The histogram uses at most B
buckets which cover the entire interval [1, n], and saves
space by storing only O(B) numbers instead of n.

For a point query, the histogram is used to estimate
the xi, and for sr ≤ i ≤ er, the estimate is x̂(r). Since
x̂(r) is an estimate for the values in bucket br, we suffer
an error.

Definition 2.1 The absolute and the relative errors
for a point i ∈ [sr, er] are respectively defined as

|x̂(r)− xi| and |x̂(r)− xi|/ max{c, |xi|}.

The error of the histogram HB can be defined as a
function of these point errors. The most popular ways
are: (1) sum of errors at every point i, (2) sum of
squared errors at every point i, or (3) maximum error
considering every point i. Each of the choices induces
a natural notion of error for a bucket. We introduce
the following definitions:

Definition 2.2 Given an interval [sr, er], we define

• SSQerror(sr, er) = minx̂(r)

∑er

i=sr
(xi − x̂(r))2

• ErrM(sr, er) = minx̂(r) maxi∈[sr,er]
|xi−x̂(r)|

max{c,|xi|}

• Errsq(sr, er) = minx̂(r)

∑er

i=sr

(xi−x̂(r))2

max{c2,x2
i }

• ErrS(sr, er) = minx̂(r)

∑er

i=sr

|xi−x̂(r)|
max{c,|xi|}

Definition 2.3 Let Terr[j, k] be the error of the best
k bucket histogram representation for x1, . . . , xj under
the sum of squared absolute error measure. Thus the
optimum histogram construction problem under this
measure is to find the histogram for Terr[n,B].

Similarly, we define TrerrM[j, k], Trerrsq[j, k]
and TrerrS[j, k] as the errors of the best k bucket
histogram representation for x1, . . . , xj under the max-
imum relative error, sum of squared relative error, and
sum of relative error respectively.

There exists an efficient algorithm to determine the
V-Optimal histogram given by Jagadish et. al., [14],
which requires time O(n2B) and O(Bn) space. We
will review their algorithm in next.

2.2 V-Optimal Histogram Construction

Two important contributions are made in [14]. First,
the value of x̂(r) for a bucket [sr, er] which achieves
the minimum error, SSQerror(sr, er), is the mean of
the values xsr , . . . , xer . Thus, we have

SSQerror(i, j) =
j∑

`=i

x2
` −

1
j − i + 1

(
j∑

`=i

x`

)2

(1)

Second, if the last bucket in the optimal histogram
contains the data points denoted by the interval
[i + 1, n], then the rest of the buckets must form
an optimal histogram with (B − 1) buckets for the
interval [1, i]§. The best i will minimize the sum of
the two parts.

Generalizing the discussion (from B to an arbitrary
number of buckets k > 2, and from n to an arbitrary
point j > 1), the following dynamic programming al-
gorithm arises immediately:

Terr[j, k] = min
1≤i<j

{Terr[i, k − 1] + SSQerror(i + 1, j)}
(2)

To compute SSQerror(i + 1, n) in O(1) time, two
arrays Sum and Sqsum are maintained,

Sum[1, i] =
i∑

`=1

x` Sqsum[1, i] =
i∑

`=1

x2
` (3)

The sums in Equation (1) can be replaced by
Sum[1, j]−Sum[1, i−1] and Sqsum[1, j]−Sqsum[1, i−
1] respectively. In Equation (2), the value of j can
have at most n values. Since each entry of Terr[j,k]
requires O(n) time, with O(nB) entries, we can es-
tablish that the complexity of the optimal histogram
construction is O(n2B).

3 Optimal Histograms under
Relative Error

In this section, we focus on developing optimum algo-
rithms for the relative error measures. We first show
that the optimum histogram under the maximum rela-
tive error criterion can be constructed in O(nB log2 n)
time. Note that the algorithm in [4] which returns
an approximate wavelet decomposition has a similar
running time. We subsequently investigate the sum of
relative error measure and finally the sum of squares
of relative error measure.

§Otherwise, it is easy to observe that the error of the opti-
mal solution can be decreased by taking the optimal histogram
with (B − 1) buckets and the last bucket defined on the points
belonging to [i + 1, n].

302

Case Representative Error

max ≥ min ≥ c (2∗max ∗min)
(max + min)

max−min
max + min

min ≤ max ≤ −c (2∗max ∗min)
(max + min)

min−max
max + min

−c < min < c ≤ max max(min +c)
max +c

max−min
max +c

min ≤ −c ≤ max ≤ c min(c−max)
c−min

max−min
c−min

−c ≤ min ≤ max ≤ c (max + min)
2

max−min
2c

min ≤ −c < c ≤ max 0 1.0

Table 1: Optimal Maximum Relative Error

Procedure NaiveHistErrM()
begin
1. for j := 1 to n do {
2. TrerrM[j, 1] := ErrM(1, j)
3. for k := 2 to B do {
4. max := −∞; min := ∞; TrerrM[i, k] := ∞
5. for i := j - 1 down to 1 do {
6. If (max < xi+1) then max := xi+1

7. If (min > xi+1) then min := xi+1

8. TrerrM[j, k] := min(TrerrM[j, k], max(
TrerrM[i, k − 1],ErrM(i + 1, j))

9. }
10. }
11. }
end

Figure 1: The NaiveHistErrM

3.1 Maximum Relative Error

Recall that the maximum relative error of a bucket
br = (sr, er, x̂) is defined as follows:

ErrM(sr, er) = min
x̂

max
i∈[sr,er]

|xi − x̂|
max{c, |xi|}

We can prove the following:

Lemma 3.1 Given a set of numbers x1, . . . , x`, the
maximum relative error generated by minimizing max-
imum relative errors is defined by the minimum and
the maximum over these xi as described in Table 1.

A Simple Algorithm: Lemma 3.1 allows us to
consider a naive optimal algorithm, NaiveHistErrM,
with O(n2B) running time. The NaiveHistErrM is
illustrated in Figure 1. The computation of ErrM

can be performed in time O(1) if we are maintaining
the running minimum and the maximum incremen-
tally over the interval [i+1, j] as i changes (decreases).

An Improved O(nB log2 n) Construction: Con-
sider line (8) of Figure 1, where TrerrM[j, k] is

min
i
{max(TrerrM[i, k − 1],ErrM(i + 1, j))}

Observe that TrerrM[i, k−1] is an increasing function
and ErrM is a decreasing function of i. This problem
can be solved faster.

Lemma 3.2 To compute minx{max(F (x), G(x))}
where F (x) and G(x) are non-decreasing and non-
increasing functions respectively, we can perform
binary search for the value of x such that F (x) > G(x)
and F (x − 1) < G(x − 1), and we can take minimum
of G(x− 1) and F (x).

By the above Lemma, we find the smallest i such
that TrerrM[i, k−1] ≥ ErrM(i+1, j). Let the value
of i found by the binary search be i∗. The minimum is
achieved at either i = i∗− 1 or i = i∗. This algorithm,
OptHistErrM, is presented in Figure 2. We can verify
that the running time of the algorithm is O(Bn log n)
times of the time to compute ErrM(i, j).

Procedure OptHistErrM()
begin
1. for j := 1 to n do {
2. TrerrM[j, 1] := ErrM(1, j)
3. for k := 2 to B do {
4. low := 1; high := j − 1; TrerrM[j, k] := ∞
5. while (low < high) do {
6. mid := (high + low + 1)/2
7. if TrerrM[mid, k − 1] ≥ ErrM(mid + 1, j)
8. low := mid
9. else high := mid− 1
10. }
11. if (TrerrM[low, k − 1] < ErrM(low, j))
12. TrerrM[j, k] :=

min(TrerrM[j, k],ErrM(low, j))
13. else TrerrM[j, k] :=

min(TrerrM[j, k],TrerrM[low, k − 1])
14. }
15. }
end

Figure 2: The OptHistErrM

To compute ErrM(i, j) efficiently, we use an inter-
val tree defined below:

Definition 3.3 Given an interval on [1, n] we con-
struct an interval tree which is a binary tree over subin-
tervals of [1, n]. The root of the tree corresponds to
the entire interval [1, n] and the leaf nodes corresponds
to the intervals of length one, e.g. [i, i]. For the in-
terval [i, j] of a node in the interval tree, we store the
minimum and the maximum of xi, . . . , xj . The chil-
dren of a node with the interval [i, j] correspond to
the two (near) half-size intervals [i, r − 1], [r, j] where
r = b i+j+1

2 c.
It is easy to observe that an interval tree can be con-

structed in O(n) time and will require O(n) storage.
Given an arbitrary interval [i, j], we partition [i, j]
into O(log n) intervals such that each of the resulting
subintervals belong to the interval tree. Using the de-
composed subintervals, we find the optimal maximum
relative for the bucket. It reduces the time complexity
of computing the minimum (or maximum) to O(log n).

303

[4, 4] [5, 5][3, 3][2, 2][1, 1] [6, 6] [7, 7] [8, 8]

[3, 4][1, 2] [5, 6] [7, 8]

[5, 8][1, 4]

[2, 4]

[1,8]

Min Interval

decomposeRightdecomposeLeft

Figure 3: The Steps of Decomposing [2, 4] with an
Interval Tree

Decomposing [i, j] into subintervals For an in-
terval [i, j], we traverse the interval tree starting from
the root node to find the smallest interval [im, jm]
that contains [i, j] as a subinterval. If [im, jm] is ex-
actly [i, j], we are done. Otherwise, let [im,mm] and
[mm + 1, jm] be the left and right children of [im, jm].

It must be that i ≤ mm < j, otherwise there ex-
ists an interval smaller than [im, jm] that contains [i, j]
entirely. We will recursively find a set of intervals par-
titioning [i,mm] and similarly [mm + 1, j].

Let us focus on [i,mm], since the other case is sym-
metrical. We term this interval as “active”, in the
sense that we seek to partition it. We start from
the root of a subtree corresponding to [im,mm]. If
[im,mm] is the same as [i,mm] we are done. If i 6= im
then the interval [im, mm] has length at least 2 and let
[im, i′], [i′ + 1, mm] be its children. If i ≤ i′, we add
the interval [i′ + 1, mm] to our set and set [i, i′] as an
active interval and move to the left subtree. Otherwise
if i > i′ the same interval remains active but we move
to the right subtree. We traverse down the tree adding
at most one interval in each downward move. Thus,
the subintervals found for both [i, mm] and [mm +1, j]
can be at most 2 log n and this decomposition takes
O(log n) time.

Example 3.4 We illustrate the decomposition of
[2, 4] for a given interval tree in Figure 3. The interval
[2, 4] is decomposed into [2, 2] and [3, 4].

Lemma 3.5 The height of an interval tree corre-
sponding to [1, n] is at most O(log n). For any in-
terval [i, j], we can express the interval as a set of
at most O(log n) non-overlapping intervals belonging
to the nodes in the interval tree. This decomposi-
tion can be performed in O(log n) time. Furthermore,
we can compute the maximum and the minimum over
xi, . . . , xj in O(log n) time.

Therefore, we conclude with the following:

Theorem 3.6 The optimum maximum relative error
for n values and B buckets can be found in time
O(Bn log2 n) and space O(Bn). The O(Bn) space is

required to output the representative values and bucket
boundaries after the optimum error has been found, the
error itself can be computed in O(n) space.

3.2 Sum of Squared Relative Errors

Recall that the sum of squared relative error, Errsq,
for the bucket br = (sr, er, x̂(r)) is defined as follows:

Errsq(sr, er) = min
x̂(r)




er∑

j=sr

(x̂(r)− xj)2

max{c2, x2
j)}




The right hand side of the above equation can be
rewritten as minx̂(r)

(
Ax̂(r)2 − 2Bx̂(r) + C

)
where if

we denote by wj = max{c2, x2
j},

A =
er∑

j=sr

1
wj

& B =
er∑

j=sr

xj

wj
& C =

er∑

j=sr

x2
j

wj

Since A > 0, the value of Errsq(x̂) is minimized
when x̂ is B/A, and its minimum value becomes C −
B2/A. The aggregated sum values of A, B and C
as are stored in the arrays ASum,BSum and CSum
respectively to allow computing Errsq(i+1, j) in O(1)
time. Thus, using the following recursive definition for
k > 1,

Trerrsq[j, k] = min
i

(Trerrsq[i, k − 1] + Errsq(i + 1, j))

we can prove the following:

Theorem 3.7 In O(Bn2) time, we can compute the
optimal histogram under sum of squared relative error
measure.

3.3 Sum of Relative Errors

The sum of relative errors ErrS for a bucket br =
(sr, er, x̂(r)) is defined as follows:

ErrS(sr, er) = min
x̂(r)

er∑

i=sr

|xi − x̂(r)|
max{c, |xi|} = min

x̂(r)
g(x̂(r))

Definition 3.8 Given V = {xsr , xsr+1, ..., xer}, and
m = er − sr + 1. Let Vs = {v1, v2, ...vm} denote the
elements of V in the sorted order. If vi = vj then if
i < j we say that vi is before vj in the order.

To simplify the notation, since we are in the context
of a particular bucket br we will use x̂ to represent
x̂(r). Using the above equation, we rewrite g(x̂) =
P (x̂) · x̂ + Q(x̂).

P (x̂) =2
∑

j:vj≤x̂

1
max{c, |vj |} −

m∑

j=1

1
max{c, |vj |} (4)

Q(x̂) =
m∑

j=1

vj

max{c, |vj |} − 2
∑

j:vj≤x̂

vj

max{c, |vj |} (5)

304

We can show that the minimum of ErrS is obtained
at vk ∈ Vs such that k is the least index satisfying
P (vk) ≥ 0, which is Theorem 3.15. The proof is in-
volved and we provide a road map omitting the proofs
of the lemmas.

Lemma 3.9 The values of P (x̂) and Q(x̂) do not
change with x̂ for vk ≤ x̂ < vk+1.

Lemma 3.10 The function g(x̂) is continuous at ev-
ery vj ∈ Vs.

Lemma 3.11 When P (vk) < 0 for vk ∈ Vs, g(x̂) is
a decreasing function and we have g(vk+1) ≤ g(x̂) ≤
g(vk) for x̂ such that vk ≤ x̂ ≤ vk+1.

If P (vk) > 0, g(x̂) is an increasing function and we
have g(vk) ≤ g(x̂) ≤ g(vk+1) for x̂ with vk ≤ x̂ ≤ vk+1.

Lemma 3.12 For x̂ ∈ (−∞, v1], we have P (x̂) < 0
and g(v1) ≤ g(x̂). Furthermore, for x̂ ∈ [vm,∞),
P (x̂) > 0 and g(vm) ≤ g(x̂) holds.

Lemma 3.13 P (vi) is an increasing function of i and
P (vm) > 0 holds.

Lemma 3.14 If P (vk) < 0 for vk ∈ Vs, the function
g(x̂) is minimum at x̂ = vk+1 for x̂ ∈ (−∞, vk+1].
When P (vk) > 0 for vk ∈ Vs, the function g(x̂) is
minimum when x̂ = vk for x̂ ∈ [vk,∞).

Theorem 3.15 The minimum of g(x̂) is achieved at
vk ∈ Vs such that k is the least index satisfying
P (vk) ≥ 0.

Optimal Histogram Algorithm: The algorithm
presented in Figure 4 gives an optimal histogram for
ErrS in O(n2(B + log n)) time. The binary tree TB

in the algorithm help us to maintain the sorted order
in O(log n) time ¶.

One strategy would be to obtain the sorted ordered
set Vs of V = {xi+1, . . . , xj}, and find vk satisfying
Theorem 3.15. This would result in an O(n3) algo-
rithm. We can improve the complexity by storing ad-
ditional information in the binary tree to find vk faster
and computing ErrS(i, j) in O(log n) time. With ev-
ery node t with key xt in the tree, we keep a multi-
plicity field, dt, which denotes the number of x-values
seen which are equal to xt. Let the subtree rooted at
t is T . Each node is also augmented with two other
fields m and vm to keep the following values:

m =
∑

x∈T

1
max{c, |x|} and vm =

∑

x∈T

x

max{c, |x|}

As we insert a new key x to the binary tree, the values
in m and vm of the nodes in the binary search tree
must be updated appropriately.

¶Under balanced tree implementations, we use AVL-trees.

Procedure OptHistErrS()
begin
1. for i := 1 to n do {
2. TrerrS[i, 1] := ErrS(1, i)
3. for k := 2 to B do
4. TrerrS[i, k] := ∞
5. TB := ∅
6. for j := i-1 to 1 do {
7. // TB contains values in [j + 2, i]
8. insert(TB , xj+1)
9. // TB now contains values in [j + 1, i]
10. Compute ErrS(j + 1, i) using TB

11. for k := 2 to B do {
12. TrerrS[i, k] :=min{TrerrS[i, k],

TrerrS[j, k − 1] + ErrS(j + 1, i)}
13. }
14. }
15. }
end

Figure 4: The OptHistErrS

Computation of ErrS(i, j): We will traverse
down a path leading to the appropriate vk giving
the solution to ErrS. Suppose we are at a node t
with value xt, and its nearest ancestor node tn having
P (xtn) > 0. Let the subtree rooted at t is T . We
maintain the following quantities while traversing TB :

Ex.m =
∑

x 6∈T,x<xt

1
max{c, |x|} & Ex.vm =

∑

x 6∈T,x<xt

x

max{c, |x|}

Ex has information regarding the keys in the nodes
that are less than xt and do not belong to the subtree
T rooted at t. Let P0 = TB .m and Q0 = TB .vm. We
first compute

P ∗(xt) = 2Ex.m + 2Left(T).m− P0

where Left(T) is the left subtree of t in T . Note that
Left(T).m = 0 if the left subtree is empty. Since
the formula of P ∗(xt) is the same as that of P (xt) ex-
cept the contribution from vj = xt, we always have
P ∗(xt) < P (xt). In each node t, we perform the fol-
lowing steps according to the condition below:

When P ∗(xt) + dt/ max{c, |xt|} < 0, we know that
vk cannot be xt (or any of its duplicates) and we need
to investigate the right subtree of T . In the recursive
call to the right subtree, we pass the current tn if we
have tn in this traversal. We update Ex.m and Ex.vm
by adding t.m and t.vm respectively.

If P ∗(xt) + dt/ max{c, |xt|} ≥ 0 and P ∗(xt) < 0,
we have vk = xt(the condition P () > 0 is satisfied by
some duplicate of xt). In this case we are done.

Otherwise, we have P ∗(xt) ≥ 0 and the value of xt

may be the solution, but we cannot be assured of it
without inspecting the rest of the subtree. We replace
tn as t and investigate the left subtree Left(T).

By this process we recursively maintain the invari-
ant that: the solution vk is contained in the current
subtree or is the stored value in tn. If we reach a leaf

305

node and decide to take the (empty) right path we
know that the stored value in tn must be vk. If we
attempt to take the empty left path then the stored
value of the leaf node must be vk.

To get ErrS, we simply calculate

Q∗(xt) = Q0 − 2Ex.vm− 2Left(T).vm

and compute P ∗(xt)xt + Q∗(xt) which is actually
P (xt)xt + Q(xt). Thus, we can claim the following:

Lemma 3.16 We can compute vk, equivalently
ErrS(i, j) given an AVL-tree, in time O(log n).

Thus, we conclude with the following Theorem.

Theorem 3.17 We can compute the optimal his-
togram under sum of relative error measure in time
O(n2(B + log n)).

4 Approximate Histograms for
Relative Error

Due to the lack of space we relegate the discussion on
previous work on approximate V-Optimal histograms
to [11]. We point out why newer approximation algo-
rithms are needed for relative error measures.

The approximation algorithm in [14] gives a factor
3 approximation (ignoring other issues) and we will be
interested in (1+ε) approximations. The approximate
algorithms in [9, 8] depend on the fact that the error
for a bucket in the V-Optimal histogram depends on
the mean and the sum of the values in the bucket.
However, the sum of relative error ErrS in a bucket
depends on the sorted order of the values in the bucket
and not on simple aggregate values. Thus, the algo-
rithms in the style of [8, 9] cannot work for ErrS with-
out substantial modification. The algorithms in [5, 7]
use properties of the L2 norm and are too dependent
on the definition of V-Optimal error to be useful in
context of relative error.

For maximum relative error ErrM, we need to
maintain the maximum and minimum values in a
bucket to compute the error. An algorithm similar
to [9] can give a (1 + ε) approximation — but unfor-
tunately the running time of such an algorithm will
be O(nB3ε−2 log n) which is greater than the time
required by the optimal algorithm! An algorithm like
[8] cannot maintain the minimum or maximum for an
arbitrary interval since the lazy evaluation strategy
does not inspect all the elements (which is necessary
to find the maximum and minimum).

Based on the above facts, we need to design
new approximation algorithms. We give a (1 + ε)-
approximation algorithm for the maximum relative er-
ror requiring O(n) time and O(B2ε−1 log n (log log n+
log B

ε)3) space in Section 4.1. Subsequently we provide
the a (1 + ε) approximation for sum of squared rela-
tive error in O(n) time but O(B3ε−2 log2 n(log log n +

log B
ε)) space. These results extend naturally to the

streaming context, and are directly applicable for time
series data.

For sum of relative error we give a O(n log n) time
and space algorithm in Section 4.3.

4.1 ErrM: Maximum Relative Error

The main idea behind approximate histograms in [8, 9]
is the observation that an increasing function can be
approximated by a step function. We will read the
input in blocks of which each contains M data values.

Let δ be ε/(2B). We approximate the function
TrerrM[i, k + 1] at a subset of the points by the
function ApxerrM[i, k + 1]. We let ApxerrM[i, 1] =
ErrM(1, i) and ApxerrM[i, k] is defined for k > 1 as:

max
l
{ApxerrM[ek

l , k − 1],ErrM(ek
l + 1, i)}

We will not evaluate ApxerrM[i, k] for all i, and
retain the values of ApxerrM[i, k] at the endpoints of
several intervals [sk

l , ek
l] only such that:

(1 + δ)ApxerrM[sk
l , k] ≥ ApxerrM[ek

l , k] (6)

with the property that the intervals [sk
l , ek

l] are mu-
tually disjoint for the same k and

⋃
l[s

k
l , ek

l] is all the
input we have seen so far.

Suppose we have stored a set of values
ApxerrM[i, k] with 1 ≤ i ≤ n − M , as shown
in figure 5. The dotted line corresponds to the ap-
proximate intervals stored for the interval [1, n −M],
and corresponds to ApxerrM[i, k] (estimated or ap-
proximated TrerrM[i, k]). The solid line corresponds
to ApxerrM[i, k] for the last M values — note that
we will not even compute ApxerrM[i, k] for all these
points. But if we did, we would get the solid line.

i

A]i, k[

n
e

MPXERR

n − M
q
kss ek sk ek s k ke e4432

k
1 1 2

k
3 qs

kk

M

Figure 5: Extending ApxerrM[i, k]

We have B lists of intervals in which the k-th list
stores the set of intervals corresponding to Equa-
tion (6). Intuitively, we approximate TrerrM[i, k]
with 1 ≤ i ≤ n − M . We will extend the B interval
lists to include the approximation of TrerrM[i, k]
for the last M data values. Assume that [sk

q , ek
q] is

the last interval of [1, n − M] for ApxerrM[i, k].

306

We find the maximum for n − M + 1 ≤ e ≤ n
such that ApxerrM[e, k] ≤ (1 + δ)ApxerrM[sk

q , k].
This e defines an interval [sk

q , e] that replaces the
interval [sk

q , ek
q] in k-th interval list. We start a

new interval from e + 1 and repeat this process to
find next intervals until we run out of the last M
data values. Notice we can use binary search to
find e, and subsequently next e etc. To extend the
k-th list by one element of ApxerrM, we require
binary search with O(log M) time. Suppose nq is
the maximum number of elements in any list. The
number of evaluating ApxerrM[i, k] to extend k-th
list is O(nq ∗ log M). Thus, the time complexity of
extending k-th list becomes O(nq ∗ log M) times that
of evaluating ApxerrM[i, k].

Extending k-th List: Assume that we processed
r blocks of data values whose interval is [1, n−M] and
we are about to process the (r+1)-th block whose size
is M . With each end-point ek

l of intervals in [1, n−M],
we maintain the minimum and the maximum values
seen in [ek

l , ek
q] where ek

q is the end of the last (i.e.
r-th) block. We will update these values and they will
help us calculate ErrM(e + 1, n). We also build an
interval tree with O(M) time which is introduced in
Section 3.1. We describe the algorithm at a high level
only, the detailed description of the algorithm can be
found in [11]. We set

ApxerrM[i, 1] = TrerrM[i, 1] = ErrM(1, i)

Now, ApxerrM[i, k] for k > 1 is:

min
l
{max(ApxerrM[ek−1

l , k − 1],ErrM(ek−1
l + 1, i))}

where ek−1
l are end points of the (k − 1)-th list. By

Lemma 3.2, computation of ApxerrM[i, k] can be
done with binary search in O(log nq) time.

In each step of this binary search,
ApxerrM[ek−1

l , k − 1] is already memorized, but
we need to compute ErrM(ek−1

l + 1, i). We find the
maximum and minimum values using the interval
[ek−1

l + 1, i]. If both ek−1
l + 1 and i are in the current

block (i.e. (r + 1)-th block), we use the interval tree
and it takes O(log M) time. If ek−1

l + 1 (therefore
ek−1
l) belonged to a previous block (r-th block), we

already know the maximum and minimum values
from ek−1

l + 1 to end of the last (i.e. r-th) block.
We can also get the minimum and maximum of the
values for the current block using the interval tree in
O(log M) time.

The time to compute ApxerrM[i, k] for k > 1
with binary search is O(log nq log M) because bi-
nary search and evaluating ErrM() takes O(log nq)
andO(log M) respectively. Since the number of eval-
uations of ApxerrM[i, k] needed to extend k-th list
is O(nq ∗ log M), the total time to extend k-th list is

Procedure ApproxHistErrM()
begin
1. For r = 1 to n/M {
2. Read the next block of M elements
3. Create an interval tree

with M elements for min/max queries
4. For k = 1 to B − 1
5. Extend k-th List
6. For k = 1 to B − 1
7. Update min/max values of end-points
8. }
9. //S is a set of end-points of (B − 1)-th queue
10. ApxerrM(n, B) = mini∈S

(ApxerrM(i, B − 1) + ErrM(i + 1, n))
end

Figure 6: Approx. Max Relative Error

O(M +nq(log M)2(log nq)) where O(M) is the time to
read and process a single block of data.

Lemma 4.1 The maximum number of elements in
the interval lists, nq is O(Bε−1 log n).

Lemma 4.2 The time to read the next M data values
and extend all of B lists is given by:

O
(
M + (B2ε−1 log n)(log2 M)(log log n + log(B/ε))

)

Thus, the total time of ExtendList is n/M times the
above time to process a single block, it becomes

O

(
n +

n

M
(B2ε−1 log n)(log2 M)(log log n + log

B

ε
)
)

Observe that, for our choice of M , this is O(n).
The following can be proved by induction on k′.

Lemma 4.3 (Proof of Correctness) For any i for
which ApxerrM[i, k′] is evaluated, we have

ApxerrM[i, k′] ≤ (1 + δ)k′TrerrM[i, k′]

When δ = ε/(2B), by the inductive claim, we have

(1 + ε/(2B))BTrerrM[n,B] ≤ (1 + ε)TrerrM[n,B]

for 0 ≤ ε < 1, where TrerrM[n,B] is the optimal
error. Thus, the approximate error ApxerrM[n,B] is
at most (1 + ε)TrerrM[n,B] and we have a (1 + ε)-
approximation of the optimal error.

The approximation algorithm, ApproxHistErrM(),
is presented in Figure 6. Observe that if we set
M = (B2ε−1 log n)(log2 M)(log log n + log B

ε), then
the running time of ApproxHistErrM() is O(n), with
relatively small space. Notice that since we would
be reading block by block, we would get a stream-
ing algorithm. Observe for this value of M , we have
log M = O(log log n + log B

ε). Putting everything to-
gether, we have

307

Theorem 4.4 We can find a (1+ε) approximation to
maximum relative error histogram in time O(n) and
space M = Ω(B2ε−1 log n(log log n + log B

ε)3). This
algorithm considers the input sequence left to right and
looks at every input value (block) at most once. Thus
this algorithm applies to streaming data as well.

4.2 Sum of Squared Relative Errors

In the case of Errsq, we would need to store ASum,
BSum and CSum for each i and k such that Errsq[i, k]
increases by a factor of (1 + ε/(2B)). We apply a sim-
ilar algorithm as in Figure 6 to incrementally read
blocks of M points each and construct the requisite
approximations. The block size determines the space
requirement and will be larger in this case than that
for ErrM as the reason will be seen shortly. We can
prove that Lemma 4.1 holds in this case as well. Notice
that in this case, since we have to compute

Trerrsq[i, k] =

min
l

{
Trerrsq[ek-1

l , k-1] + Errsq(ek-1
l +1, i)

}

which means we cannot use binary search and have
to spend O(nq) time to evaluate the minimum. How-
ever, evaluation of Errsq(ek−1

l +1, i) can be performed
in time O(1) now using the stored ASum, BSum and
CSum. Thus, k-th interval list can be extended in
time O(M + (nq)2 log M). Thus the overall time will
be O(n + n

M (nq)2 log M) – therefore to achieve o(n)
running time, M needs to be larger in this case.

Theorem 4.5 We can construct a (1 + ε)-
approximation for the sum of squared rela-
tive error histograms in time O(n) and space
O(B3ε−2(log2 n)(log log n + log B

ε).

4.3 Sum of Relative Errors

We propose a similar algorithm as in previously sub-
sections. However, for sum of relative errors, com-
putation of ErrS(i, j) does depend not only on some
aggregate statistics at the endpoints i and j, but also
on the entire set of values in the interval. Thus, to
answer ErrS for arbitrary intervals quickly, prepro-
cessing step of building an interval tree is required.
We can prove the following (along the same lines as
the proofs of Lemma 4.1, and Lemma 4.3):

Lemma 4.6 If the evaluation of ErrS(i, j) for any
[i, j] can be supported in O(T) time with preprocess-
ing O(P), we can construct a (1 + ε) factor ap-
proximation of the optimal histogram in time O(P +
nB3ε−2T log3 n).

Lemma 4.7 We can evaluate ErrS for an arbitrary
interval with P = O(n log n) and T = O(log3 n).

From Lemma 4.6, and Lemma 4.7, we conclude:

Theorem 4.8 In O(n log n + B3ε2 log6 n) time and
O(n log n) space, we can compute a (1 + ε)-
approximation for the sum of relative errors his-
tograms.

5 Experimental Result

To investigate the performance gains of REHIST over
existing techniques, we conducted experiments using
real-life as well as synthetic data sets. The sanitary
bound c is set to the 10-percent value in the data as in
[3, 4]. We used our implementations of the probabilis-
tic thresholding scheme [3, 4] and the deterministic
thresholding scheme [17] as representatives of tradi-
tional summarization techniques that considers rela-
tive errors as objective function.

5.1 Synthetic Data Sets

We considered one-dimensional synthetic data distri-
bution. The data sets were generated with Zipfian
frequencies for various levels of skew controlled by the
z parameter of the Zipfian. The tuple count was set
to 106. We varied the z parameter values between
0.3 (low skew) and 2.0 (high skew), the distinct val-
ues between 128 (= 27) and 16384 (= 214). Note that
the time and space complexities are not dependent on
number of tuples and thus we did not vary this param-
eter.

A permutation step was also applied on the pro-
duced Zipfian frequencies to decide the order of fre-
quencies over the data domain. We experimented with
four different permutation techniques that were used
in [3, 4]: NoPerm, Normal, PipeOrgan and Random.
Normal permutes the frequencies to resemble a bell-
shaped normal distribution, with higher frequencies at
the center of the domain. Due to the lack of space, we
present the experimental results with Normal permu-
tation only. The detailed description of these permu-
tations are presented in [3, 4].

5.2 Algorithms

Since the probabilistic [4] and deterministic threshold-
ing schemes [17] did not consider all of three relative
error measures, we modified their algorithm to report
these errors as well. We conducted a comprehensive
performance evaluation of the various schemes. Specif-
ically, we show the performance figures of the following
schemes:

• V-OPT: It represents the V-Optimal histogram
construction algorithm [14] presented in Sec-
tion 2.2. Even though the error metric used for
V-optimal histograms is different, it is interesting
to see how other state-of-the-art histogram tech-
niques compare against REHIST which minimizes
relative error.

308

• P-Wavelet: This is our implementation of the
probabilistic thresholding scheme of [3]. ‖ We
used the same default parameter values that were
used in [3]. For instance, we set the value of
q to 10 and the perturbation parameter δ to
min{0.01, c/100}. As the authors in [3, 4] sug-
gested, we performed five trials using different
random seeds, and the synopsis with the least
value was chosen.

• D-Wavelet: It is the deterministic thresholding
method that was introduced in [17].

• REHIST-OPT: These represent optimal his-
togram construction algorithms presented in
Section 3. Depending on the error mea-
sure used, REHIST-OPT-M, REHIST-OPT-SQ
and REHIST-OPT-S represent OptHistErrM,
OptHistErrsq, and OptHistErrS respectively .

• REHIST-APPROX: These represent approx-
imate histogram construction algorithms de-
scribed in Section 4. REHIST-APP-M, REHIST-
APP-SQ and REHIST-APP-S represent approxi-
mation algorithms using ErrM, Errsq, and ErrS

respectively .
Since none of the competitive suggestions consider
streaming data, the comparisons are given for of-
fline algorithms only, with blocksize as the num-
ber of distinct values.

Note: In case of all the histogram algorithms,
we found that first obtaining a coarse approxi-
mation (say factor 2) and using that solution to
prune the lists (not to use ApxerrM[i, k] larger than
this coarse value) has significant performance benefits.

All experiments reported in this section were per-
formed on Pentium-4 2.8 GHz machine with 512 MB
of main memory, running Linux. All the methods were
implemented using GCC compiler of Version 2.95.3.

5.3 Experimental Results - Synthetic Data

We present some of our experimental results with syn-
thetic data sets. For wavelet methods, each coefficient
requires two numbers: the coefficient value and the
coefficient index. Similarly, in histograms, starting
boundary value of the next bucket is the current
bucket’s ending value plus one, each bucket needs
two numbers: its representative value and ending
boundary value. Thus, the number of buckets in
histogram and the number of coefficients in wavelets
methods were set to be equal and represented by B.
The default value of B was set to 50. The default
skew was 1.0 and the default number of distinct values
was set to 2048.

‖It is an improved version of [4] using binary search.

Number of Buckets: Figure 7-(a), (b) and (c)
represent the graphs as the number of buckets B is
varied. We plot the maximum relative error for ErrM

in the graph. However, for ErrS and Errsq, we plot
the average per distinct value. We notice that the
accuracy of REHIST is much better than P-Wavelet,
D-Wavelet and V-OPT. Typically, as we expected,
V-OPT is the worst performer. For small B, the
wavelet methods are bad. As expected, the relative
error measures decrease with increasing the number
of buckets B. The quality of histograms produced by
REHIST-APP was almost the same as REHIST-OPT.

Skew Parameter: We also varied the skew
parameter. The relative error measures increase with
higher skew parameter value. The graphs show that
REHIST results in significant improvement in quality
as compared to both wavelet methods and V-OPT.
The quality of REHIST-APP was very close to that
of REHIST-OPT. Due to the lack of space, we can
not present the graphs in this paper.

Number of Distinct Values: Figure 7-(d), (e)
and (f)) were obtained by varying the number of dis-
tinct values. These graphs again show that the solu-
tions obtained by REHIST are much more accurate
than D-Wavelet, P-Wavelet and V-OPT. V-OPT is
again the worst performer. We also compare execu-
tion times in Figure 7-(g), (h) and (i). D-Wavelet is
the fastest. For ErrM and Errsq, REHIST-APP was
at least as fast as P-Wavelet. However, P-Wavelet is
faster than REHIST-APP for ErrS. Since increasing
q value for P-Wavelet improves the quality of wavelet
synopsis, we increased the value of q from 10 to 50.
However, while the execution time with q = 50 is typi-
cally 10 times slower than that with q = 10, the quality
with q = 50 was not significantly better. Thus, spend-
ing more time and increasing q does not help for P-
Wavelet. In this regard, the running time of REHIST
appears justifiable considering the significantly better
quality of representations constructed by REHIST. Al-
though REHIST-OPT is the slowest, for small num-
ber of distinct values, REHIST-OPT is faster than
REHIST-APP. As expected, this is reversed as we in-
creased the number of distinct values.

5.4 Experimental Results - Real-life Data Sets

We also experimented with real-life data sets. We
used the Cover Type data set from the National For-
est Service, which was downloaded from UC Irvine∗∗.
There are 581,012 tuples in the data set. Among 54
attributes, we report ”hillshade3pm” (CovType-HS3)
and ”aspect” (CovType-A). Because these attributes
have widely different distributions, they were used for
performance study in [3, 4]. CovType-HS3 measures a

∗∗Available at ftp://ftp.ics.uci.edu/pub/machine-learning-
databases.

309

 0.1

 1

 10

 5 10 20 30 40 50 60 70 80 90 100

M
a
x
.
R

e
la

ti
v
e
 E

rr
o
r

No. of Buckets

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-M
REHIST-OPT-M

 0.01

 0.1

 1

 10

 5 10 20 30 40 50 60 70 80 90 100

A
v
g
.
R

e
la

ti
v
e

 E
rr

o
r

No. of Buckets

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-S
REHIST-OPT-S

 0.001

 0.01

 0.1

 1

 10

 5 10 20 30 40 50 60 70 80 90 100

A
v
g
.

S
q
u

a
re

d
 R

e
la

ti
v
e
 E

rr
o

r

No. of Buckets

V-OPT
P-Wavelet
D-Wavelet

REHIST-APP-SQ
REHIST-OPT-SQ

(a) ErrM (b) ErrS (c) Errsq

 0.1

 1

 2048 4096 8192 16384

M
a
x
.
R

e
la

ti
v
e
 E

rr
o
r

No. of Distinct Values

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-M
REHIST-OPT-M

 0.01

 0.1

 1

 2048 4096 8192 16384

A
v
g
.
R

e
la

ti
v
e

 E
rr

o
r

No. of Distinct Values

V-OPT
D-Wavelet

P-Wavelet-10
P-Wavelet-50

REHIST-APP-S
REHIST-OPT-S

 0.001

 0.01

 0.1

 1

 2048 4096 8192 16384

A
v
g
.

S
q
u

a
re

d
 R

e
la

ti
v
e
 E

rr
o

r

No. of Distinct Values

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-SQ
REHIST-OPT-SQ

(d) ErrM (e) ErrS (f) Errsq

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2048 4096 8192 16384

T
im

e
(s

e
c
.)

No. of Distinct Values

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-M
REHIST-OPT-M

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2048 4096 8192 16384

T
im

e
(s

e
c
.)

No. of Distinct Values

V-OPT
D-Wavelet

P-Wavelet-10
P-Wavelet-50

REHIST-APP-S
REHIST-OPT-S

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2048 4096 8192 16384

T
im

e
(s

e
c
.)

No. of Distinct Values

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-SQ
REHIST-OPT-SQ

(g) ErrM (h) ErrS (i) Errsq

Figure 7: Approximation Error for Normal Zipfian permutation with Synthetic Data Sets

 0.1

 1

 10

 10 15 20 25 30 35 40

M
a
x
.
R

e
la

ti
v
e
 E

rr
o
r

No. of Buckets

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-M
REHIST-OPT-M

 0.1

 1

 10 15 20 25 30 35 40

A
v
g
.
R

e
la

ti
v
e
 E

rr
o
r

No. of Buckets

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-S
REHIST-OPT-S

 0.01

 0.1

 1

 10 15 20 25 30 35 40

A
v
g
.
S

q
u
a
re

d
 R

e
la

ti
v
e
 E

rr
o
r

No. of Buckets

V-OPT
D-Wavelet
P-Wavelet

REHIST-APP-SQ
REHIST-OPT-SQ

(a) ErrM (CovType-HS3) (b) ErrS (CovType-HS3) (c) Errsq (CovType-HS3)

Figure 8: Approximation Error for Real-Life Data Set

310

hillshade index (from 0 to 255) at 3 pm on the summer
solstice. Its histogram is bell-shaped and relatively
smooth. CovType-A has uniformly spread distribution
with a pipe-organ-style fluctuation and considerable
peaks of noise. Due to lack of space, the quality of
histograms were plotted for CovType-HS3 only in Fig-
ure 8. Our results show that REHIST provides sig-
nificantly better accuracy than D-Wavelet, P-Wavelet
and V-OPT.

6 Summary

Histograms and Wavelet synopsis provide useful tools
in query optimization and approximate query answer-
ing. Previous algorithms for relative error use wavelet
approximation schemes with deterministic or proba-
bilistic thresholding. The deterministic scheme sug-
gests heuristics which are not guaranteed to minimize
relative error. The probabilistic scheme proposes a
complicated optimization, and proceeds to provide an
approximation, which holds in expectation only. Ex-
pected guarantees are not sufficient for minimizing
maximum error objective. We presented optimal as
well as faster approximation algorithms with several
relative error measures. We did comprehensive analy-
sis of time and space complexities of these algorithms
and, with synthetic and real-life data sets, demon-
strated the effectiveness of our algorithms in providing
significantly more accurate answers compared to the
wavelet based methods and V-Optimal algorithm.

Acknowledgments

The authors wish to thank the referees for many useful
comments which have helped in improving the presen-
tation of the manuscript. The work was supported
by the Ministry of Information and Communication in
Korea through the University Information Technology
Research Center (ITRC) Support Program.

References

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ra-
maswamy. The Aqua Approximate Query An-
swering System. Proc. of ACM SIGMOD, 1999.

[2] K. Chakrabarti, E. J. Keogh, S. Mehrotra, and
M. J. Pazzani. Locally adaptive dimensionality
reduction for indexing large time series databases.
ACM TODS, 27(2):188–228, 2002.

[3] M. N. Garofalakis and P. B. Gibbons. Probabilis-
tic wavelet synopses. To appear in ACM TODS.

[4] M. N. Garofalakis and P. B. Gibbons. Wavelet
synopses with error guarantees. In Proc. of ACM
SIGMOD, 2002.

[5] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. Strauss. Fast, small-
space algorithms for approximate histogram
maintenance. In Proc. of ACM STOC, 2002.

[6] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Optimal and approximate computa-
tion of summary statistics for range aggregates.
In Proc. of ACM PODS, 2001.

[7] S. Guha, P. Indyk, S. Muthukrishnan, and
M. Strauss. Histogramming data streams with
fast per-item processing. In Proc. of ICALP, 2002.

[8] S. Guha and N. Koudas. Approximating a Data
Stream for Querying and Estimation: Algorithms
and Performance Evaluation. In Proc. of ICDE,
2002.

[9] S. Guha, N. Koudas, and K. Shim. Data Streams
and Histograms. In Proc. of STOC, 2001.

[10] S. Guha, N. Koudas, and D. Srivastava. Fast algo-
rithms for hierarchical range histogram construc-
tion. In Proc. of ACM PODS, 2002.

[11] S. Guha, K. Shim, and J. Woo. REHIST: Relative
error histogram construction algorithms. Techical
Report, Seoul National University, Seoul, Korea,
July 2004.

[12] Y. Ioannidis and V. Poosala. Balancing His-
togram Optimality and Practicality for Query Re-
sult Size Estimation. Proc. of ACM SIGMOD,
1995.

[13] Y. E. Ioannidis. Universality of serial histograms.
In Proc. of the VLDB Conference, 1993.

[14] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. In Proc. of
the VLDB Conference, 1998.

[15] N. Koudas, S. Muthukrishnan, and D. Srivastava.
Optimal histograms for hierarchical range queries.
In Proc. of ACM PODS, 2000.

[16] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-
Based Histograms for Selectivity Estimation.
Proc. of ACM SIGMOD, 1998.

[17] J. Vitter and M. Wang. Approximate compu-
tation of multidimensional aggregates on sparse
data using wavelets. Proc. of SIGMOD, 1999.

311

