Answering Queries from Statistics and Probabilistic Views

Nilesh Dalvi and Dan Suciu, University of Washington.

Background

- 'Query answering using Views' problem: find answers to a query q over a database schema R using a set of views $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \cdots\right\}$ over R.
- Example: R (name,dept,phone)
$\mathrm{V}_{1}(\mathrm{n}, \mathrm{d}): R(\mathrm{n}, \mathrm{d}, \mathrm{p})$

$\mathrm{v}_{1}=$| NAME | DEPT |
| :---: | :---: |
| LARRY | SALES |
| JOHN | SALES |

$\mathrm{v}_{2}(\mathrm{~d}, \mathrm{p}): R(\mathrm{n}, \mathrm{d}, \mathrm{p})$
$\mathrm{v}_{2}=$DEPT PHONE SALES $\times 1234$ SALES $\times 5678$ HR $\times 2222$

$$
q(\mathrm{p}): R(\mathrm{LARRY}, \mathrm{~d}, \mathrm{p})
$$

Background: Certain Answers

Let U be a finite universe of size n . Consider all possible data instances over U

D_{1}	D_{2}	D_{3}	D_{4}	$\ldots \ldots$.	D_{m}

Data instances consistent with the views V

Certain Answers: tuples that occur as answers in all data instances consistent with V

Example

$$
\begin{gathered}
\mathrm{v}_{1}(\mathrm{n}, \mathrm{~d}): \mathrm{R}(\mathrm{n}, \mathrm{~d}, \mathrm{p}) \\
\mathrm{v}_{1}=\begin{array}{|c|c|}
\hline \text { NAME } & \text { DEPT } \\
\hline \text { LARRY } & \text { SALES } \\
\hline \text { JOHN } & \text { SALES } \\
\hline
\end{array}
\end{gathered}
$$

$\mathrm{v}_{2}(\mathrm{~d}, \mathrm{p}): \mathrm{R}(\mathrm{n}, \mathrm{d}, \mathrm{p})$
$\mathrm{v}_{2}=$DEPT PHONE SALES $\times 1234$ SALES $\times 5678$ HR $\times 2222$

$$
q(\mathrm{p}): \mathrm{R}(\mathrm{LARRY}, \mathrm{~d}, \mathrm{p})
$$

Data instances consistent with the views:

$\mathrm{D}_{1}=$		
NAME	DEPT	PHONE
LARRY	SALES	$\times 1234$
JOHN	SALES	$\times 5678$
SUE	HR	$\times 2222$

$\mathrm{D}_{2}=$

NAME	DEPT	PHONE
FRANK	SALES	$\times 5678$
LARRY	SALES	X1111
JOHN	SALES	X1234
SUE	HR	$\times 2222$

Example (contd.)

$$
V_{1}=\begin{array}{|c|c|}
\hline \text { NAME } & \text { DEPT } \\
\hline \text { LARRY } & \text { SALES } \\
\hline \text { JOHN } & \text { SALES } \\
\hline
\end{array}
$$

$V_{2}=$| DEPT | PHONE |
| :---: | :---: |
| SALES | $\times 1234$ |
| SALES | $\times 5678$ |
| HR | $\times 2222$ |

- No certain answers, but some answers are more likely that others.
- Domain is huge, cannot just guess Larry's number.
- A data instance is much smaller. If we know average employes per dept $=5$, then $\times 1234$ and $\times 5678$ have 0.2 probability of being answer.

Going beyond certain answers

- Certain answers approach assumes complete ignorance about the knowledge of how likely is each possible database
- Often we have additional knowledge about the data in form of various statistics

Can we use such information to find answers to queries that are statistically meaningful?

Why Do We Care?

- Data Privacy: publishers can analyze the amount of information disclosed by public views about private information in the database
- Ranked Search: a ranked list of probable answers can be returned for queries with no certain answers.

Using Common Knowledge

- Suppose we have a priori distribution Pr over all possible databases:

$$
\operatorname{Pr}:\left\{D_{1}, \ldots, D_{m}\right\} \rightarrow[0,1]
$$

- We can compute the probability of a tuple t being an answer to q using $\operatorname{Pr}[(t \in q) \mid V]$

Query Answering using views = Computing conditional probabilities on a distribution

Part I

2uery answering using vieres under some specific distributions

Binomial Distribution

U : a domain of size n
We start from a simple case

- R (name,dept,phone) a relation of arity 3
- Expected size of R is c

Binomial: Choose each of the n^{3} possible tuples independently with probability p.

Expected size of R is $c \Rightarrow p=c / n^{3}$
Let μ_{n} denote the resulting distribution. For any instance D,

$$
\mu_{\mathrm{n}}[\mathrm{D}]=\mathrm{p}^{\mathrm{k}}(1-\mathrm{p})^{\mathrm{n}^{3}-\mathrm{k}}, \text { where } \mathrm{k}=|\mathrm{D}|
$$

Binomial: Example I

R(name,dept,phone)
v : R(LARRY, -, -)
$\mathrm{q}: \mathrm{R}(-,-, \times 1234)$
$|\mathrm{R}|=\mathrm{c}$, domain size $=\mathrm{n}$
$\mu_{n}[q \mid v] \approx(c+1) / n=$ negligible if n is large
$\lim _{\mathrm{n}} \rightarrow \infty \mu_{\mathrm{n}}[\mathrm{q} \mid v]=0$
v gives negligible information about q when domain is large

Binomial: Example II

R (name, dept, phone) $\quad|\mathrm{R}|=\mathrm{c}$, domain size $=\mathrm{n}$
$\mathrm{v}: \mathrm{R}($ LARRY,,--$), \mathrm{R}(-,-, \times 1234)$
$\mathrm{q}: \mathrm{R}$ (LARRY,,$- \times 1234$)
$\lim _{n \rightarrow \infty} \mu_{n}[q \mid v]=1 /(1+c)$
v gives non-negligible information about q , even for large domains

Binomial: Example III

R (name, dept, phone) $\quad|\mathrm{R}|=\mathrm{c}$, domain size $=\mathrm{n}$ $\mathrm{v}: \mathrm{R}($ LARRY, SALES,,-$), \mathrm{R}(-$, Sales, $\times 1234)$ $\mathrm{q}: \mathrm{R}$ (LARRY, SALES, $\times 1234$)
$\lim _{\mathrm{n}} \rightarrow \infty \mu_{\mathrm{n}}[\mathrm{q} \mid v]=1$
Binomial distribution cannot express more interesting statistics.

A Variation on Binomial

- Suppose we have following statistics on R(name,dept,phone):
- \quad Expected number of distinct R.dept $=\mathrm{c}_{1}$
- Expected number of distinct tuples for each R.dept $=c_{2}$
- Consider the following distribution μ_{n}
- For each $\mathrm{x}_{\mathrm{d}} \in \mathrm{U}$, choose it as a R.dept value with probability $\mathrm{c}_{1} / \mathrm{n}$
- For each x_{d} chosen above, for each $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{p}}\right) \in \mathrm{U}^{2}$, include the tuple ($\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{d}}, \mathrm{x}_{\mathrm{p}}$) in R with probability $\mathrm{c}_{2} / \mathrm{n}^{2}$

Examples

R (name, dept, phone) $|\mathrm{dept}|=\mathrm{c}_{1}$, \mid dept \Rightarrow name, phone $\left|=\mathrm{c}_{2},|\mathrm{R}|=\mathrm{c}_{1} \mathrm{c}_{2}\right.$
Example i:

$$
\begin{aligned}
& \mathrm{v}: \mathrm{R}(\text { LARRY },-,-), \mathrm{R}(-,-, \times 1234) \\
& \mathrm{q}: \mathrm{R}(\text { LARRY, }-, \times 1234) \\
& \mu[\mathrm{q} \mid \mathrm{v}]=1 /\left(\mathrm{c}_{1} \mathrm{c}_{2}+1\right)
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \mathrm{v}: \mathrm{R}(\text { LARRY, SALES, }-), \mathrm{R}(-, \text { SALES, } \times 1234) \\
& \mathrm{q}: \mathrm{R}(\text { LARRY, SALES, } \times 1234) \\
& \mu[\mathrm{q} \mid \mathrm{v}]=1 /\left(\mathrm{c}_{2}+1\right)
\end{aligned}
$$

Part II : Representing Knowledge as a Probability Distribution

Knowledge about data

- A set of statistics Γ on the database
- cardinality statistics : $\operatorname{card}_{\mathrm{R}}[\mathrm{A}]=\mathrm{c}$
- fanout statistics: fanout ${ }_{R}[A \Rightarrow B]=c$
- A set of integrity constraints Σ
- functional dependencies: R.A \rightarrow R.B
- inclusion dependencies: R.A \subseteq R.B

Representing Knowledge

Statistics and constraints are statements on the probability distribution P
$-\operatorname{card}_{\mathrm{R}}[\mathrm{A}]=\mathrm{c}$ implies the following

$$
\Sigma_{\mathrm{i}} \mathrm{P}\left[\mathrm{D}_{\mathrm{i}}\right] \operatorname{card}\left(\Pi_{\mathrm{A}}\left(\mathrm{R}^{\mathrm{D}_{\mathrm{i}}}\right)\right)=\mathrm{c}
$$

- fanout ${ }^{[}[A \Rightarrow B]$ implies a similar condition
- A constraint Σ implies that $\mathrm{P}\left[\mathrm{D}_{\mathrm{i}}\right]=0$ on data instances D_{i} that violate Σ
Problem: P is not uniquely defined by these statements!

The Maximum Entropy Principle

- Among all the probability distributions that satisfy Σ and Γ, choose the one with maximum entropy.
- Widely used to convert prior information into prior probability distribution
- Gives a distribuion that commits the least to any specific instance while satisfying all the equations.

Examples of Entropy Maximization

- R (name, dept,phone) a relation of arity 3
- Example I:

$$
\Gamma=\operatorname{empty}, \Sigma=\{\operatorname{card}[R]=c\}
$$

Entropy maximizing distribution = Binomial

- Example 2:

$$
\begin{aligned}
& \Gamma=\text { empty, } \Sigma=\left\{\operatorname{card}_{\mathrm{R}}[\mathrm{dept}]=\mathrm{c}_{1}\right. \text {, } \\
& \text { fanout } \left.{ }_{R}[\text { dept } \Rightarrow \text { name,phone }]=c_{2}\right\}
\end{aligned}
$$

Entropy maximizing distribution $=$ variation on Binomial distribution we studies earlier.

Query answering problem

Given a set of statistics Σ and constraints Γ, let $\mu_{\Sigma, \Gamma, \mathrm{n}}$ denote the maximum entropy distribution assuming a domain of size n.

Problem: Given statistics Σ, constraints Γ, and boolean conjunctive queries q and v, compute the asymptotic limit of $\mu_{\Sigma, \Gamma, n}[q \mid v]$ as $n \rightarrow \infty$

Main Result

- For Boolean conjunctive queries q and v, the quantity $\mu_{\Sigma, \Gamma, \mathrm{n}}[\mathrm{q} \mid \mathrm{v}]$ always has an asymptotic limit and we show how to compute it.

Glimpse into Main Result

- For any conjunctive query Q, we show that $\mu_{\Sigma, \Gamma, n}[Q]$ is a polynomial of the form

$$
c_{1}(1 / n)^{d}+c_{2}(1 / n)^{d+1}+\ldots
$$

- $\mu_{\Sigma, \Gamma, \mathrm{n}}[q \mid v]=\mu_{\Sigma, \Gamma, \mathrm{n}}[q v] / \mu_{\Sigma, \Gamma, \mathrm{n}}[\mathrm{v}]=$ ratio of two polynomials.
- Only the leading coefficient and exponent matter, and we show how to compute them.

Conclusions

- We show how to use common knowledge about data to find answers to queries that are statistically meaningful
- Provides a formal framework for studying database privacy breaches using statistical attacks.
- We use the principle of entropy maximization to represent statistics as a prior probability distribution.
- The techniques are also applicable when the contents of views are themselves uncertain.

Questions?

