Maximal Vector Computation

in Large Data Sets

Parke Godfrey1 \quad Ryan Shipley2 \quad Jarek Gryz1

1York University
Toronto, CANADA

2College of William and Mary
Williamsburg, USA

30 August 2005

VLDB

Trondheim, Norway
I. Introduction

What is Skyline?

- an extension to SQL
- filtering for the Pareto-optimal tuples
- a way to express “best-match” & preference queries

```
select . . .
from . . .
where . . .
group by . . .
skyline of D₁ [min | max | diff], . . .,
        Dₖ [min | Max | diff]
having . . .
```

[Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]
I. Introduction

What is Skyline?

- an extension to SQL
- filtering for the *Pareto-optimal* tuples
- a way to express “best-match” & preference queries

```
select . . .
from . . .
where . . .
group by . . .
   skyline of D₁ [min | max | diff], . . .,
   Dₖ [min | Max | diff]
having . . .
```

[Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]

- Have been ~30 skyline-related papers in DB-related journals, conferences, & workshops since.
- Next two talks are on skyline, & one at PhD Workshop.
Consider a **Hotel** table with columns name, address, dist (distance to the beach), stars (quality rating), & price.

select name, address
from Hotel
skyline of stars max,
dist min,
price min
Consider a **Hotel** table with columns name, address, dist (distance to the beach), stars (quality rating), & price.

```sql
SELECT name, address
FROM Hotelskyline
WHERE
  stars = (SELECT MAX(stars) FROM Hotelskyline)
  AND dist = (SELECT MIN(dist) FROM Hotelskyline)
  AND price = (SELECT MIN(price) FROM Hotelskyline)
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```sql
select name, address
from Hotel
skyline of stars max,
dist min,
price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>★★</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>★</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>★</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>★★★</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>★★★</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>★★</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
```

- **Blue**: currently considering
- **Green**: “trumps” current
- **Red**: skyline
- **Gray**: not skyline
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```sql
select name, address
from Hotel
skyline of stars max, dist min, price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td><strong>☆</strong></td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>*</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>*</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>***</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>***</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td><strong>☆</strong></td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
```

- currently considering
- “trumps” current
- skyline
- not skyline
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>★★★</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>★</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>★</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>★★★★</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>★★★★</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>★★</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

select name, address
from Hotel
skyline of stars max,
dist min,
price min

- Currently considering
- "trumps" current
- Skyline
- Not skyline
Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```
select name, address
from Hotel
skyline of stars max,
dist min,
price min
```

```
<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
```
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

| select name, address from Hotel skyline of stars max, dist min, price min |

- **Blue**: currently considering
- **Green**: “trumps” current
- **Red**: skyline
- **Gray**: not skyline
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```sql
select name, address
from Hotel
skyline of stars max,
dist min,
price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>★★★</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>★★★</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>★★★</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>★★★★</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>★★★★</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>★★★</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

- Currently considering: Blue
- “trumps” current: Green
- Skyline: Red
- Not skyline: Gray
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

- **Aga** currently considering
- **Fol** “trumps” current
- **Kaz** skyline
- **Neo** not skyline
- **Tor** not skyline
- **Uma** not skyline
A Skyline Example

Consider a **Hotel** table with columns name, address, dist (distance to the beach), stars (quality rating), & price.

```
select name, address
from Hotel
skyline of stars max, dist min, price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

- **Currently considering**: Blue
- **“trumps” current**: Green
- **Skyline**: Red
- **Not skyline**: Gray

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```
<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⋆⋆</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⋆</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⋆</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⋆⋆⋆</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⋆⋆⋆</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⋆⋆</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
```

- **Blue**: currently considering
- **Green**: “trumps” current
- **Red**: skyline
- **Gray**: not skyline
A Skyline Example

Consider a Hotel table with columns name, address, dist (distance to the beach), stars (quality rating), & price.

```
<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
```

select name, address from Hotel
skyline of stars max, dist min, price min

- currently considering
- “trumps” current
- skyline
- not skyline
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```sql
select name, address
from Hotel
skyline of stars max,
  dist min,
  price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

- Blue: currently considering
- Green: “trumps” current
- Red: skyline
- Gray: not skyline

Maximal Vector—Godfrey, Shipley, & Gryz – p. 3/29
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>*</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>*</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

- currently considering
- “trumps” current
- skyline
- not skyline
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```
select name, address
from Hotel
skyline of stars max,
dist min,
price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

Blue currently considering

Green “trumps” current

Red skyline

Gray not skyline
Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

Select name, address from Hotel skyline of stars max, dist min, price min

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⭐⭐</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⭐</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⭐</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⭐⭐⭐</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⭐⭐⭐</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⭐⭐</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>

- **Currently considering**
- **“trumps” current**
- **Skyline**
- **Not skyline**
A Skyline Example

Consider a **Hotel** table with columns **name**, **address**, **dist** (distance to the beach), **stars** (quality rating), & **price**.

```sql
select name, address
from Hotel
skyline of stars max,
dist min,
price min
```

<table>
<thead>
<tr>
<th>name</th>
<th>stars</th>
<th>dist</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga</td>
<td>⋆⋆</td>
<td>0.7</td>
<td>1,175</td>
</tr>
<tr>
<td>Fol</td>
<td>⋆</td>
<td>1.2</td>
<td>1,237</td>
</tr>
<tr>
<td>Kaz</td>
<td>⋆</td>
<td>0.2</td>
<td>750</td>
</tr>
<tr>
<td>Neo</td>
<td>⋆⋆⋆</td>
<td>0.2</td>
<td>2,250</td>
</tr>
<tr>
<td>Tor</td>
<td>⋆⋆⋆</td>
<td>0.5</td>
<td>2,550</td>
</tr>
<tr>
<td>Uma</td>
<td>⋆⋆</td>
<td>0.5</td>
<td>980</td>
</tr>
</tbody>
</table>
```

- Blue: currently considering
- Green: “trumps” current
- Red: skyline
- Gray: not skyline
The Maximal Vector Problem
Abstraction

Interest since the 1960’s.

tuples \approx \text{vectors (or points)}
in \(k\)-dim. space

Related to

- nearest neighbours
- convex hull

E.g., \(\langle \text{stars, dist, price} \rangle \rightarrow \langle x, y, z \rangle\)
The Maximal Vector Problem

Abstraction

Interest since the 1960’s.

tuples \approx \text{vectors (or points)}
\text{in } k\text{-dim. space}

Related to

- nearest neighbours
- convex hull

E.g., \langle \text{stars, dist, price} \rangle \mapsto \langle x, y, z \rangle

Input Set:

- \( n \) vectors
- \( k \) dimensions

Vectors (points) are scattered in the unit \( k \)-cube, \((0, 1)^k\).
The Maximal Vector Problem

Abstraction

Interest since the 1960’s.

tuples ≈ vectors (or points)
in $k$-dim. space

Related to

- nearest neighbours
- convex hull

E.g., $\langle\text{stars, dist, price}\rangle \mapsto \langle x, y, z\rangle$

**Input Set:**
- $n$ vectors
- $k$ dimensions

**Output Set:**
- $m$ maximal vectors

Vectors (points) are scattered in the unit $k$-cube, $(0, 1)^k$. 
1. To design a good relational-database algorithm for finding the maximal vectors / skyline: LESS

- performance criteria?
- design choices?
- computational issues?
Our Goals & Accomplishments

1. To design a good relational-database algorithm for finding the maximal vectors / skyline: LESS
   - performance criteria?
   - design choices?
   - computational issues?

2. To understand the strengths and weaknesses of the existing algorithms.
   - deeper asymptotic analyses
     *What is the impact of the dimensionality k?*
   - better analytic profiles
Our Goals & Accomplishments

1. To design a good relational-database algorithm for finding the maximal vectors / skyline: LESS
   - performance criteria?
   - design choices?
   - computational issues?

2. To understand the strengths and weaknesses of the existing algorithms.
   - deeper asymptotic analyses
     What is the impact of the dimensionality \( k \)?
   - better analytic profiles

We discuss #2 first.
II. Design & Analysis Considerations

Relational Performance Criteria

- **external**
  - I/O conscious (too much data for main memory)

- **well behaved**
  - compatible with a query optimizer
  - not CPU bound (!)

- **generic** *(At least one basic generic algorithm is needed!)*
  - no indexes, no pre-computed information.

- **good properties**
  - progressive, pipe-lineable
  - at worse, linear run-time (!)
<table>
<thead>
<tr>
<th><strong>Design Choices</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>divide-and-conquer (D&amp;C) or scan-based</strong></td>
</tr>
<tr>
<td>- Can D&amp;C be I/O conscious?</td>
</tr>
<tr>
<td>- Can scan-based be efficient?</td>
</tr>
<tr>
<td><strong>to sort or not to sort</strong></td>
</tr>
<tr>
<td>- Is sorting useful?</td>
</tr>
<tr>
<td>- Is sorting too inefficient? (Not linear...)</td>
</tr>
<tr>
<td><strong>comparison policy</strong></td>
</tr>
<tr>
<td>- Which vectors to compare next?</td>
</tr>
<tr>
<td>- How to limit the number of comparisons?</td>
</tr>
</tbody>
</table>
A Model for Average-Case Analysis

1. independence: Dimensions are statistically independent.
A Model for Average-Case Analysis

1. **independence**: Dimensions are statistically independent.

2. **sparseness**: Vectors (mostly) have distinct values along any dimension.
A Model for Average-Case Analysis

1. **independence**: Dimensions are statistically independent.

2. **sparseness**: Vectors (mostly) have distinct values along any dimension.

3. **uniformity**: The values along any dimension are uniformly distributed.
A Model for Average-Case Analysis

Component Independence (CI)

1. **independence**: Dimensions are statistically independent.

2. **sparseness**: Vectors (mostly) have distinct values along any dimension.

3. **uniformity**: The values along any dimension are uniformly distributed.
A Model for Average-Case Analysis

Uniform Independence (UI)

Component Independence (CI)

1. **independence**: Dimensions are statistically independent.

2. **sparseness**: Vectors (mostly) have distinct values along any dimension.

3. **uniformity**: The values along any dimension are uniformly distributed.
Expected Number of Maximals ($\hat{m}$)

Under CI (independence & sparseness),

$$\hat{m}_{1,n} = 1$$

$$\hat{m}_{k,n} = \frac{1}{n} \hat{m}_{k-1,n} + \hat{m}_{k,n-1}$$

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]

[Godfrey 2004 (FoIKS)]
**Expected Number of Maximals ($\hat{m}$)**

**Roman harmonics:**

\[
\begin{align*}
H_{0,n} &= 1 \\
H_{1,n} &= \sum_{i=1}^{n} \frac{1}{i} \\
H_{k,n} &= \sum_{i=1}^{n} \frac{H_{k-1,i}}{i} \\
H_{k,n} &\approx \frac{1}{k!} \ln(kn)
\end{align*}
\]

**Under CI (independence & sparseness),**

\[
\begin{align*}
\hat{m}_{1,n} &= 1 \\
\hat{m}_{k,n} &= \frac{1}{n} \hat{m}_{k-1,n} + \hat{m}_{k,n-1}
\end{align*}
\]

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]

[Godfrey 2004 (FoIKS)]

[Roman 2004 (AMM)]
Expected Number of Maximals ($\hat{m}$)

Roman harmonics:

\[
\begin{align*}
H_{0,n} &= 1 \\
H_{1,n} &= \sum_{i=1}^{n} \frac{1}{i} \\
H_{k,n} &= \sum_{i=1}^{n} \frac{H_{k-1,i}}{i} \\
H_{k,n} &\approx \frac{1}{k!} \ln k \, n
\end{align*}
\]

Under CI (independence & sparseness),

\[
\begin{align*}
\hat{m}_{1,n} &= 1 \\
\hat{m}_{k,n} &= \frac{1}{n} \hat{m}_{k-1,n} + \hat{m}_{k,n-1}
\end{align*}
\]

\[
\hat{m}_{k,n} = H_{k-1,n}
\]

[Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]
[Godfrey 2004 (FoIKS)]
[Roman 2004 (AMM)]
III. Algorithms & Analyses

Existing Generic Algorithms

- **Divide-and-Conquer Algorithms**
  - **DD&C**: double divide and conquer [Kung, Luccio, & Preparata 1975 (JACM)]
  - **LD&C**: linear divide and conquer [Bentley, Kung, Schkolnick, & Thompson 1978 (JACM)]
  - **FLET**: fast linear expected time [Bentley, Clarkson, & Levine 1990 (SODA)]
  - **SD&C**: single divide and conquer [Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]

- **Scan-based (Relational “Skyline”) Algorithms**
  - **BNL**: block nested loops [Börzsönyi, Kossmann, & Stocker 2001 (ICDE)]
  - **SFS**: sort filter skyline [Chomicki, Godfrey, Gryz, & Liang 2003 (ICDE)]
  - **LESS**: linear elimination sort for skyline [Godfrey, Shipley, & Gryz 2005 (VLDB)]
D&C: Comparisons per Vector

We know $\hat{m}$ (under CI), so we can model \textit{and} solve a recurrence relation that is a floor for a D&C algorithm’s average-case in terms of $n$ \textit{and} $k$. \textbf{LD&C [BKST 1978 (JACM)]}:
We know $\hat{m}$ (under CI), so we can model \textit{and} solve a recurrence relation that is a floor for a D&C algorithm’s average-case in terms of $n$ \textit{and} $k$. \textbf{LD&C} [BKST 1978 (JACM)]:

\[
T(n) = 2T(n/2) + \hat{m}_{k,n}\lfloor \log_2 k \rfloor \hat{m}_{k,n}
\]
\[
\vdots
\]
\[
\approx (k - 1)^{k-2} n
\]
D&C: Comparisons per Vector

We know \( \hat{m} \) (under CI), so we can model and solve a recurrence relation that is a floor for a D&C algorithm’s average-case in terms of \( n \) and \( k \). LD&C [BKST 1978 (JACM)]:

\[
T(n) = 2T(n/2) + \hat{m}_{k,n} \log_2^{k-2} \hat{m}_{k,n} \\
\vdots \\
\approx (k - 1)^{k-2} n
\]

<table>
<thead>
<tr>
<th>( k )</th>
<th>( (k - 1)^{k-2} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>7,776</td>
</tr>
<tr>
<td>9</td>
<td>2,097,152</td>
</tr>
</tbody>
</table>
D&C: Comparisons per Vector

We know $\hat{m}$ (under CI), so we can model and solve a recurrence relation that is a floor for a D&C algorithm’s average-case in terms of $n$ and $k$. **LD&C** [BKST 1978 (JACM)]:

$$T(n) = 2T(n/2) + \hat{m}_{k,n}\log_2^{k-2}\hat{m}_{k,n}$$

$$\approx (k - 1)^{k-2}n$$

<table>
<thead>
<tr>
<th>$k$</th>
<th>$(k - 1)^{k-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>7,776</td>
</tr>
<tr>
<td>9</td>
<td>2,097,152</td>
</tr>
</tbody>
</table>
We know $\hat{m}$ (under CI), so we can model and solve a recurrence relation that is a floor for a D&C algorithm’s average-case in terms of $n$ and $k$. **LD&C [BKST 1978 (JACM)]:**

$$T(n) = 2T(n/2) + \hat{m}_{k,n} \lg \frac{k-2}{2} \hat{m}_{k,n}$$

$$\approx (k - 1)^{k-2} n$$

<table>
<thead>
<tr>
<th>$k$</th>
<th>$(k - 1)^{k-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>7,776</td>
</tr>
<tr>
<td>9</td>
<td>2,097,152</td>
</tr>
</tbody>
</table>

**DD&C [KLP 1975 (JACM)]:**

$$(k - 1)^{k-3} n$$

**SD&C [BKS 2001 (ICDE)]:**

$$\frac{\ln 2}{\sqrt{\pi(k-1)}} 2^{2k-4} n$$
**Block Nested Loops (BNL) Algorithm**

`window (W)`: A fixed size of main memory used to store skyline-candidate vectors (tuples).

`stream (S)`: The \( n \) vectors (tuples) resident on disk, to be read in “one-by-one”.

\[
\begin{align*}
\text{for each } \vec{v} & \in S \\
\text{for each } \vec{w} & \in W \\
\text{if } (\vec{w} \triangleright \vec{v}) \\
\text{continue} & \quad // \text{with next } \vec{v} \\
\text{if } (\vec{v} \triangleright \vec{w}) \\
W & := W - \{\vec{w}\} \\
\text{if } (\neg \exists \vec{w} \in W. \vec{w} \triangleright \vec{v}) & \quad // \vec{v} \text{ survived} \\
W & := W \cup \{\vec{v}\} & \quad // \text{if there is room}
\end{align*}
\]

\( O(?) \)

average case
### Sort Filter Skyline (SFS) Algorithm

Have a **window** ($W$) and **stream** ($S$), as with BNL. Sort $S$ first (via an external sort routine): e.g.,

<table>
<thead>
<tr>
<th>order by $D_k$ desc, $\ldots$, $D_1$ desc</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}(n \log n)$ worst case</td>
</tr>
</tbody>
</table>

Then,

<table>
<thead>
<tr>
<th>for each $\vec{v} \in S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>for each $\vec{w} \in W$</td>
</tr>
<tr>
<td>if ($\vec{w} \succ \vec{v}$)</td>
</tr>
<tr>
<td>continue // with next $\vec{v}$</td>
</tr>
<tr>
<td>if ($\vec{v} \succ \vec{w}$)</td>
</tr>
<tr>
<td>$W := W {\vec{w}}$</td>
</tr>
<tr>
<td>if ($\not\exists \vec{w} \in W. \vec{w} \succ \vec{v}$) // $\vec{v}$ survived</td>
</tr>
<tr>
<td>$W := W \cup {\vec{v}}$ // if there is room</td>
</tr>
</tbody>
</table>

$\mathcal{O}(n)$ average case

Thm. 8 (under UI & sort on entropy)

Any $\vec{w}$ in the window is guaranteed to be maximal (skyline).
BNL vs SFS

- SFS makes fewer comparisons and takes fewer passes.
- SFS is better behaved “relationally”.
  - progressive
  - immune to previous ordering of input
- BNL does not need to sort!
  (However, what is its average-case $O$?)
BNL vs SFS

- SFS makes fewer comparisons and takes fewer passes.
- SFS is better behaved “relationally”.
  - progressive
  - immune to previous ordering of input
- BNL does not need to sort!
  (However, what is its average-case $O$?)

Our algorithm LESS will combine the best aspects of the algorithms, particularly of BNL & SFS.
BNL vs SFS

- SFS makes fewer comparisons and takes fewer passes.
- SFS is better behaved “relationally”.
  - progressive
  - immune to previous ordering of input
- BNL does not need to sort!
  (However, what is its average-case $O$?)

$\text{BNL}_R \& \text{SFS}_R$: Compare $\vec{v}$ against window $\vec{w}$’s in a random order.

$\text{BNL} \& \text{SFS}$: Order window $\vec{w}$’s intelligently to reduce #comparisons.
Analyses of #Comparisons

BNL$_R$:

$$\sum_{i=0}^{n-1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \hat{\text{mttf}}_k(x_1 \cdot \ldots \cdot x_k, i) \, dx_1 \ldots dx_k$$
BNL$_R^i$:

\[
\sum_{i=0}^{n-1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \cdots \int_{x_1=0}^{1} \hat{mttf}_k(x_1, \ldots, x_k, i) \, dx_1 \ldots dx_k
\]

\textit{mttf}: “mean time to failure”
BNL\(_R\):

\[ \sum_{i=0}^{n-1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \cdots \int_{x_1=0}^{1} \widehat{\text{mttf}}_k(x_1 \cdot \ldots \cdot x_k, i) \, dx_1 \cdots dx_k \]

\text{mttf}: "mean time to failure"
BNL_R:

\[ \sum_{i=0}^{n-1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \cdots \int_{x_1=0}^{1} \hat{\text{mttf}}_k(x_1, \ldots, x_k, i) \, dx_1 \cdots dx_k \]
BNL_R:\n\int_{z=0}^{1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \cdots \int_{x_1=0}^{1} \hat{\text{mttf}}_k(x_1, \ldots, x_k, z, n) \, dx_1 \cdots dx_k \, dz
Analyses of #Comparisons

**BNL** \(_R\): 
\[ \int_{z=0}^{1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \widehat{\text{mttf}}_k(x_1 \ldots x_k, zn) \, dx_1 \ldots dx_k \, dz \]

**SFS** \(_R\) w/o elimination from window: 
\[ \int_{z=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \widehat{\text{mttf}}_k(x_1 \ldots x_{k-1}, zn) \, dx_1 \ldots dx_{k-1} \, dz \]
Analyses of #Comparisons

BNL<sub>R</sub>:  
\[ \int_{z=0}^{1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \hat{\text{mttf}}_k(x_1 \ldots \cdot x_k, z_n) \, dx_1 \ldots dx_k \, dz \]

SFS<sub>R</sub> w/o elimination from window:  
\[ \int_{z=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \hat{\text{mttf}}_k(x_1 \ldots \cdot x_{k-1}, z_n) \, dx_1 \ldots dx_{k-1} \, dz \]

SFS<sub>R</sub> w/ elimination from window:  
\[ \int_{z=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \hat{\text{mttf}}_{k-1}(x_1 \ldots \cdot x_{k-1}, z_n) \, dx_1 \ldots dx_{k-1} \, dz \]
Analyses of #Comparisons

$\text{BNL}_R$: 
\[ \int_{z=0}^{1} \int_{x_k=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \mathcal{mttf}_k(x_1 \cdot \ldots \cdot x_k, z, n) \, dx_1 \ldots dx_k \, dz \]

$\text{SFS}_R$ w/o elimination from window: 
\[ \int_{z=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \mathcal{mttf}_k(x_1 \cdot \ldots \cdot x_{k-1}, z, n) \, dx_1 \ldots dx_{k-1} \, dz \]

$\text{SFS}_R$ w/ elimination from window: 
\[ \int_{z=0}^{1} \int_{x_{k-1}=0}^{1} \ldots \int_{x_1=0}^{1} \mathcal{mttf}_{k-1}(x_1 \cdot \ldots \cdot x_{k-1}, z, n) \, dx_1 \ldots dx_{k-1} \, dz \]

$\text{SFS}$ effectively saves “one dimension” over $\text{BNL}$. 

Maximal Vector—Godfrey, Shipley, & Gryz – p. 15/29
Analyses of #Comparisons

Results

\[ \hat{\text{mttf}}_k(x, n) \approx \frac{H_{k-1,n}}{H_{k-1, xn}} \]

These converge in the limit.
Analyses of #Comparisons

Results

\[ \text{mttf}_k(x, n) \approx \frac{H_{k-1,n}}{H_{k-1,xn}} \]

These converge in the limit.

Analytical solution matches observation.
Analyses of #Comparisons

Results

\[ \widehat{\text{mttf}}_k(x, n) \approx \frac{H_{k-1,n}}{H_{k-1,xn}} \]

These converge in the limit.

Analytical solution matches observation.

**Thm.** Under CI, BNL\(_R\) and SFS\(_R\) are \(O(n)\) average case.

**Proof.**

\[
\lim_{n \to \infty} \int_{z=0}^{1} \int_{x_k=0}^{1} \ldots \int_{x_1=0}^{1} \widehat{\text{mttf}}_k(\ldots, zn) \, d \ldots = 1
\]
BNL & SFS

Comparisons per Vector

#comparisons per vector

#vectors

BNL $R$

SFS $R$ w/o

SFS $R$ w/

$k = 7$
BNL & SFS

Comparisons per Vector

#comparisons per vector

#vectors

BNL $R$
BNF
SFS $R$ w/o
SFS $R$ w/
SFS

$k = 7$

Maximal Vector—Godfrey, Shipley, & Gryz – p. 17/29
The LESS Algorithm

Description

Combine best aspects of the algorithms, mainly BNL & SFS.

- modified external sort
- block-sort pass
  - use a small window (as in BNL) to eliminate $\vec{v}$'s
  - merge passes
    - ...
  - last merge pass
    - use a large window (as in SFS) to filter for the skyline
    - skyline-filter passes (if needed)
    - ...

Buffer Pool

EF Window

Block for quicksort

Last merge pass

buffer pool

SF Window

Inputs
Output
1
2
k

Maximal Vector—Godfrey, Shipley, & Gryz – p. 18/29
LESS: Performance

\[ n = 500,000 \]
EF window: 200 vectors
SF window: 76 pages, \( \sim 3,000 \) vectors
Pentium III, 733 MHz
RedHat Linux 7.3
LESS: Linear Average-Case

Summary

$O(n)$ average-case run-time (under UI, Thm. 13)

- BNL-style filtering during the block-sort pass removes enough so sort is $O(n)$.
- SFS-style filtering during the last merge pass (and subsequent filter-skyline passes) is $O(n)$.

Improvements

- LESS improves over SFS & BNL on I/O’s.
- LESS improves over SFS & BNL on time; however, for larger $k’s$ (and, hence, $m’s$), this diminishes.
Conclusions

Future Work

1. Devise yet better (generic) algorithms.
   - A scan-based algorithm that is $o(n^2)$ worst-case?
   - Can we bypass the $m^2$ bottleneck?
   - Make “average-case” more general.
     - Nemesis of skyline: anti-correlation.
     - Remove uniformity assumption.
   - Reduce further comparison load (CPU-boundness).

2. Study in depth index-based skyline algorithms.
   - What are their asymptotic complexities?
   - In what cases will a given index-based algorithm outperform, say, LESS? Not outperform?
1. Asymptotic complexity does not tell all. If you dig a little deeper, you often find surprises!
   - The multiplicative constant matters.
   - Even when the multiplicative constant is good in the limit, what happens in between?
   - Must factor in “database” considerations.

2. Maximal-vector / skyline opens up new & useful avenues for database systems.
   - Adds a preference facility to the language.
   - Provides a multi-objective operation.
   - May be useful in other applications.
Appendix

Extra Slides
Computing Skyline in (Plain) SQL

\[
\begin{align*}
\text{select } & C_1, \ldots, C_j, \quad \text{– columns to keep} \\
& D_1, \ldots, D_k, \quad \text{– skyline dimensions (MAX assumed)} \\
& E_1, \ldots, E_l \quad \text{– DIFF columns} \\
\text{from OurTable} \\
\text{except} \\
\text{select } & X.C_1, \ldots, X.C_j, \\
& X.D_1, \ldots, X.D_k, \\
& X.E_1, \ldots, X.E_l \\
\text{from OurTable } X, \text{ OurTable } Y \text{ where} \\
& Y.D_1 \geq X.D_1 \text{ and } \ldots \ Y.D_k \geq X.D_k \text{ and} \\
& (Y.D_1 > X.D_1 \text{ or } \ldots \ Y.D_k > X.D_k) \text{ and} \\
& Y.E_1 = X.E_1 \text{ and } \ldots \ Y.E_l = X.E_l
\end{align*}
\]

Certainly $O(n^2)$, even for average-case.
Skyline Cardinality

harmonic numbers [Godfrey 2004 (FoIKS)]

1. The harmonic of \( n \), for \( n > 0 \): \( H_n = \sum_{i=1}^{n} \frac{1}{i} \)

2. The \( k \)-th order harmonic of \( n \), for integers \( k > 0 \) and integers \( n > 0 \): \( H_{k,n} = \sum_{i=1}^{n} \frac{H_{k-1,i}}{i} \)

Define \( H_{0,n} = 1 \), for \( n > 0 \). Define \( H_{k,0} = 0 \), for \( k > 0 \).

3. The \( k \)-th hyper-harmonic of \( n \), for integers \( k > 0 \) and integers \( n > 0 \): \( H_{k,n} = \sum_{i=1}^{n} \frac{1}{i^k} \)

\[
\hat{m}_{k+1,n} = H_{k,n} = \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{i_{1}} \cdots \sum_{i_{k}=1}^{i_{k-1}} \frac{1}{i_{1}i_{2}\cdots i_{k}}
\]
Thm.

\[ H_{k,n} = \sum_{c_1,\ldots,c_k \geq 0} \prod_{i=1}^{k} \frac{H_{ci}^{ci}}{i^{ci} \cdot c_i!} \]

for \( k \geq 1 \) and \( n \geq 1 \), with the \( c_i \)'s as integers.

Follows from Knuth’s generalization via generating functions.

- Only \( H_{1,n} (= H_n) \) diverges with \( n \).
- Each \( H_{i,n} \) for \( i > 1 \) converges.
- Thm. \( H_{k,n} \) is \( \Theta((\ln n)^k / k!) \).
- Thm. \( \hat{m}_{k,n} \) is \( \Theta((\ln n)^{k-1} / (k - 1)!) \).
Skyline Cardinality

examples [Godfrey 2004 (FoIKS)]

- \( H_{2,n} = \frac{1}{2} H_n^2 + \frac{1}{2} \mathcal{H}_{2,n} \),
- \( H_{3,n} = \frac{1}{6} H_n^3 + \frac{1}{2} H_n \mathcal{H}_{2,n} + \frac{1}{3} \mathcal{H}_{3,n} \), and
- \( H_{4,n} = \frac{1}{24} H_n^4 + \frac{1}{3} H_n \mathcal{H}_{3,n} + \frac{1}{8} \mathcal{H}_{2,n}^2 + \frac{1}{4} H_n^2 \mathcal{H}_{2,n} + \frac{1}{4} \mathcal{H}_{4,n} \).
- \( \ldots \)
D&C \mid +\text{Sort}

DD&C

1. Sort input set initially on each dimension.
2. Recursively divide (sorted) input set (along one dimension).
3. On merge, recursively call DD&C, but with one dimension fewer.

worst-case: $O(n\lg^{k−2} n)$

theoreticians: Great! $o(n^2)$!

engineers: Awful! $\lg^{k−2} n$ can be pretty large!

And, of course, average case is $\Omega(kn\lg n)$, because we have to sort.
D&C | –Sort

(Do not sort initially.)
1. Recursively divide input set.
2. On merge, call DD&C.

worst-case: $\mathcal{O}(n \lg^{k-1} n)$. Still $o(n^2)$!
average-case: $\mathcal{O}(n)$. Linear!
(Do not sort initially.)

1. Recursively divide input set.
2. On merge, call DD&C.

worst-case: $\mathcal{O}(n \lg^{k-1} n)$. Still $o(n^2)$!
average-case: $\mathcal{O}(n)$. Linear!

• So, is this a good algorithm?
• What is the “multiplicative constant”?
  – What impact does $k$ have?
  – How many comparisons per vector (#CpV) are needed, on average?