General Purpose Database Summarization
A web service architecture for on-line database summarization

Régis Saint-Paul (*speaker*),
Guillaume Raschia, Noureddine Mouaddib

LINA - Polytech’Nantes - INRIA
ATLAS-GRIM Group

VLDB Conference — Sept. 1st 2005
Table of Content

1 Introduction
 • Generalities
 • Related works

2 Summary model
 • Description space
 • Building the summaries

3 System architecture
 • Web service organization
 • Complexity and performances

4 Conclusion
Provide small versions of very large databases

- **Descriptive ability:**
 - scientific studies (epidemiology);
 - commercial and marketing studies (customer segmentation);
 - log analysis (connection/operation profile);
 - data obfuscation;
 - data personalization and filtering.

- **Data size reduction ability:**
 - approximate querying (hotel booking),
 - database browsing (image database),
 - storing rough view of the data on devices with low memory capacity (tourism GPS data).
Motivations

Provide small versions of very large databases

- **Descriptive ability**:
 - scientific studies (epidemiology);
 - **commercial and marketing studies** (customer segmentation);
 - log analysis (connection/operation profile);
 - data obfuscation;
 - data personalization and filtering.

- **Data size reduction ability**:
 - approximate querying (hotel booking),
 - database browsing (image database),
 - storing rough view of the data on devices with low memory capacity (tourism GPS data).
Motivations

Provide small versions of very large databases

- **Descriptive ability**:
 - scientific studies (epidemiology);
 - **commercial and marketing studies** (customer segmentation);
 - log analysis (connection/operation profile);
 - data obfuscation;
 - **data personalization and filtering**.

- **Data size reduction ability**:
 - approximate querying (hotel booking),
 - **database browsing** (image database),
 - storing rough view of the data on devices with low memory capacity (tourism GPS data).
What is a summary?

Definition
A summary is a concise representation of a set of structured data.
⇒ Semantic Compression

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. Student</td>
<td>1 000</td>
</tr>
<tr>
<td>Lecturer</td>
<td>2 000</td>
</tr>
<tr>
<td>Managing Director</td>
<td>8 500</td>
</tr>
<tr>
<td>Politician</td>
<td>xx xxx</td>
</tr>
</tbody>
</table>

Tab.: Relation R

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>Miserable</td>
</tr>
<tr>
<td>Executive</td>
<td>Enormous</td>
</tr>
</tbody>
</table>

Tab.: Summary R
Aggregate computation

- **Aggregate computation**

 SDB, OLAP [Codd et al. 93], DataCubes [Gray et al. 93]

- **Datacube summarization**

 QuotientCube [Lakshmanan et al. 2002]

Limitations

- Do not preserve the initial data schema;
- Subject oriented, has to be designed;
- Fixed and crisp granularity, threshold effect.
Clustering approaches for semantic compression

Intuition

Describe groups rather than individual observation.

- **Clustering** – *ItCompress* [Jagadish et al. 1999]
- **Bayesian network classifier** – *Spartan* [Babu et al. 2001]
- **Association rules** – *Fascicule* [Jagadish et al. 1999]

Limitations

- Classes shape depends on the selected criteria [Fasulo 1999];
- Single granularity of the compressed relation;
- Non-intuitive intentional description of classes.
Foundations of our approach

Intuition

Trying to reproduce the human learning mechanisms.

- **Formal concept analysis**

- **Conceptual clustering** – [Michalski et Stepp 1983]

 Unimem [Lebowitz 1986], Cobweb [Fisher 1987],
 Fuzz [Chen & Lu 1997]

Limitations

- Approaches were validated only on small data samples;
- Lack of maintenance capabilities.
Table of Content

1 Introduction
 • Generalities
 • Related works

2 Summary model
 • Description space
 • Building the summaries

3 System architecture
 • Web service organization
 • Complexity and performances

4 Conclusion
Possibilistic Data Representation

- Theoretical foundation:
 - Fuzzy-set theory (Zadeh, 1965) and Possibility theory (Zadeh 1978, Dubois & Prade 1985)

- Management of uncertain, incomplete and gradual information:
 “John’s age should *approximately* be *between 16 and 20*, but that’s *not sure*.”

- Possibility distribution
For each attribute A with domain D_A, a set of Linguistic Labels is defined together with their membership function over D_A.

Example, on attribute INCOME:

\[
D_{\text{INCOME}} = [0, 200000] \\
D_{\text{INCOME}}^+ = \{\text{none, miserable, modest, ...} \}
\]
Summary representation space

Original tuple (raw data)

\[t = \langle t.A_1, \ldots, t.A_k \rangle, \quad t \in \mathcal{R} \]

\[
\begin{align*}
\{t\} & \xrightarrow{D_A} \mathcal{R}(A_1, \ldots, A_k) = \prod_{i=1}^{k} D_{A_i} \\
\{z\} & \xrightarrow{\mathcal{F}(D_A^+)} \mathcal{R}^*(A_1, \ldots, A_k) = \prod_{i=1}^{k} \mathcal{F}(D_{A_i}^+)
\end{align*}
\]

Summarized tuple

\[z = \langle z.A_1, \ldots, z.A_k \rangle, \quad z \in \mathcal{R}^* \]
Summary model

A summary is a 3-uple $z = (I_z, R_z, E_z)$ with:

- I_z: the intentional content;
- R_z: the extensional content, subset of the relation R;
- E_z: a set of edges toward other summaries.

Example of a summary

<table>
<thead>
<tr>
<th>Label</th>
<th>satisfaction</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>intention I_z</td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td>OCCUPATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>employee</td>
<td>0.2</td>
<td>1.25</td>
</tr>
<tr>
<td>manager</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>managing director</td>
<td>0.7</td>
<td>0.25</td>
</tr>
<tr>
<td>INCOME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>comfortable</td>
<td>1.0</td>
<td>1.50</td>
</tr>
<tr>
<td>high</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>extension R_z</td>
<td>{ t_1, t_2, t_5, t_{13} }</td>
<td>4</td>
</tr>
</tbody>
</table>
Subsumption relation:

\[z \subseteq z' \iff R_z \subseteq R_{z'} \]

Hierarchical organization:
- **root**: most general summary;
- **leaves**: most specific summaries.

The user-defined Background Knowledge fixes the finest level and, consequently, the maximal hierarchy size.
Algorithm outline

- hierarchical conceptual classification
- incremental process
- *top-down* approach
- selective local search

Advantages

summary freshness through incremental maintenance
linear time complexity w.r.t. the number of tuples

Weaknesses

sub-optimal model
(order effect) (dynamic environment)
(use of bidirectional learning operators)
Process overview

Description space

Building the summaries

Summary model

System architecture

Introduction

Process overview

[Diagram showing the process overview]

- **Original Database**
 - ID | Occupation | Income
 - t₁ | sax player | 18 000
 - t₂ | unemployed | 5 000
 - t₃ | pensioner | 13 000
 - ...

- **Background Knowledge**

- **Candidate tuples**

- **Conceptual clustering**

- **Summary hierarchy**

 - R
 - R.1
 - R.1.1
 - R.2
 - R.3

 Summary R.1.2

 - **Intention**
 - Occupation | Income
 - 1/no occupation | 1/miserable
 - 1/artist

 Extension:
 - ct₁, ct₃[1]
The process looks for the learning operator which produces the highest quality child partition.

Learning operators
- affect,
- create,
- merge,
- split.

New candidate tuple ct
Local search

The process looks for the learning operator which produces the highest quality child partition.

Learning operators
- affect,
- create,
- merge,
- split.
The process looks for the learning operator which produces the highest quality child partition.

Learning operators
- affect,
- create,
- merge,
- split.
Local search

The process looks for the learning operator which produces the highest quality child partition.

Learning operators
- affect,
- create,
- merge,
- split.
Multi-granularity summary

The summary hierarchy presents many different precision levels.

\[R_1^* \quad R_2^* \quad R_3^* \]

< \{ artiste, no occupation\}, \{miserable, none\} >

< \{ artiste, no occupation\}, miserable >
< no occupation, miserable >

< artiste, miserable >
< no occupation, none >

- The trade-off between size and concision can be chosen \textit{a-posteriori} depending on the user need;
- Analogy between the drill-down/roll-up operation on Datacube and the summary hierarchy navigation.
Table of Content

1 Introduction
 • Generalities
 • Related works

2 Summary model
 • Description space
 • Building the summaries

3 System architecture
 • Web service organization
 • Complexity and performances

4 Conclusion
- Message Oriented Application;
- Each document has autonomous specification (XSchema);
- Possibility to benefit from Message Oriented Middleware (MOM);
- Each service may be used separately or composed with others;
- Based on wide spread standards (W3C, ECMA et ISO).
Concept formation performed by autonomous “agents”

From translation service or other cooked data source

- Memory management optimized through specific pagination method;
- Process parallelization;
- Computation optimization through the use of a local cache with incremental upholding (contrast matrix).
Process performance evaluation

Tests based on 1990 US census data [UCI KDD Archive].

- 1 billion tuples;
- 14 attributes used for the summarization;
- 5 to 14 modalities per attributes (prepared).
Dynamic performances

Process performance is dependent only on the hierarchy size.

\[\text{depth} = \log_{\text{width}}(\text{leaves}) \]
The marketing department of CIC (a french banking group) provided customer data:

- 33700 records;
- 70 attributes (10 of them used for the summary);
- Background Knowledge defined with the bank marketing experts;
- 3 to 8 linguistic descriptors used per attribute.
The number of leaves follows an asymptotic evolution;
The process tends toward a classification only regime.
Table of Content

1. Introduction
 - Generalities
 - Related works

2. Summary model
 - Description space
 - Building the summaries

3. System architecture
 - Web service organization
 - Complexity and performances

4. Conclusion
We presented:

- A general purpose multi-granularity summarization model:
 - an *adaptative* alternative to the *GROUP BY*;
 - simultaneous maintenance of *several compression levels*;
 - *robust* and *intuitive* classes thanks to human-like learning mechanism and uncertainty handling.

- The architecture of the system, which contributes to:
 - ease of *coupling* with DBMS (web services);
 - *performance* optimization and parallelization (use of autonomous agent);

- Validation of the system performance on a test database and a real-life one.
Web Site of SaintEtiQ

http://www.simulation.fr/seq

- Win32 prototype with test dataset available for download
- Process available online as web service
- References and documentation